] [dbai

Parameterized Algorithmics and Counting:
Treewidth in Practice

Johannes K. Fichte

TU Wien

PCCR @FLoC, August Tst, 2022

MODEL COUNTING | =i
T

Fichte: Parameterized Algorithmics and Counting: Treewidth in Practice 1/20

Preliminaries: Problem of Interest

SAT-Problem (Boolean Satisfiability Problem)

Given: Propositional formula F.
Question: Is there a truth assignment 7 to the variables
in F such that F, evaluates to 1 (satisfiable).

Example

F=(-aVbVx)A(@Vb)A(cV-x)A(bV-c)A(=bV-cV-y)

Mod(F) = {{b},{a, b}, {b,c},{a,b,c},{b,c,x},{a,b,c,x},{b,y},{a,b,y}}

Model Counting (#SAT/Number SAT)

® Number of satisfying truth assignments to F.

Fichte: Parameterized Algorithmics and Counting: Treewidth in Practice 2/20

Motivation

Qualitative (Decision or Optimization)
® Does the problem have a solution?

® Qutput a reason for a decision.

Applications

® Various applications in Al and reasoning

® Bayesian reasoning [Sang et al.’05]
® | earning distributions [Choi et al."15]
® |nfrastructure reliability [Meel et al.17]

Fichte: Parameterized Algorithmics and Counting: Treewidth in Practice

Quantitative Questions

® How many solutions does the problem
have?

® How likely is an occurrence?

Computational complexity
® #P-complete [Valiant'79]

3/20

Motivation: Related Works.

#SAT Solving

® Various solvers (Model Counting Competition 2020):

® approximate [Meel et al.]
® component caching [Baccus/Thurley/Meel & Soos]
® knowledge compilation based [Choi,Darwiche/Lagniez,Marquis et al.]

Fichte: Parameterized Algorithmics and Counting: Treewidth in Practice

4/20

Motivation: Related Works.

#SAT Solving

® Various solvers (Model Counting Competition 2020):

® approximate [Meel et al.]
® component caching [Baccus/Thurley/Meel & Soos]
® knowledge compilation based [Choi,Darwiche/Lagniez,Marquis et al.]

Theory: fast on instances of low primal treewidth [Baccus, Dalmao, Pitassi'03]

Fichte: Parameterized Algorithmics and Counting: Treewidth in Practice

4/20

Motivation: Related Works.

#SAT Solving

® Various solvers (Model Counting Competition 2020):

® approximate [Meel et al.]
® component caching [Baccus/Thurley/Meel & Soos]
® knowledge compilation based [Choi,Darwiche/Lagniez,Marquis et al.]

Theory: fast on instances of low primal treewidth [Baccus, Dalmao, Pitassi'03]

Why still interesting?
® Unknown for some parameters [Stefan's talk]
® Modern hardware massively parallel

=- Some parameterized algorithms allow for parallelization

Fichte: Parameterized Algorithmics and Counting: Treewidth in Practice

4/20

Motivation: Background

Theory:
SAT hard to solve! (Pick your favorite conjecture: ETH, SETH...)

Fichte: Parameterized Algorithmics and Counting: Treewidth in Practice 5/20

Motivation: Background

Theory:
SAT hard to solve! (Pick your favorite conjecture: ETH, SETH...)

Idea:
1) Practical instances are usually
highly structured

2) Structure can be exploited by
algorithms

5/20

Fichte: Parameterized Algorithmics and Counting: Treewidth in Practice

Motivation: Background

Theory:
SAT hard to solve! (Pick your favorite conjecture: ETH, SETH...)

Idea:
1) Practical instances are usually
highly structured

2) Structure can be exploited by
algorithms

i) Solvers exploit structure (don't necessarily know how)

iia) Proof theory: understanding on possibilities and limitations

iib) Parameterized algorithmics: solve special cases efficiently
(Size + ... We don’t talk about just the number of variables.)

Fichte: Parameterized Algorithmics and Counting: Treewidth in Practice 5/20

Motivation: Parameterized Algorithms

Last 20 years
® |ots a theoretical work and various algorithms for #SAT

® Quite a lack of implementing and trying those algorithms

Fichte: Parameterized Algorithmics and Counting: Treewidth in Practice 6/20

Motivation: Parameterized Algorithms

Last 20 years
® |ots a theoretical work and various algorithms for #SAT

® Quite a lack of implementing and trying those algorithms

Research Question

Are (theoretical) algorithms from parameterized complexity
even useful for implementations in #SAT solving?

Fichte: Parameterized Algorithmics and Counting: Treewidth in Practice 6/20

Parameterize: Decompositions

® |dea: decompose the problem into
subproblems, and combine solutions to
subproblems to a global solution

® Parameter: overlap between subproblems

® Treewidth of the primal graph

7/20

Fichte: Parameterized Algorithmics and Counting: Treewidth in Practice

Tree Decompositions

Tree Decomposition 7 of G
G: x

o y (bxc](bcy]
—_—

width

Definition

A tree decomposition is a tree obtained from an input graph s.t.
1. Each vertex must occur in some bag
2. For each edge, there is a bag containing both endpoints
3. Connected: Tree “restricted” to any vertex must be connected

Fichte: Parameterized Algorithmics and Counting: Treewidth in Practice 8/20

Implementations

Fichte: Parameterized Algorithmics and Counting: Treewidth in Practice 9/20

“Find” tree decompositions of small width?
(Heuristic, not treewidth; otherwise, NP-c)

Fichte: Parameterized Algorithmics and Counting: Treewidth in Practice 9/20

“Find” tree decompositions of small width?
(Heuristic, not treewidth; otherwise, NP-c)

Works well even for relatively large instances.

Thanks to the Parameterized Algorithms and
Computational Experiments Challenge
(PACE) "16/°17.

Fichte: Parameterized Algorithmics and Counting: Treewidth in Practice 9/20

Empirical Work

Instances
® Past: 2585 instances from public benchmarks [FHecherWoltranZisser'18,"19]

= 54% primal treewidth below 30; 70% below 40 (MinFill+MinDegree)
® MCC2020-Track1+2 [FHecherRoland'21] 400 instances

=
400 1 [TRACK1+2
TRACK1
w
g 300 4]1== TrAck2
=]
g
2 200 1 e e
ks s
Ik 4 =
100 e
0 I. T T T

T
0 10 20 30 40 50 60+

best decomposition width
Fichte: Parameterized Algorithmics and Counting: Treewidth in Practice 10/20

How to “use” tree decompositions for #SAT?

Fichte: Parameterized Algorithmics and Counting: Treewidth in Practice 10/20

Solving #SAT [SamerSzeider'10]

F=(—maVbVx)A(aVb)A(cV—x)A(bV-c)A(=bV cV-y)

1. Create graph representation B e
2. Decompose graph Lo
11
3. Solve subproblems /
. b ¢ b ¢
4. Combine rows 0 00
11 10
b x ¢ L 2
1 0 0
1 01
11 1
[ba X, C] [b7 G YJ ,‘b:l;’
X a
b, X, a 1 0 0
10 1
1 10
11 1
0 1 1
~——

Fichte: Parameterized Algorithmics and Counting: Treewidth in Practice 11/20

Paralleling Dynamic Programming

How to parallelize DP?
1. Compute tables for multiple nodes in
parallel
=- Does not allow for immediate massive

parallelization due to dependencies to
children

2. Distribute computation of rows among
different computation units
= Allows with right hindsight for massive
parallelization
Why: computation of rows are independent

Fichte: Parameterized Algorithmics and Counting: Treewidth in Practice 12/20

A GPU-based #SAT-solver

OR how to go massively parallel?

CPU GPU
Multiple Cores Thousands of Cores

Fichte: Parameterized Algorithmics and Counting: Treewidth in Practice 12/20

Empirical Comparison
(Model counters improved significantly over the last two years)

Fichte: Parameterized Algorithmics and Counting: Treewidth in Practice 12/20

Outcome: Runtime / Treewidth

'
=3
S

300

200 -

100

of solved instances

T
0 500 1000 1500

instance runtime [s]

Fichte: Parameterized Algorithmics and Counting: Treewidth in Practice

NUs-BAREGANAK
c2d

GPUSAT2
GPUSAT3

d4
GPUSAT3+p4
GPUSAT3+c2p

10% 4

10° 4

@

hﬁﬁm"“‘ww

X

+

tamaki
htd

ﬂowcutter

O

inst.

30

13/20

Outcome: More Optimistic Picture

Solver # inst. Yt 100% >t 95% >t 90% >t 50%
GPUSAT2 229 5:56:06 3:05:47 1:51:28 0:09:13
...on baseline 175 2:26:36 1:00:06 0:36:32 0:06:38
GPUSAT3 247 3:05:58 0:43:40 0:27:12 0:07:01
...on baseline 175 0:18:08 0:13:00 0:11:03 0:04:51
D4 256 1 day, 2:30:28 20:57:09 16:39:14 1:59:09
...on baseline 175 15:54:58 12:09:37 9:21:47 0:53:41
Cc2D 265 12:25:56 8:20:19 6:21:38 0:39:15
...on baseline 175 3:29:07 2:16:12 1:40:38 0:13:16
NUS-BAREGANAK 351* 1 day, 21:47:59 1 day, 14:21:25 1 day, 7:41:05 1:33:55
...on baseline 175 3:12:16 1:57:25 1:30:17 0:17:53
GANAK 161 11:26:48 9:05:15 7:28:31 0:53:24
GPUSAT3+p4 304 7:36:44 3:36:43 1:58:31 0:09:05
...on baseline 175 0:18:08 0:13:00 0:11:03 0:04:51
GPUSAT3+c2p 309 8:45:15 4:30:15 2:35:57 0:09:23
...on baseline 175 0:18:08 0:13:00 0:11:03 0:04:51

Fichte: Parameterized Algorithmics and Counting: Treewidth in Practice 14/20

Lessons Learned?

Implementation
® You need to get your hands dirty
® Architecture matters

® Implementation for inc-tw rarely paid off; dual-tw never paid off

“Constants Matter”

e Bit fiddling e o 12 o ©
® |ow level data structures pigeons
[]

Avoid copying (VRAM-RAM transfer slow)

Efficient heuristics and preprocessing key

=> Works surprisingly well

Fichte: Parameterized Algorithmics and Counting: Treewidth in Practice 15/20

Use a database

OR how to parallelize nodes and rows?

Fichte: Parameterized Algorithmics and Counting: Treewidth in Practice 15/20

System DPDB

Idea
® Avoid implementing fiddling details of complicated dynamic programming algorithms
(similar algorithms for various problems in Al)

® Just describe main parts in relational algebra (SQL)

® Employ modern database systems and years of engineering
in algorithms on tables and heuristics

® You can adapt the degree of parallelity (even sequential) by adapting the database config

Implementation
® \Works surprisingly well (gives a framework for many problems), but details matter
® Just difference between storing data in memory and on the disk is massive (just a constant)
® Don't compete with years of engineering without need (database algorithms)

® Treewidth might not be enough

Fichte: Parameterized Algorithmics and Counting: Treewidth in Practice 16/20

Dynamic Programming: Relational Algebra/SQL
F=(—maVbVx)A(aVb)A(cV—x)A(bV-c)A(=bV cV-y)

1. Create graph representation In: Variables V; at t, previously computed
2. Decompose graph tables Ty and T,
Out: New Table
if leaf then SELECT 1 AS cnt
else if intrand a € V; new then
WITH introduce AS
(SELECT 1 AS a UNION ALL SELECT 0)
SELECT * FROM T, introduce
WHERE (1 OR ... OR l1y,) AND ...

w N =

AND
(In,y OR ... OR Iy,)
[b’ X, C] [b’ G y] 4 elseif rem, and a & V; removed then
5 SELECT SUM(cnt) AS cnt
b, x, a + project “a” column using GROUP BY
6 else if join then
Local formula” F; clauses whose 7 SELECT * from T, T,
: - . WHERE a;) =a az,) = a A
variables are contained in the ba T Sl B e
. 9 UPDATE cnt T).cnt * ... * T,.cnt
(colored in red above) AS cnt

Fichte: Parameterized Algorithmics and Counting: Treewidth in Practice 17/20

Outcome

DPDB [FHecherWoltranThier'20]
® Competitive with preprocessing
® Show off (1518 lines of python code):
® SAT Solver 72 lines; #SAT Solver 94 lines; Vertex Cover 199 lines

NestHDB [Hecher et al."20]
® Use approach together with SAT solvers locally
® Abstract from treewidth; hybrid solving
= Solve projected model counting (#NP) competitively

= Instances where Primal Tw is 200+

Fichte: Parameterized Algorithmics and Counting: Treewidth in Practice

18/20

Summary

Applications (Practical Framework for Dynamic Programming)

. Abstract Argumentation [Dewoprabowo et al.’22]
. Answer Set Programming + Probabilistic Reasoning [FHecherNadeem'22]
Epistemic Logic Programming [Hecher et al."21]

—_

. Competitive for Decision Problems? = not likely

Today’s best solver: SharpSAT-tw

® Tree decompositions as heuristic for search space splitting [Korhonen& Jarvisalo'21]

Fichte: Parameterized Algorithmics and Counting: Treewidth in Practice 19/20

Conclusion

Take Home Messages

1. Parameterized Algorithms can work
2. Download at github.com/daajoe/gpusat or github.com/hmarkus/dpondbs
3. PACE'16&'17 influenced other communities

Future
® Parallel model counting & algorithmic considerations
® PACE again with treewidth?

Thanks for listening! & Questions?
Advertisement: Markus’ Talk in QBF workshop (4pm)

Collaborators:
Arne Meier, Dominik Rustovac, Markus Hecher, Markus Zisser, Patrick Thier, Sarah Gaggl, Stefan Woltran, Valentin

Roland, ...

Fichte: Parameterized Algorithmics and Counting: Treewidth in Practice 20/20

github.com/daajoe/gpusat
github.com/hmarkus/dp%20on%20dbs

	Introduction
	Backup

