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The FO model checking problem

Input: 
Task: 

finite graph G, sentence φ
determine whether G ⊧ φ

Example of a FO formula about graphs: 

φ := ∃x1 ∃x2 ∃x3 ∀y . (y = x1) ∨ (y = x2) ∨ (y = x3) ∨ E(y, x1) ∨ E(y, x2) ∨ E(y, x3)

 says that graph has dominating set of size at most 3φ
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finite graph G, sentence φ
determine whether G ⊧ φ

Easy: runtime n|φ|

Wanted: runtime f(φ) ⋅ nc for fixed c

Not possible on the class of all finite graphs, but known to be true on 
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The FO model checking problem

Input: 
Task: 

finite graph G, sentence φ
determine whether G ⊧ φ

Easy: runtime n|φ|

Wanted: runtime f(φ) ⋅ nc for fixed c (FPT)

Motivation: 
• Fundamental problem on its own

• Existence of a FPT algorithm implies the existence of FPT algorithms for 

many parameterized problems (independent set, dominating set, …)
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The FO model checking problem

Basic results: 

Theorem (Courcelle, 1990)

The FO model checking is solvable in time  for any class of graphs 
of bounded treewidth.

f(φ) ⋅ nc

Theorem (Courcelle, Makowski, Rotics, 2000)

The FO model checking is solvable in time  for any class of graphs 
of bounded clique-width.

f(φ) ⋅ nc
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What to do next?
Nowhere denseness captures the notion of the graph class being ‘simple’ 
for sparse graphs.

Next step: Generalize. Create a notion of simplicity for graphs which are not 
sparse. In particular, what about classes of dense graphs?


Various classes of dense graphs have been studied in the literature, mainly 
based on intersection of geometric objects (interval graphs, string graphs, 
circle graphs, permutation graphs, …)

Problem: No apparent unifying structure, does not go well with logic.



What to do next?

Creating a notion of ‘simple’ graphs which includes dense graphs.


There are two basic options:

1. Create a theory ad hoc

2. Base a new theory on sparse graphs



What to do next?

Creating a notion of ‘simple’ graphs which includes dense graphs.


There are two basic options:

1. Create a theory ad hoc

2. Base a new theory on sparse graphs

Simple example - complements of planar graphs.
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• Start with a graph H


• Put an edge between vertices u,v if dist(u,v) > 5 and at least one of u,v has 
degree at least 4 


• Call the resulting graph G

Interpretations (graph transformations)

One can write the condition “dist(u,v) > 5 and at least one of u,v has 
degree at least 4” in FO logic:

ψ(x, y) := dist(u, v) < 5 ∧ (deg(u) ≥ 4 ∨ deg(v) ≤ 4)

In this case the transformation given by  is called an interpretationψ(x, y)



Interpretations (graph transformations)
Examples — put an edge between u and v if:


• There is no edge between u and v (complementation).


• They are at distance at most 2 (squaring).


• There are exactly two paths of length 17 between u and v and on one of 
them there is a vertex which is in a triangle.



Interpretations (graph transformations)
Examples — put an edge between u and v if:


• There is no edge between u and v (complementation).


• They are at distance at most 2 (squaring).


• There are exactly two paths of length 17 between u and v and on one of 
them there is a vertex which is in a triangle.

Notation: G = ψ(H)

Extends to graph classes:        𝒟 = ψ(𝒞) = {ψ(H) | H ∈ 𝒞}
(component-wise)
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Conjecture:  The answer is always YES
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Research program

Known:

Let 𝒟 be graph class interpretable in a sparse graph class 𝒞 .

Question: Is FO model checking in FPT on 𝒟?

Conjecture:  The answer is always YES

• Interpretations of graphs of bounded treewidth 


• Interpretations of graphs of bounded degree (LICS 2016)


• Interpretations of planar graphs, and more generally graphs of locally bounded 
treewidth and even more generally graph classes of locally bounded clique-width 
(LICS 2022)



Research program
Let 𝒟 be graph class interpretable in a sparse graph class 𝒞 .

Question: Is FO model checking in FPT on 𝒟?

Conjecture:  The answer is always YES

Why should/could something like this hold?
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Task: given  and , determine whether  . G ∈ 𝒟 φ G ⊧ φ

GH ψ
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Why could the conjecture hold?
GH ψ

G ⊧ φ

G has three vertices such that every vertex is a 
neighbor of one of them

H has three vertices such that every vertex at 
distance at most 4 from one of them

H ⊧ φ′￼

⟺

⟺

General rule: FO-definable propeties about  translate to FO-definable properties about 


Consequence: FO model checking in  reduces to FO model checking in …


…provided that we have access to .


Finding  efficiently — the key algorithmic problem

G H

𝒟 𝒞

H

H

In 𝒟In 𝒞
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Approximate interpretation reversal problem
Setting: Take any sparse graph class  and any interpretation formula 

. Consider .
𝒞

ψ(x, y) 𝒟 = ψ(𝒞)

Task: Find a sparse graph class , interpretation formula  and a 
polynomial algorithm which given  computes  such that 

𝒞′￼ ψ′￼(x, y)
G ∈ 𝒟 H′￼ ∈ 𝒞

G = ψ′￼(H)

GH ψ

H′￼

ψ′￼

𝒟𝒞

𝒞′￼

This is a very hard problem, and the 
whole community is stuck on that for 
the past 5-6 years.



What we know?
We know how to do this:

• When  is a class of bounded degree (G., Hliněný, Lokshtanov, Ramanujan, 

Obdržálek; LICS 2016)

 (Here  has also bounded degree, but larger than )


• When  is a class of bounded pathwidth (Nešetřil, Ossona de Mendez, 
Rabinovich, Siebertz; SODA 2020)


 (Here  has also bounded pathwidth, but larger than )


• When  is a class of bounded treewidth (Nešetřil, Ossona de Mendez, Mi. 
Pilipczuk, Rabinovich, Siebertz; SODA 2021)


(Here  has also bounded pathwidth, but larger than )


Everything else is open.

𝒞

𝒞′￼ 𝒞

𝒞

𝒞′￼ 𝒞

𝒞

𝒞′￼ 𝒞
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Our results
Theorem (Bonnet, Dreier, G., Kreutzer, Mählmann, Simon, Toruńczyk; LICS 2022):

Let  be a graph class interpretable in planar graphs. Then the FO model 
checking problem is in FPT on .

𝒟
𝒟

Theorem (Dreier, G., Kiefer, Mi. Pilipczuk, Toruńczyk; LICS 2022):

Let  be a graph class interpretable in a nowhere dense class of graphs . Then 
there exists a class  of quasi-bushes of bounded height which is almost 
nowhere dense and which represents .

𝒟 𝒞
ℬ

𝒟

Theorem (Dreier, G., Kiefer, Mi. Pilipczuk, Toruńczyk; LICS 2022):

A class  of graphs is interpretable in a class  of bounded expansion if and 
only if there exists a class  of bushes of bounded height and bounded 
expansion representing .

𝒟 𝒞
ℬ

𝒟
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Theorem (Bonnet, Dreier, G., Kreutzer, Mählmann, Simon, Toruńczyk; LICS 2022):

Let  be a graph class interpretable in planar graphs. Then the FO model 
checking problem is in FPT on .

𝒟
𝒟

Not proven by approximate interpretation reversals, but somewhat similarly.

Before we explain the algorithm, we need to explain the model checking 
algorithms for (some) classes of sparse graphs based on Gaifman’s locality 
theorem.

Model checking on interpretations of planar graphs
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1. For every  look at 
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Gaifman’s locality theorem
For every FO sentence  there exist  and formulas  such that 
to evaluate  on any graph  one needs to:

1. For every  look at 

2. Evaluate all formulas  on  and store the results

3. After doing this for all  combine the results together

φ r, m γ1(x), …, γm(x)
φ G

v ∈ V(G) G[Nr(v)]
γ1(x), …, γm(x) G[Nr(v)]
v ∈ V(G)

Model checking on a class of graphs of degree at most :

Input: graph  of degree at most , FO sentence 

1. For every  look at  (this has size at most )

2. Evaluate all formulas  on  and store the results

3. After doing this for all  combine the results together (easy)

d
G d φ
v ∈ V(G) G[Nr(v)] dr + 1

γ1(x), …, γm(x) G[Nr(v)]
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Gaifman’s locality theorem
Definition:

Class  has locally bounded treewidth if there exists a function  such 
that: For any  and any , the graph induced by  has 
treewidth at most .

𝒞 f : ℕ → ℕ
G ∈ 𝒞 v ∈ V(G) Nr(v)

f(r)

Model checking on a class of graphs of locally bounded treewidth:

Input: graph  of degree at most , FO sentence 

1. For every  look at  (this has treewidth at most )

2. Evaluate all formulas  on  and store the results

3. After doing this for all  combine the results together (easy)

G d φ
v ∈ V(G) G[Nr(v)] f(r)

γ1(x), …, γm(x) G[Nr(v)]
v ∈ V(G)

Important example: planar graphs



End of interlude
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Our algorithm
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The algorithm for computing H′￼

Given: 


Computing :

For suitably chosen , go through all -tuples of vertices and for each -tuple :

• Partition  based on the adjacency to  (giving ) classes 




• For each pair of classes  either complement (flip) the edges between 
 or not.


• Check whether  has small clique-width for each .

G, φ

H′￼

k k k S
V(G) S p := 2k + k

V1, …, Vp
Vi, Vj

Vi, Vj
G[Nr(v)] v

Runtime:  guesses of , for each of them  choices for flips, and for

each of them we check clique-width: 

|G |k S 2(2k+k)2

|G |k ⋅ 2(2k+k)2 ⋅ f(cw) ⋅ |G |3



The algorithm for computing H′￼

Given: 


Computing :

For suitably chosen , go through all -tuples of vertices and for each -tuple :

• Partition  based on the adjacency to  (giving ) classes 




• For each pair of classes  either complement (flip) the edges between 
 or not.


• Check whether  has small clique-width for each .

G, φ

H′￼

k k k S
V(G) S p := 2k + k

V1, …, Vp
Vi, Vj

Vi, Vj
G[Nr(v)] v

Technical core of the paper — proving that for some choice of  and some 
choices of flips the resulting graph will have locally small clique-width.

S
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Characterising interpretations of graph 
classes of bounded expansion and 

describing interpretations of nowhere 
dense graph classes
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Our results
Theorem (Dreier, G., Kiefer, Mi. Pilipczuk, Toruńczyk; LICS 2022):

A class  of graphs is interpretable in a class  of bounded expansion if and 
only if there exists a class  of bushes of bounded height and bounded 
expansion representing .

𝒟 𝒞
ℬ

𝒟

Theorem (Dreier, G., Kiefer, Mi. Pilipczuk, Toruńczyk; LICS 2022):

Let  be a graph class interpretable in a nowhere dense class of graphs . 
Then there exists a class  of quasi-bushes of bounded height which is 
almost nowhere dense and which represents .

𝒟 𝒞
ℬ

𝒟
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What is it good for?

GH ψ

B
ψ′￼

𝒟𝒞

ℬ



Bushes



Quasi-bushes



Open problems

Conjecture: 

Let  be a class of graphs such that one cannot interpret every graph in 

 (for every interpretation formula  there exists graph  such that 
). Then  has an efficient model checking algorithm.

𝒞
𝒞 ψ G
G ∉ 𝒞 𝒞

Model checking algorithms for interpretations of other classes of sparse 
graphs.


Approximate interpretation reversal for interpretations of classes of 
sparse graphs.
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Monadically NIP graph classes



