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Competition involving n (power of 2) players, conducted as follows:

People, companies, ideas, … (Essentially, anything.)



Single-Elimination (or Knockout) Tournament
Motivation: Competitions (sports, music, …), voting, webpage 
ranking, biological interactions, …
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Single-Elimination (or Knockout) Tournament
Seeding (or bracket): Assignment of players to the leaves.

\’

n! seedings



Single-Elimination (or Knockout) Tournament
Objective: Make our favorite player win!
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players.



Single-Elimination (or Knockout) Tournament
Prediction of outcomes of matches: Tournament graph on the set of 
players.
Digraph containing, for every pair of vertices u,v, either (u,v) or (v,u).
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Single-Elimination (or Knockout) Tournament
Prediction of outcomes of matches: Tournament graph on the set of 
players.
Certainty? Probabilistic models (not discussed here).
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Tournament Fixing Problem
Input: Tournament graph on the set of players; favorite player w.

Question: Does there exist a seeding that makes w win?
Counting Version: How many seedings make w win?

Surveys: [Suksompong, IJCAI’21], [Williams, Handbook of 
Computational Social Choice, 2016]
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Tournament Fixing Problem: Complexity

Theorem. TFP is NP-hard. [AGMMSW, AAAI’14]

• TFP is NP-hard even if w is a “king” that beats at least n/4 other

players. [KW, IJCAI’15]

• #TFP does not admit a fully polynomial-time randomized

approximation scheme (FPRAS) unless RP=NP. [AGMMSW,

AAAI’14]

For every player p, w beats p or w beats a player that beats p.



Tournament Fixing Problem: Exact Exponential-Time Algorithms

Theorem. #TFP is solvable in 2nnO(1) time and space. [KW, IJCAI’15]

• Earlier time-space tradeoff by [AGMMSW, AAAI’14]: O(2.83n) 
time and O(1.75n) space, 4n+o(n) time and polynomial-space.

Theorem. (Bribery) TFP is solvable in 2nnO(1) time and polynomial-
space. [GRSZ, IJCAI’18a]



Tournament Fixing Problem: Exact Exponential-Time Algorithms

Theorem. #TFP is solvable in 2nnO(1) time and space. [KW, IJCAI’15]

• Earlier time-space tradeoff by [AGMMSW, AAAI’14]: O(2.83n) 
time and O(1.75n) space, 4n+o(n) time and polynomial-space.

Theorem. (Bribery) TFP is solvable in 2nnO(1) time and polynomial-
space. [GRSZ, IJCAI’18a]

Question: Can TFP be solved in time 1.999nnO(1)?
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Tournament Fixing Problem: Parameterized Complexity

Parameter k: Feedback arc set number (fas). 
(The minimum number of arcs to remove from the tournament
graph to obtain a DAG.)
Motivation: We know of a (rough) ranking of the players.
Ø ``Expect’’ only few occurrences of a player that beats a player

ranked higher than it.
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graph to obtain a DAG.)

Theorem. TFP is solvable in 2O(klogk)nO(1) time. [GRSZ, IJCAI’18b]

• Previously: 2O(k  logk)nO(1) time. [RS, AAAI’17]2

Theorem. TFP admits a polynomial kernel. [GRSZ, IJCAI’19]



Tournament Fixing Problem: Parameterized Complexity

Parameter k: Feedback arc set number (fas). 
(The minimum number of arcs to remove from the tournament
graph to obtain a DAG.)

Theorem. TFP is solvable in 2O(klogk)nO(1) time. [GRSZ, IJCAI’18b]

• Previously: 2O(k  logk)nO(1) time. [RS, AAAI’17]2

Theorem. TFP admits a polynomial kernel. [GRSZ, IJCAI’19]

Question. Better (or best) running time? (Subexponential?)

Question. Is TFP in FPT parameterized by the feedback vertex set
number?



Tournament Fixing Problem: Some Structural Results

• w is a ``superking’’: For every player p, w beats p or w beats at 
least log2n players that beat p. [W, AAAI’10]

• w is a king of ``high-degree’’: A king with outdegree d that loses 
to fewer than d players with outdegree >d. [SW, IJCAI’11]

Ø Generalization by [KSW, AAAI’16]

• w is a 3-king + other restrictions: [KW, IJCAI’15; KSW, AAAI’16].
(A 3-king is a player that can reach any other player via a path of 
length 3 in the tournament graph.)
• Note: A 3-king may not be able to win even if it beats n-3 other 

players.



Bribery Tournament Fixing Problem
Input: Tournament graph on the set of players; favorite player w; 
budget b.

Question: Does there exist a seeding such that, after changing the 
outcomes of at most b matches, w wins?
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Bribery Tournament Fixing Problem
Input: Tournament graph on the set of players; favorite player w; 
budget b.

Question: Does there exist a seeding such that, after changing the 
outcomes of at most b matches, w wins?
Note: TFP is the special case of BTFP where b=0.
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Bribery Tournament Fixing Problem: Complexity

Corollary. BTFP is NP-hard when b=0. 

Observation. BTFP is polynomial-time solvable when b≥ log2n.
(Output Yes.) 

Theorem. For any fixed e>0, BTFP is NP-hard when b≤ (1- e)log2n.
[KW, IJCAI’15]



Bribery Tournament Fixing Problem: Complexity

Corollary. BTFP is NP-hard when b=0. 

Observation. BTFP is polynomial-time solvable when b≥ log2n.
(Output Yes.) 

Theorem. For any fixed e>0, BTFP is NP-hard when b≤ (1- e)log2n.
[KW, IJCAI’15]

Question(s). Non-trivial results for the parameter log2n-b?



Bribery Tournament Fixing Problem: Exponential-Time Algorithms
and Parameterized Complexity

Parameter k: Feedback arc set number (fas). 

Theorem. I. BTFP is solvable in 2nnO(1) time and polynomial-space.
II. BTFP is solvable in 2O(klogk)nO(1) time. [GRSZ, IJCAI’18b]

Not harder than TFP:

In the manuscript: 2O(k  logk)nO(1).2



Bribery Tournament Fixing Problem: Structural Results

Theorem (informal). If there is a solution, then there is one
manipulating only edges {w,v} where v belongs to an “elite club”.
[GRSZ, IJCAI’18b]

Also in [GRSZ, IJCAI’18b]:
• Characterization of Yes-instances. (Yields a simple formula for

DAGs.)
• ``Obfuscation’’ operations.



Bribery Tournament Fixing Problem
Input: Tournament graph on the set of players; favorite player w; 
budget b; seeding.

Question: Is it possible to change the outcomes of at most b matches 
so that w wins?



Bribery Tournament Fixing Problem: Complexity

Theorem. BTP is solvable in polynomial time.[RW, ADT’09]

• Also: The ``destructive’’ version (prevent w from winning) is also 
solvable in polynomial time. 



``Closest’’ Tournament Fixing Problem
Input: Tournament graph on the set of players; favorite player w; 
seeding; distance threshold d.

Question: Does there exist a seeding of Hamming distance at most d
from the given seeding that makes w win?



``Closest’’ Tournament Fixing Problem
Input: Tournament graph on the set of players; favorite player w; 
seeding; distance threshold d.

Question: Does there exist a seeding of Hamming distance at most d
from the given seeding that makes w win?
Note: TFP is the special case of CTFP where d=n.



``Closest’’ Tournament Fixing Problem: Motivation
Why is the input seeding attractive? Might have been already agreed 
upon, might be based on customs or traditions, …

Remark 1: Cyclic shifts. ABCDEFGH is similar to HABCDEFG, but all 
starting matches are different.

Remark 2: Extreme case. All starting matches are the same in 
ABCDEFGH and BADCFEHG, but the Hamming distance is n.
• Still, the order of each pair might be important. (Who plays first, 

who plays at what court, …).



Bribery Tournament Fixing Problem: Complexity & Algorithms

Corollary. CTFP is NP-hard when d=n. 

Theorem. CTFP is W[1]-hard when parameterized by d.
[GSZ, Manuscript]

Theorem. CTFP is solvable in 2O(n) time. [GSZ, Manuscript]



k-Wins Tournament Fixing Problem
Input: Tournament graph on the set of players; favorite player w; k.

Question: Does there exist a seeding that makes w win at least k
matches?
Note: TFP is the special case of WTFP where k=log2n.

\’



k-Wins Tournament Fixing Problem: Complexity & Algorithms

Corollary. WTFP is NP-hard when k=log2n.

Theorem. WTFP is FPT when parameterized by t, the maximum 
number of players that a player beats.
[ACS, Annals of Mathematics and Artificial Intelligence, 2017]

• Also in [ACS, …’17]: Generalizations of WTFP. One of them is 
proved to be W[1]-hard wrt k.



k-Wins Tournament Fixing Problem: Complexity & Algorithms

Corollary. WTFP is NP-hard when k=log2n.

Theorem. WTFP is FPT when parameterized by t, the maximum 
number of players that a player beats.
[ACS, Annals of Mathematics and Artificial Intelligence, 2017]

• Also in [ACS, …’17]: Generalizations of WTFP. One of them is 
proved to be W[1]-hard wrt k.

Question. Is WTFP W[1]-hard or in FPT wrt k?



Remark. Knockout tournament is only one out of several formats
of competition that were studied in the literature.

Round-Robin Tournament. Every player plays against every other
player. Usually, the winner(s) is the player that has won the largest
number of matches.

The Fair Non-Eliminating Tournament Problem. Given the
infrastructure of the tournament, and the rankings of the players
(multiset of integers), determine if there exists an assignment of
the players to the vertices so that the sum of the rankings of the
neighbors of every vertex is the same.
• Analyzed the parameterized complexity of this problem wrt

several parameters (tw, fvs, vc, D, a) and combinations thereof.
[GZ, AAMAS’21]
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Phase I: Guessing
First, compute an fas F of D:

Option 1: Branch in 3knO(1) time, or use a known 2"( $)nO(1)-time 
algorithm.
Option 2: Use a polynomial-time 3-approximation algorithm, or use a 
known PTAS.
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Theorem. TFP is solvable in 2O(klogk)nO(1) time. [GRSZ, IJCAI’18b]

Phase I: Guessing
First, compute an fas F of D:

Option 1: Branch in 3knO(1) time, or use a known 2"( $)nO(1)-time 
algorithm.
Option 2: Use a polynomial-time 3-approximation algorithm, or use a 
known PTAS.

Why is an fas useful?

For simplicity, suppose that w belongs to VF.



Phase I: Guessing
Unlabeled Binomial Arborescence (UBA). Rooted tree B, defined recursively:
• A single vertex.
• Given two disjoint UBAs of equals size, Bv and Bu, the addition of an arc 

from v to u results in a BA rooted at v.
Given a digraph D such that V(B)=V(D), we say that B is a (labeled) spanning 
binomial arborescence (SBA) of D.



Phase I: Guessing
Unlabeled Binomial Arborescence (UBA). Rooted tree B, defined recursively:
• A single vertex.
• Given two disjoint UBAs of equals size, Bv and Bu, the addition of an arc 

from v to u results in a BA rooted at v.
Given a digraph D such that V(B)=V(D), we say that B is a (labeled) spanning 
binomial arborescence (SBA) of D.

Theorem. (D,w) is a Yes-instance iff D has an SBA rooted at w. [W, AAAI’10]
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Objective. Guess the relative position of the vertex set of F, VF, in the
(unknown) SBA B rooted at w.
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Objective. Guess the relative position of the vertex set of F, VF, in the
(unknown) SBA B rooted at w.

LCA-closure. Given a rooted tree T and a subsetM of V(T), LCA(M) is defined
as follows. Initially,M’=M. As long as there exist two vertices inM whose lca
is not inM’, add it toM’.



Phase I: Guessing
Objective. Guess the relative position of the vertex set of F, VF, in the
(unknown) SBA B rooted at w.

LCA-closure. Given a rooted tree T and a subsetM of V(T), LCA(M) is defined
as follows. Initially,M’=M. As long as there exist two vertices inM whose lca
is not inM’, add it toM’.

Folklore. |LCA(M)|≤ 2|$|, and every connected component of T-LCA(M) has
at most two neighbors in LCA(M).
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Template of VF in B. Remove the vertices outside VF without descendants
from VF; ``dissolve’’ the remaining (degree-2) vertices outside LCA(VF).

Template

B

…
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Phase I: Guessing
Template of VF in B. Remove the vertices outside VF without descendants
from VF; ``dissolve’’ the remaining (degree-2) vertices outside LCA(VF).

Topology of VF in B. Forget the identity
of the vertices in LCA(VF)\VF.

Template Topology

B

Lengths+Sizes. For every edge: assign
the length of its path in B. For every
vertex: assign the size of its subtree in B.

1
21

1

2
23

1 1

2
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8

4

8

…
…

32

Note. All lengths belong to {1,2,…,logn},
and all sizes belong to {20,21,…,2logn}.

Algorithm. Guess the labeled topology.
Only kO(k) options! (Suppose logn<k.)



Phase II: Verify Realizability
When is a guess realizable? There exists an unlabeled BA to which we can
map the vertices of the topology in compliance with the lengths + sizes.
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Lemma. Realizability can be verified in
polynomial time. (Dynamic prog.).



Phase II: Verify Realizability
When is a guess realizable? There exists an unlabeled BA to which we can
map the vertices of the topology in compliance with the lengths + sizes.

Template Topology

B

1
21

1

2
23

1 1

2

1

8

4

8

…
…

32

Lemma. Realizability can be verified in
polynomial time. (Dynamic prog.).

Note. A guess can be realized by many
unlabeled BAs.

Surprisingly, we can ``work’’ with any
one that we want! (Later.)
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• An edge is resolved if it was replaced by a degree-2 path of its length.
• A VF-vertex is resolved if all edges between it and its VF-parent are resolved.
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• A VF-vertex is resolved if all edges between it and its VF-parent are resolved.
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Alg. While there is an unresolved VF-vertex:
• v: Such a vertex highest in the topo.

order of D with F reversed.
• u: The labeled ancestor of v that is

closest to v.
• x: The sum of the lengths-1 of the edges

between u and v.



Phase III: Greedy Resolution of Paths
• An edge is resolved if it was replaced by a degree-2 path of its length.
• A VF-vertex is resolved if all edges between it and its VF-parent are resolved.
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• v: Such a vertex highest in the topo.
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• u: The labeled ancestor of v that is
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• x: The sum of the lengths-1 of the edges

between u and v.
Ø Resolution: Pick the x ``free’’ vertices

between u and v in closest to u in the
topo. order of D with F reversed.
Replace the edges between u and v by
the unique path using these x vertices.



Phase III: Greedy Resolution of Paths
• An edge is resolved if it was replaced by a degree-2 path of its length.
• A VF-vertex is resolved if all edges between it and its VF-parent are resolved.
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• v: Such a vertex highest in the topo.

order of D with F reversed.
• u: The labeled ancestor of v that is

closest to v.
• x: The sum of the lengths-1 of the edges

between u and v.
Ø Resolution: Pick the x ``free’’ vertices

between u and v in closest to u in the
topo. order of D with F reversed.
Replace the edges between u and v by
the unique path using these x vertices.

If we do not have enough vertices, answer No.



Phase III: Greedy Resolution of Paths
• An edge is resolved if it was replaced by a degree-2 path of its length.
• A VF-vertex is resolved if all edges between it and its VF-parent are resolved.

Template Topology

B
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Alg. While there is an unresolved VF-vertex:
• v: Such a vertex highest in the topo.

order of D with F reversed.
• u: The labeled ancestor of v that is

closest to v.
• x: The sum of the lengths-1 of the edges

between u and v.
Ø Resolution: Pick the x ``free’’ vertices

between u and v in closest to u in the
topo. order of D with F reversed.
Replace the edges between u and v by
the unique path using these x vertices.

Intuition?



Phase IV: Greedy Resolution of Subtrees
• The private vertices of a VF-vertex are the vertices that belong to its subtree

and to none of the subtrees of its VF-descendants.
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• A VF-vertex is resolved if it was assigned
its private vertices.
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• x: # of its ``empty’’ private vertices.
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order of D with F reversed.
Assign these vertices to v.
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Phase IV: Greedy Resolution of Subtrees
• The private vertices of a VF-vertex are the vertices that belong to its subtree

and to none of the subtrees of its VF-descendants.
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• A VF-vertex is resolved if it was assigned
its private vertices.

Alg. While there is an unresolved VF-vertex:
• v: Such a vertex highest in the topo.

order of D with F reversed.
• x: # of its ``empty’’ private vertices.
Ø Resolution: Pick the x ``free’’ vertices

lower than (but closest to) v in the topo.
order of D with F reversed.
Assign these vertices to v.

If we do not have enough vertices, answer No.

Else, when the algorithm terminates,
answer Yes.
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• A VF-vertex is resolved if it was assigned
its private vertices.

Alg. While there is an unresolved VF-vertex:
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• The private vertices of a VF-vertex are the vertices that belong to its subtree

and to none of the subtrees of its VF-descendants.
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Intuition?

• A VF-vertex is resolved if it was assigned
its private vertices.

Alg. While there is an unresolved VF-vertex:
• v: Such a vertex highest in the topo.

order of D with F reversed.
• x: # of its ``empty’’ private vertices.
Ø Resolution: Pick the x ``free’’ vertices

lower than (but closest to) v in the topo.
order of D with F reversed.
Assign these vertices to v.

In particular, to argue that if we answer Yes, then
it is correct: Use Phase II (Verify Realizability).





Outline
I. Trivial polynomial compression where witnesses have exponential size.
II. Reinterpretation of the problem as a “packing problem”.
III. Encoding the packing problem using SAT. (Most of the work.)
IV. Sequence of known reductions:

SAT → 3SAT → 3SAT where every literal appears at most twice → TFP.
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Trivial Compression
Compute VF (use an approximation algorithm).
Encoding:
• Encode VF and F.
• Encode the order of VF. (So, we know the subtournament on VF.)
• For each type, encode the number of vertices of that type.
Size: Assume logn < klogk, else the problem is solvable in polynomial-time.

So, we the encoding takes O(k2log k) bits).
Witness: Single-elimination tournament / SBA: Space W(n) (can be
W(2"#$%")).
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Packing-Based Reinterpretation
Guess. Tuple (T, lengths, sizes).
Valid guess. A guess (T, lengths, size) such that:
• There exists an assignment from E(T) to tuples in {0,1,…,log n}types such

that: (i) Compliance with lengths. (ii) Beaten by tail and beat head.
• There exists an assignment from V(T) to tuple in {0,1,…,n}types such that:

(i) Compliance with #private vertices (implied by sizes). (ii) Beaten by the
vertex.

And: The number of times each type is ``used’’ equals the number of
vertices of that type.

Realizable guess: A valid guess such that there exists an UBA of size n that
``complies’’ with it.
Still: The ``UBA-part’’ of the witness can be of exponential size.
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Main Step: SAT-Encoding
We show how to encode the existence of a realizable guess using SAT-
constraints.

Question: ``Direct’’ polynomial kernel (where the polynomial is of small
degree)?






