
Decompositions and algorithms
for interpretations of sparse

graphs

Jakub Gajarský
University of Warsaw

The FO model checking problem

Input:
Task:

finite graph G, sentence φ
determine whether G ⊧ φ

Example of a FO formula about graphs:

φ := ∃x1 ∃x2 ∃x3 ∀y . (y = x1) ∨ (y = x2) ∨ (y = x3) ∨ E(y, x1) ∨ E(y, x2) ∨ E(y, x3)

 says that graph has dominating set of size at most 3φ

The FO model checking problem

Input:
Task:

finite graph G, sentence φ
determine whether G ⊧ φ

Easy: runtime n|φ|

Wanted: runtime f(φ) ⋅ nc for fixed c (FPT)

The FO model checking problem

Input:
Task:

finite graph G, sentence φ
determine whether G ⊧ φ

Easy: runtime n|φ|

Wanted: runtime f(φ) ⋅ nc for fixed c

Not possible on the class of all finite graphs, but known to be true on
many classes of “nice” graph classes, such as bounded degree
graphs, planar graphs, …

(FPT)

The FO model checking problem

Input:
Task:

finite graph G, sentence φ
determine whether G ⊧ φ

Easy: runtime n|φ|

Wanted: runtime f(φ) ⋅ nc for fixed c (FPT)

Motivation:
• Fundamental problem on its own

• Existence of a FPT algorithm implies the existence of FPT algorithms for

many parameterized problems (independent set, dominating set, …)

The FO model checking problem

Basic results:

Theorem (Courcelle, 1990)

The FO model checking is solvable in time for any class of graphs
of bounded treewidth.

f(φ) ⋅ nc

The FO model checking problem

Basic results:

Theorem (Courcelle, 1990)

The FO model checking is solvable in time for any class of graphs
of bounded treewidth.

f(φ) ⋅ nc

Theorem (Courcelle, Makowski, Rotics, 2000)

The FO model checking is solvable in time for any class of graphs
of bounded clique-width.

f(φ) ⋅ nc

Nowhere dense

Bounded
treewidthBounded degree

Locally bounded
treewidth

Planar graphs

Excluded minor

Sparse graphs

Bounded expansion

Nowhere dense

Bounded
treewidthBounded degree

Locally bounded
treewidth

Planar graphs

Excluded minor

Sparse graphs

Bounded expansion

Courcelle, 1990

Nowhere dense

Bounded
treewidthBounded degree

Locally bounded
treewidth

Planar graphs

Excluded minor

Sparse graphs

Bounded expansion

Courcelle, 1990

Seese, 1994

Nowhere dense

Bounded
treewidthBounded degree

Locally bounded
treewidth

Planar graphs

Excluded minor

Sparse graphs

Bounded expansion

Courcelle, 1990

Seese, 1994

Frick, Grohe, 1999

Nowhere dense

Bounded
treewidthBounded degree

Locally bounded
treewidth

Planar graphs

Excluded minor

Sparse graphs

Bounded expansion

Courcelle, 1990

Seese, 1994

Frick, Grohe, 1999

Flum, Grohe, 2001

Nowhere dense

Bounded
treewidthBounded degree

Locally bounded
treewidth

Planar graphs

Excluded minor

Sparse graphs

Bounded expansion

Courcelle, 1990

Seese, 1994

Frick, Grohe, 1999

Flum, Grohe, 2001

Dvořák, Král, Thomas,

2009

Nowhere dense

Bounded
treewidthBounded degree

Locally bounded
treewidth

Planar graphs

Excluded minor

Sparse graphs

Bounded expansion

Courcelle, 1990

Seese, 1994

Frick, Grohe, 1999

Flum, Grohe, 2001

Dvořák, Král, Thomas,

2009

Grohe, Kreutzer,

Siebertz, 2014

Nowhere dense

Bounded
treewidthBounded degree

Locally bounded
treewidth

Planar graphs

Excluded minor

Sparse graphs

Bounded expansion

Courcelle, 1990

Seese, 1994

Frick, Grohe, 1999

Flum, Grohe, 2001

Dvořák, Král, Thomas,

2009

Grohe, Kreutzer,

Siebertz, 2014

Don
e!

What to do next?
Nowhere denseness captures the notion of the graph class being ‘simple’
for sparse graphs.

What to do next?
Nowhere denseness captures the notion of the graph class being ‘simple’
for sparse graphs.

Next step: Generalize. Create a notion of simplicity for graphs which are not
sparse. In particular, what about classes of dense graphs?

What to do next?
Nowhere denseness captures the notion of the graph class being ‘simple’
for sparse graphs.

Next step: Generalize. Create a notion of simplicity for graphs which are not
sparse. In particular, what about classes of dense graphs?

Various classes of dense graphs have been studied in the literature, mainly
based on intersection of geometric objects (interval graphs, string graphs,
circle graphs, permutation graphs, …)

What to do next?
Nowhere denseness captures the notion of the graph class being ‘simple’
for sparse graphs.

Next step: Generalize. Create a notion of simplicity for graphs which are not
sparse. In particular, what about classes of dense graphs?

Various classes of dense graphs have been studied in the literature, mainly
based on intersection of geometric objects (interval graphs, string graphs,
circle graphs, permutation graphs, …)

Problem: No apparent unifying structure, does not go well with logic.

What to do next?

Creating a notion of ‘simple’ graphs which includes dense graphs.

There are two basic options:

1. Create a theory ad hoc

2. Base a new theory on sparse graphs

What to do next?

Creating a notion of ‘simple’ graphs which includes dense graphs.

There are two basic options:

1. Create a theory ad hoc

2. Base a new theory on sparse graphs

Simple example - complements of planar graphs.

Nowhere dense

Bounded
treewidthBounded degree

Locally bounded
treewidth

Planar graphs

Excluded minor

Sparse graphs

Bounded expansion

Interpretations/transductions of sparse graphs

sparse graphs

Nowhere dense

Bounded
treewidthBounded degree

Locally bounded
treewidth

Planar graphs

Excluded minor

Sparse graphs

Bounded expansion

• Start with a graph H

• Put an edge between vertices u,v if dist(u,v) > 5 and at least one of u,v has
degree at least 4

• Call the resulting graph G

Interpretations (graph transformations)

• Start with a graph H

• Put an edge between vertices u,v if dist(u,v) > 5 and at least one of u,v has
degree at least 4

• Call the resulting graph G

Interpretations (graph transformations)

One can write the condition “dist(u,v) > 5 and at least one of u,v has
degree at least 4” in FO logic:

ψ(x, y) := dist(u, v) < 5 ∧ (deg(u) ≥ 4 ∨ deg(v) ≤ 4)

• Start with a graph H

• Put an edge between vertices u,v if dist(u,v) > 5 and at least one of u,v has
degree at least 4

• Call the resulting graph G

Interpretations (graph transformations)

One can write the condition “dist(u,v) > 5 and at least one of u,v has
degree at least 4” in FO logic:

ψ(x, y) := dist(u, v) < 5 ∧ (deg(u) ≥ 4 ∨ deg(v) ≤ 4)

In this case the transformation given by is called an interpretationψ(x, y)

Interpretations (graph transformations)
Examples — put an edge between u and v if:

• There is no edge between u and v (complementation).

• They are at distance at most 2 (squaring).

• There are exactly two paths of length 17 between u and v and on one of
them there is a vertex which is in a triangle.

Interpretations (graph transformations)
Examples — put an edge between u and v if:

• There is no edge between u and v (complementation).

• They are at distance at most 2 (squaring).

• There are exactly two paths of length 17 between u and v and on one of
them there is a vertex which is in a triangle.

Notation: G = ψ(H)

Extends to graph classes: 𝒟 = ψ(𝒞) = {ψ(H) | H ∈ 𝒞}
(component-wise)

Research program
Let 𝒟 be graph class interpretable in a sparse graph class 𝒞 .

Question: Is FO model checking in FPT on 𝒟?

Conjecture: The answer is always YES

Interpretations/transductions of sparse graphs

sparse graphs

Nowhere dense

Bounded
treewidthBounded degree

Locally bounded
treewidth

Planar graphs

Excluded minor

Sparse graphs

Bounded expansion

Research program

Known:

Let 𝒟 be graph class interpretable in a sparse graph class 𝒞 .

Question: Is FO model checking in FPT on 𝒟?

Conjecture: The answer is always YES

• Interpretations of graphs of bounded treewidth

• Interpretations of graphs of bounded degree (LICS 2016)

• Interpretations of planar graphs, and more generally graphs of locally bounded
treewidth and even more generally graph classes of locally bounded clique-width
(LICS 2022)

Research program
Let 𝒟 be graph class interpretable in a sparse graph class 𝒞 .

Question: Is FO model checking in FPT on 𝒟?

Conjecture: The answer is always YES

Why should/could something like this hold?

Why could the conjecture hold?
Setting: Take any sparse graph class and any interpretation formula

. Consider .
𝒞

ψ(x, y) 𝒟 = ψ(𝒞)

Why could the conjecture hold?
Setting: Take any sparse graph class and any interpretation formula

. Consider .
𝒞

ψ(x, y) 𝒟 = ψ(𝒞)

For concreteness:

 = class of all planar graphs

 = and are at distance at most 4

𝒞
ψ(x, y) x y
𝒟 = ψ(𝒞)

Planar

graphs

ψ(x, y)
𝒟

Why could the conjecture hold?
Setting: Take any sparse graph class and any interpretation formula

. Consider .
𝒞

ψ(x, y) 𝒟 = ψ(𝒞)

Task: FO model checking on — given and , determine
whether .

𝒟 G ∈ 𝒟 φ
G ⊧ φ

For concreteness:

 = class of all planar graphs

 = and are at distance at most 4

𝒞
ψ(x, y) x y
𝒟 = ψ(𝒞)

Planar

graphs

ψ(x, y)
𝒟

G ⊧ φ?

Why could the conjecture hold?
Setting: Take any sparse graph class and any interpretation formula

. Consider .
𝒞

ψ(x, y) 𝒟 = ψ(𝒞)

Task: FO model checking on — given and , determine
whether .

𝒟 G ∈ 𝒟 φ
G ⊧ φ

For concreteness:

 = class of all planar graphs

 = and are at distance at most 4

𝒞
ψ(x, y) x y
𝒟 = ψ(𝒞)

For concreteness, let express “ has a dominating set of size 3.” φ G

Planar

graphs

ψ(x, y)
𝒟

G ⊧ φ?

Why could the conjecture hold?

Task: given and , determine whether . G ∈ 𝒟 φ G ⊧ φ

 = class of all planar graphs

 = and are at distance at most 4

𝒞
ψ(x, y) x y
𝒟 = ψ(𝒞)

“ has a dominating set of size 3.”

 — any graph from

φ := G
G 𝒟

G ⊧ φ

Why could the conjecture hold?

Task: given and , determine whether . G ∈ 𝒟 φ G ⊧ φ

 = class of all planar graphs

 = and are at distance at most 4

𝒞
ψ(x, y) x y
𝒟 = ψ(𝒞)

“ has a dominating set of size 3.”

 — any graph from

φ := G
G 𝒟

G ⊧ φ

G has three vertices such that every vertex is a
neighbor of one of them

Why could the conjecture hold?

Task: given and , determine whether . G ∈ 𝒟 φ G ⊧ φ

GH ψ

 = class of all planar graphs

 = and are at distance at most 4

𝒞
ψ(x, y) x y
𝒟 = ψ(𝒞)

“ has a dominating set of size 3.”

 — any graph from

φ := G
G 𝒟

G ⊧ φ

G has three vertices such that every vertex is a
neighbor of one of them

Why could the conjecture hold?

Task: given and , determine whether . G ∈ 𝒟 φ G ⊧ φ

GH ψ

 = class of all planar graphs

 = and are at distance at most 4

𝒞
ψ(x, y) x y
𝒟 = ψ(𝒞)

“ has a dominating set of size 3.”

 — any graph from

φ := G
G 𝒟

G ⊧ φ

G has three vertices such that every vertex is a
neighbor of one of them

H has three vertices such that every vertex at
distance at most 4 from one of them

H

⟺

Why could the conjecture hold?

Task: given and , determine whether . G ∈ 𝒟 φ G ⊧ φ

GH ψ

 = class of all planar graphs

 = and are at distance at most 4

𝒞
ψ(x, y) x y
𝒟 = ψ(𝒞)

“ has a dominating set of size 3.”

 — any graph from

φ := G
G 𝒟

G ⊧ φ

G has three vertices such that every vertex is a
neighbor of one of them

H has three vertices such that every vertex at
distance at most 4 from one of them

H ⊧ φ′￼

⟺

⟺

Why could the conjecture hold?
GH ψ

G ⊧ φ

G has three vertices such that every vertex is a
neighbor of one of them

H has three vertices such that every vertex at
distance at most 4 from one of them

H ⊧ φ′￼

⟺

⟺

General rule: FO-definable propeties about translate to FO-definable properties about
G H

In 𝒟In 𝒞

Why could the conjecture hold?
GH ψ

G ⊧ φ

G has three vertices such that every vertex is a
neighbor of one of them

H has three vertices such that every vertex at
distance at most 4 from one of them

H ⊧ φ′￼

⟺

⟺

General rule: FO-definable propeties about translate to FO-definable properties about

Consequence: FO model checking in reduces to FO model checking in …

G H

𝒟 𝒞

In 𝒟In 𝒞

Why could the conjecture hold?
GH ψ

G ⊧ φ

G has three vertices such that every vertex is a
neighbor of one of them

H has three vertices such that every vertex at
distance at most 4 from one of them

H ⊧ φ′￼

⟺

⟺

General rule: FO-definable propeties about translate to FO-definable properties about

Consequence: FO model checking in reduces to FO model checking in …

…provided that we have access to .

G H

𝒟 𝒞

H

In 𝒟In 𝒞

Why could the conjecture hold?
GH ψ

G ⊧ φ

G has three vertices such that every vertex is a
neighbor of one of them

H has three vertices such that every vertex at
distance at most 4 from one of them

H ⊧ φ′￼

⟺

⟺

General rule: FO-definable propeties about translate to FO-definable properties about

Consequence: FO model checking in reduces to FO model checking in …

…provided that we have access to .

Finding efficiently — the key algorithmic problem

G H

𝒟 𝒞

H

H

In 𝒟In 𝒞

The interpretation reversal problem
Setting: Take any sparse graph class and any interpretation formula

. Consider .
𝒞

ψ(x, y) 𝒟 = ψ(𝒞)

Task: Find a polynomial algorithm which, given computes such
that

G ∈ 𝒟 H ∈ 𝒞
G = ψ(H)

GH ψ

The interpretation reversal problem
Setting: Take any sparse graph class and any interpretation formula

. Consider .
𝒞

ψ(x, y) 𝒟 = ψ(𝒞)

Task: Find a polynomial algorithm which, given computes such
that

G ∈ 𝒟 H ∈ 𝒞
G = ψ(H)

GH ψ

We do not expect this to work.

Approximate interpretation reversal problem
Setting: Take any sparse graph class and any interpretation formula

. Consider .
𝒞

ψ(x, y) 𝒟 = ψ(𝒞)

Task: Find a sparse graph class , interpretation formula and a
polynomial algorithm which given computes such that

𝒞′￼ ψ′￼(x, y)
G ∈ 𝒟 H′￼ ∈ 𝒞

G = ψ′￼(H)

GH ψ

H′￼

ψ′￼

𝒟𝒞

𝒞′￼

Approximate interpretation reversal problem
Setting: Take any sparse graph class and any interpretation formula

. Consider .
𝒞

ψ(x, y) 𝒟 = ψ(𝒞)

Task: Find a sparse graph class , interpretation formula and a
polynomial algorithm which given computes such that

𝒞′￼ ψ′￼(x, y)
G ∈ 𝒟 H′￼ ∈ 𝒞

G = ψ′￼(H)

GH ψ

H′￼

ψ′￼

𝒟𝒞

𝒞′￼

G ⊧ φ

H′￼ ⊧ φ′￼
⟺

From approximation

interpretation reversal

the model checking
follows.

Approximate interpretation reversal problem
Setting: Take any sparse graph class and any interpretation formula

. Consider .
𝒞

ψ(x, y) 𝒟 = ψ(𝒞)

Task: Find a sparse graph class , interpretation formula and a
polynomial algorithm which given computes such that

𝒞′￼ ψ′￼(x, y)
G ∈ 𝒟 H′￼ ∈ 𝒞

G = ψ′￼(H)

GH ψ

H′￼

ψ′￼

𝒟𝒞

𝒞′￼

This is a very hard problem, and the
whole community is stuck on that for
the past 5-6 years.

What we know?
We know how to do this:

• When is a class of bounded degree (G., Hliněný, Lokshtanov, Ramanujan,

Obdržálek; LICS 2016)

 (Here has also bounded degree, but larger than)

• When is a class of bounded pathwidth (Nešetřil, Ossona de Mendez,
Rabinovich, Siebertz; SODA 2020)

 (Here has also bounded pathwidth, but larger than)

• When is a class of bounded treewidth (Nešetřil, Ossona de Mendez, Mi.
Pilipczuk, Rabinovich, Siebertz; SODA 2021)

(Here has also bounded pathwidth, but larger than)

Everything else is open.

𝒞

𝒞′￼ 𝒞

𝒞

𝒞′￼ 𝒞

𝒞

𝒞′￼ 𝒞

Interpretations/transductions of sparse graphs

sparse graphs

Nowhere dense

Bounded
treewidthBounded degree

Locally bounded
treewidth

Planar graphs

Excluded minor

Sparse graphs

Bounded expansion

Interps of

bounded
degree

Interps of
bounded
treewidth

What did we do?

Interpretations/transductions of sparse graphs

sparse graphs

Nowhere dense

Bounded
treewidthBounded degree

Locally bounded
treewidth

Planar graphs

Excluded minor

Sparse graphs

Bounded expansion

Interps of

bounded
degree

Interps of
bounded
treewidth

Interpretations/transductions of sparse graphs

sparse graphs

Nowhere dense

Bounded
treewidthBounded degree

Locally bounded
treewidth

Planar graphs

Excluded minor

Sparse graphs

Bounded expansion

Interps of

bounded
degree

Interps of
bounded
treewidth

Interps of

locally bd

treewidth

Model checking

Interpretations/transductions of sparse graphs

sparse graphs

Nowhere dense

Bounded
treewidthBounded degree

Locally bounded
treewidth

Planar graphs

Excluded minor

Sparse graphs

Bounded expansion

Interps of

bounded
degree

Interps of
bounded
treewidth

Interps of

locally bd

treewidth

Interps

of bounded
expansion

Model checking

New characterization

Interpretations/transductions of sparse graphs

sparse graphs

Nowhere dense

Bounded
treewidthBounded degree

Locally bounded
treewidth

Planar graphs

Excluded minor

Sparse graphs

Bounded expansion

Interps of

bounded
degree

Interps of
bounded
treewidth

Interps of

locally bd

treewidth

Interps

of bounded
expansion

Interps of

nowhere

dense

Model checking

New characterization

Description

Our results
Theorem (Bonnet, Dreier, G., Kreutzer, Mählmann, Simon, Toruńczyk; LICS 2022):

Let be a graph class interpretable in planar graphs. Then the FO model
checking problem is in FPT on .

𝒟
𝒟

Theorem (Dreier, G., Kiefer, Mi. Pilipczuk, Toruńczyk; LICS 2022):

Let be a graph class interpretable in a nowhere dense class of graphs . Then
there exists a class of quasi-bushes of bounded height which is almost
nowhere dense and which represents .

𝒟 𝒞
ℬ

𝒟

Theorem (Dreier, G., Kiefer, Mi. Pilipczuk, Toruńczyk; LICS 2022):

A class of graphs is interpretable in a class of bounded expansion if and
only if there exists a class of bushes of bounded height and bounded
expansion representing .

𝒟 𝒞
ℬ

𝒟

Model checking on interpretations of planar
graphs

Model checking on interpretations of planar graphs

Theorem (Bonnet, Dreier, G., Kreutzer, Mählmann, Simon, Toruńczyk; LICS 2022):

Let be a graph class interpretable in planar graphs. Then the FO model
checking problem is in FPT on .

𝒟
𝒟

Not proven by approximate interpretation reversals, but somewhat similarly.

Theorem (Bonnet, Dreier, G., Kreutzer, Mählmann, Simon, Toruńczyk; LICS 2022):

Let be a graph class interpretable in planar graphs. Then the FO model
checking problem is in FPT on .

𝒟
𝒟

Not proven by approximate interpretation reversals, but somewhat similarly.

Before we explain the algorithm, we need to explain the model checking
algorithms for (some) classes of sparse graphs based on Gaifman’s locality
theorem.

Model checking on interpretations of planar graphs

Interlude:
Gaifman’s locality theorem and model

checking on sparse graphs

Gaifman’s locality theorem
For every FO sentence there exist and formulas such that
to evaluate on any graph one needs to:

1. For every look at

2. Evaluate all formulas on and store the results

3. After doing this for all combine the results together

φ r, m γ1(x), …, γm(x)
φ G

v ∈ V(G) G[Nr(v)]
γ1(x), …, γm(x) G[Nr(v)]
v ∈ V(G)

Gaifman’s locality theorem
For every FO sentence there exist and formulas such that
to evaluate on any graph one needs to:

1. For every look at

2. Evaluate all formulas on and store the results

3. After doing this for all combine the results together

φ r, m γ1(x), …, γm(x)
φ G

v ∈ V(G) G[Nr(v)]
γ1(x), …, γm(x) G[Nr(v)]
v ∈ V(G)

G

Gaifman’s locality theorem
For every FO sentence there exist and formulas such that
to evaluate on any graph one needs to:

1. For every look at

2. Evaluate all formulas on and store the results

3. After doing this for all combine the results together

φ r, m γ1(x), …, γm(x)
φ G

v ∈ V(G) G[Nr(v)]
γ1(x), …, γm(x) G[Nr(v)]
v ∈ V(G)

G
r

v

Gaifman’s locality theorem
For every FO sentence there exist and formulas such that
to evaluate on any graph one needs to:

1. For every look at

2. Evaluate all formulas on and store the results

3. After doing this for all combine the results together

φ r, m γ1(x), …, γm(x)
φ G

v ∈ V(G) G[Nr(v)]
γ1(x), …, γm(x) G[Nr(v)]
v ∈ V(G)

G
γ1(v)?

Gaifman’s locality theorem
For every FO sentence there exist and formulas such that
to evaluate on any graph one needs to:

1. For every look at

2. Evaluate all formulas on and store the results

3. After doing this for all combine the results together

φ r, m γ1(x), …, γm(x)
φ G

v ∈ V(G) G[Nr(v)]
γ1(x), …, γm(x) G[Nr(v)]
v ∈ V(G)

G
γ2(v)?

Gaifman’s locality theorem
For every FO sentence there exist and formulas such that
to evaluate on any graph one needs to:

1. For every look at

2. Evaluate all formulas on and store the results

3. After doing this for all combine the results together

φ r, m γ1(x), …, γm(x)
φ G

v ∈ V(G) G[Nr(v)]
γ1(x), …, γm(x) G[Nr(v)]
v ∈ V(G)

G
γm(v)?

Gaifman’s locality theorem
For every FO sentence there exist and formulas such that
to evaluate on any graph one needs to:

1. For every look at

2. Evaluate all formulas on and store the results

3. After doing this for all combine the results together

φ r, m γ1(x), …, γm(x)
φ G

v ∈ V(G) G[Nr(v)]
γ1(x), …, γm(x) G[Nr(v)]
v ∈ V(G)

G

r
v

Gaifman’s locality theorem
For every FO sentence there exist and formulas such that
to evaluate on any graph one needs to:

1. For every look at

2. Evaluate all formulas on and store the results

3. After doing this for all combine the results together

φ r, m γ1(x), …, γm(x)
φ G

v ∈ V(G) G[Nr(v)]
γ1(x), …, γm(x) G[Nr(v)]
v ∈ V(G)

G

γ1(v)?

Gaifman’s locality theorem
For every FO sentence there exist and formulas such that
to evaluate on any graph one needs to:

1. For every look at

2. Evaluate all formulas on and store the results

3. After doing this for all combine the results together

φ r, m γ1(x), …, γm(x)
φ G

v ∈ V(G) G[Nr(v)]
γ1(x), …, γm(x) G[Nr(v)]
v ∈ V(G)

G

γ2(v)?

Gaifman’s locality theorem
For every FO sentence there exist and formulas such that
to evaluate on any graph one needs to:

1. For every look at

2. Evaluate all formulas on and store the results

3. After doing this for all combine the results together

φ r, m γ1(x), …, γm(x)
φ G

v ∈ V(G) G[Nr(v)]
γ1(x), …, γm(x) G[Nr(v)]
v ∈ V(G)

G

γm(v)?

Gaifman’s locality theorem
For every FO sentence there exist and formulas such that
to evaluate on any graph one needs to:

1. For every look at

2. Evaluate all formulas on and store the results

3. After doing this for all combine the results together

φ r, m γ1(x), …, γm(x)
φ G

v ∈ V(G) G[Nr(v)]
γ1(x), …, γm(x) G[Nr(v)]
v ∈ V(G)

Model checking on a class of graphs of degree at most :

Input: graph of degree at most , FO sentence

d
G d φ

Gaifman’s locality theorem
For every FO sentence there exist and formulas such that
to evaluate on any graph one needs to:

1. For every look at

2. Evaluate all formulas on and store the results

3. After doing this for all combine the results together

φ r, m γ1(x), …, γm(x)
φ G

v ∈ V(G) G[Nr(v)]
γ1(x), …, γm(x) G[Nr(v)]
v ∈ V(G)

Model checking on a class of graphs of degree at most :

Input: graph of degree at most , FO sentence

1. For every look at (this has size at most)

2. Evaluate all formulas on and store the results

3. After doing this for all combine the results together (easy)

d
G d φ
v ∈ V(G) G[Nr(v)] dr + 1

γ1(x), …, γm(x) G[Nr(v)]
v ∈ V(G)

Gaifman’s locality theorem
Definition:

Class has locally bounded treewidth if there exists a function such
that: For any and any , the graph induced by has
treewidth at most .

𝒞 f : ℕ → ℕ
G ∈ 𝒞 v ∈ V(G) Nr(v)

f(r)

Gaifman’s locality theorem
Definition:

Class has locally bounded treewidth if there exists a function such
that: For any and any , the graph induced by has
treewidth at most .

𝒞 f : ℕ → ℕ
G ∈ 𝒞 v ∈ V(G) Nr(v)

f(r)

Important example: planar graphs

Gaifman’s locality theorem
Definition:

Class has locally bounded treewidth if there exists a function such
that: For any and any , the graph induced by has
treewidth at most .

𝒞 f : ℕ → ℕ
G ∈ 𝒞 v ∈ V(G) Nr(v)

f(r)

Model checking on a class of graphs of locally bounded treewidth:

Input: graph of degree at most , FO sentence

1. For every look at (this has treewidth at most)

2. Evaluate all formulas on and store the results

3. After doing this for all combine the results together (easy)

G d φ
v ∈ V(G) G[Nr(v)] f(r)

γ1(x), …, γm(x) G[Nr(v)]
v ∈ V(G)

Important example: planar graphs

End of interlude

Our algorithm
Setting:

We work with a graph class interpretable in planar graphs using formula .

We are given and as input.

𝒟 ψ(x, y)

G ∈ 𝒟 φ

Our algorithm
Setting:

We work with a graph class interpretable in planar graphs using formula .

We are given and as input.

𝒟 ψ(x, y)

G ∈ 𝒟 φ

G ⊧ φ

Our algorithm
Setting:

We work with a graph class interpretable in planar graphs using formula .

We are given and as input.

𝒟 ψ(x, y)

G ∈ 𝒟 φ

GH ψ
Planar

G ⊧ φ

Our algorithm
Setting:

We work with a graph class interpretable in planar graphs using formula .

We are given and as input.

𝒟 ψ(x, y)

G ∈ 𝒟 φ

GH

H′￼

ψ

ψ′￼

Planar

G ⊧ φ

Our algorithm
Setting:

We work with a graph class interpretable in planar graphs using formula .

We are given and as input.

𝒟 ψ(x, y)

G ∈ 𝒟 φ

GH

H′￼

ψ

ψ′￼

Planar

G ⊧ φ

H′￼ ⊧ φ′￼

⟺

Our algorithm
Setting:

We work with a graph class interpretable in planar graphs using formula .

We are given and as input.

𝒟 ψ(x, y)

G ∈ 𝒟 φ

GH

H′￼

ψ
Planar

G ⊧ φ

H′￼ ⊧ φ′￼

⟺
-neighborhoods in

have small clique-width
r H′￼

ψ′￼

Our algorithm
Setting:

We work with a graph class interpretable in planar graphs using formula .

We are given and as input.

𝒟 ψ(x, y)

G ∈ 𝒟 φ

GH

H′￼

ψ
Planar

G ⊧ φ

H′￼ ⊧ φ′￼

⟺
Flips

-neighborhoods in

have small clique-width
r H′￼

Our algorithm
Setting:

We work with a graph class interpretable in planar graphs using formula .

We are given and as input.

𝒟 ψ(x, y)

G ∈ 𝒟 φ

GH

H′￼

ψ
Planar

G ⊧ φ

H′￼ ⊧ φ′￼

⟺
Flips

-neighborhoods in

have small clique-width
r H′￼

Computation

Our algorithm
Setting:

We work with a graph class interpretable in planar graphs using formula .

We are given and as input.

𝒟 ψ(x, y)

G ∈ 𝒟 φ

GH

H′￼

ψ
Planar

G ⊧ φ

H′￼ ⊧ φ′￼

⟺
Flips

-neighborhoods in

have small clique-width
r H′￼

Flips

The algorithm for computing H′￼

Given:

Computing :

G, φ

H′￼

The algorithm for computing H′￼

Given:

Computing :

For suitably chosen , go through all -tuples of vertices and for each -tuple :

G, φ

H′￼

k k k S

The algorithm for computing H′￼

Given:

Computing :

For suitably chosen , go through all -tuples of vertices and for each -tuple :

• Partition based on the adjacency to (giving) classes

G, φ

H′￼

k k k S
V(G) S p := 2k + k

V1, …, Vp

The algorithm for computing H′￼

Given:

Computing :

For suitably chosen , go through all -tuples of vertices and for each -tuple :

• Partition based on the adjacency to (giving) classes

• For each pair of classes either complement (flip) the edges between
 or not.

G, φ

H′￼

k k k S
V(G) S p := 2k + k

V1, …, Vp
Vi, Vj

Vi, Vj

The algorithm for computing H′￼

Given:

Computing :

For suitably chosen , go through all -tuples of vertices and for each -tuple :

• Partition based on the adjacency to (giving) classes

• For each pair of classes either complement (flip) the edges between
 or not.

• Check whether has small clique-width for each .

G, φ

H′￼

k k k S
V(G) S p := 2k + k

V1, …, Vp
Vi, Vj

Vi, Vj
G[Nr(v)] v

The algorithm for computing H′￼

Given:

Computing :

For suitably chosen , go through all -tuples of vertices and for each -tuple :

• Partition based on the adjacency to (giving) classes

• For each pair of classes either complement (flip) the edges between
 or not.

• Check whether has small clique-width for each .

G, φ

H′￼

k k k S
V(G) S p := 2k + k

V1, …, Vp
Vi, Vj

Vi, Vj
G[Nr(v)] v

Runtime: guesses of , for each of them choices for flips, and for

each of them we check clique-width:

|G |k S 2(2k+k)2

|G |k ⋅ 2(2k+k)2 ⋅ f(cw) ⋅ |G |3

The algorithm for computing H′￼

Given:

Computing :

For suitably chosen , go through all -tuples of vertices and for each -tuple :

• Partition based on the adjacency to (giving) classes

• For each pair of classes either complement (flip) the edges between
 or not.

• Check whether has small clique-width for each .

G, φ

H′￼

k k k S
V(G) S p := 2k + k

V1, …, Vp
Vi, Vj

Vi, Vj
G[Nr(v)] v

Technical core of the paper — proving that for some choice of and some
choices of flips the resulting graph will have locally small clique-width.

S

Interpretations/transductions of sparse graphs

sparse graphs

Nowhere dense

Bounded
treewidthBounded degree

Locally bounded
treewidth

Planar graphs

Excluded minor

Sparse graphs

Bounded expansion

Interps of

bounded
degree

Interps of
bounded
treewidth

Interps of

locally bd

treewidth

Interps

of bounded
expansion

Interps of

nowhere

dense

Model checking

New characterization

Description

Characterising interpretations of graph
classes of bounded expansion and

describing interpretations of nowhere
dense graph classes

Our results
Theorem (Dreier, G., Kiefer, Mi. Pilipczuk, Toruńczyk; LICS 2022):

A class of graphs is interpretable in a class of bounded expansion if and
only if there exists a class of bushes of bounded height and bounded
expansion representing .

𝒟 𝒞
ℬ

𝒟

Our results
Theorem (Dreier, G., Kiefer, Mi. Pilipczuk, Toruńczyk; LICS 2022):

A class of graphs is interpretable in a class of bounded expansion if and
only if there exists a class of bushes of bounded height and bounded
expansion representing .

𝒟 𝒞
ℬ

𝒟

Theorem (Dreier, G., Kiefer, Mi. Pilipczuk, Toruńczyk; LICS 2022):

Let be a graph class interpretable in a nowhere dense class of graphs .
Then there exists a class of quasi-bushes of bounded height which is
almost nowhere dense and which represents .

𝒟 𝒞
ℬ

𝒟

What is it good for?

GH ψ

H′￼

ψ′￼

𝒟𝒞

𝒞′￼

What is it good for?

GH ψ

B
ψ′￼

𝒟𝒞

ℬ

Bushes

Quasi-bushes

Open problems

Conjecture:

Let be a class of graphs such that one cannot interpret every graph in

 (for every interpretation formula there exists graph such that
). Then has an efficient model checking algorithm.

𝒞
𝒞 ψ G
G ∉ 𝒞 𝒞

Model checking algorithms for interpretations of other classes of sparse
graphs.

Approximate interpretation reversal for interpretations of classes of
sparse graphs.

Interpretations/transductions of sparse graphs

Nowhere dense

Bounded
treewidth

Bounded
degree

Locally
bounded treewidth

Planar

Excluded
minor

Sparse

Bounded
expansion

Interpretations/transductions of sparse graphs

Nowhere dense

Bounded
treewidth

Bounded
degree

Locally
bounded treewidth

Planar

Excluded
minor

Sparse

Bounded
expansion

Monadically stable graph classes

Interpretations/transductions of sparse graphs

Nowhere dense

Bounded
treewidth

Bounded
degree

Locally
bounded treewidth

Planar

Excluded
minor

Sparse

Bounded
expansion

Monadically stable graph classes

Monadically NIP graph classes

