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Parameterized Complexity

Main idea: Instead of expressing the running time as a 
function T(n) of n, we express it as a function T(n, k) of the 
input size, n, and some parameter k of the input.

We want to be efficient for inputs where k is small

Possible choices for the parameter k:

• The size k of the solution we are looking for.

• The maximum degree of the input graph.

• The diameter of the input graph.

• Maximum length of a clause in the input Boolean 
formula.
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Fixed-parameter tractability

A parameterized problem is fixed-parameter tractable 
(FPT) if for an input of size n and parameter value k there 
is an f(k)nc time algorithm for some constant c.

Example: Vertex Cover parameterized by the solution size 
k is FPT: can be solved in time O(1.273k +kn)
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W-hardness

Negative evidence similar to NP-completeness. If a 
problem is W-hard, then it is unlikely to be in FPT.

Some W-hard problems:

• Finding a clique/independent set of size k.

• Finding a dominating set of size k.

• Finding k pairwise disjoint sets.

• ...
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Approximation using Problem Parameters

Idea: Instead of finding an approximation algorithm with
running time nO(1), find an approximation algorithm
with running time f(k) · nO(1), where k is some parameter of 
the optimization problem instance.

Example: [Böckenhauer et al., 2007] Metric TSP with
Deadlines is the standard metric TSP problem, extended
with a set D of deadline nodes. The salesperson must reach 

v D within time at most d(v).

Let |D| be the parameter.
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Metric TSP with Deadlines

• Approximation: The problem has no constant factor 
approximation (unless P = NP).

• Parameterization: The problem parameterized by |D|

is not in FPT

• Approximation + parameterization: A 2.5-approximation 
can be found in time O(n3 + |D|! ・ |D|) 
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Approximation schemes
Polynomial-time approximation scheme (PTAS):

Input: Instance x, ε > 0

Output: (1+ ε)-approximate solution

• PTAS: running time is |x|f(1/ ε)

• EPTAS: running time is f(1/ ε)・|x|O(1)

• FPTAS: running time is (1/ ε)O(1)・|x|O(1)

Connections with parameterized complexity:

• Methodological similarities between EPTAS and FPT 
design.

• Lower bounds on the efficiency of approximation 
schemes.
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FPT-approximation schemes
FPT-AS:

Input: Instance (x, k), ε > 0

Output: (1+ ε)-approximate solution

Running time: f(ε ,k) . |x|O(1) , for some computable

function f.

This is a parameterized version of EPTAS.
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Partial Vertex Cover

Select k vertices, maximizing the 
number of covered edges.
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Partial Vertex Cover

Select k vertices, maximizing the 
number of edges covered.
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Partial Vertex Cover

• Approximation: The problem has a constant factor 
approximation, but has no PTAS (unless P = NP) 
[Hochbaum and Pathria 1998, Petrank 1994]

• Parameterization: The problem parameterized by k is 
W[1]-hard [Guo, Niedermeier and Wernicke 2005]

• Approximation + parameterization: A (1 + ε)-
approximation can be found in time  f(k, ε)・nO(1)

[Marx 2008]
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Partial Vertex Cover: FPT-AS

Theorem: Partial Vertex Cover admits an FPT-AS with 
parameter k, the number of vertices in the solution.

Proof: Sort the vertices in non-increasing order by 

degrees, and let D= 2 / ε. 

• Case 1: d(v1) > D.

The algorithm outputs S={v1,… , vk}.
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Partial Vertex Cover: FPT-AS
• Case 1: d(v1) > D.

- The algorithm outputs S={v1,… vk}. These k vertices 
cover at least 𝑖 edges.

- An optimal solution covers at most 𝑖 edges.
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Partial Vertex Cover: FPT-AS
• Case 1: d(v1) ≥ D.

The algorithm covers at least 𝑖 edges. An 

optimal solution covers at most 𝑖 edges. 

Example:

Assume k=5.
There are 10 vertices with degree 4 16
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Partial Vertex Cover: FPT-AS
• Case 1: d(v1) ≥ D.

The algorithm covers at least 𝑖 edges. An 

optimal solution covers at most 𝑖 edges.

Example:

If the algorithm selects the 5 star centers: 20 
edges are covered.
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Partial Vertex Cover: FPT-AS
• Case 1: d(v1) ≥ D.

The algorithm covers at least 𝑖 edges. An 

optimal solution covers at most 𝑖 edges.

Example:

If the algorithm selects the clique vertices: 10 
edges are covered.
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Partial Vertex Cover: FPT-AS
• Case 1: d(v1) > D.

The value of the solution is at least

𝑖

𝑖

times the optimum.
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Partial Vertex Cover: FPT-AS
• Case 2: d(v1) ≤ D.

Then the optimum value is at most kD.

Use Color Coding to find OPT: 
for all 1≤ l ≤ kD, check if it is possible to cover at least l
edges with k vertices.

Running time dominated by the Color Coding subroutine. 
Overall, f(k, )∙poly(n).
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FPT approximations for W-hard Problems:  Summary

• A straightforward combination of approximation and FPT.
f(k)・nO(1) or f(k, )・nO(1) time approximation algorithms, 
where k is some parameter of the optimization problem.

• We can obtain constant factor approximation or 
approximation schemes for problems where polynomial-
time algorithms cannot.
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Constraint Satisfaction Problems

• An instance of constraint satisfaction problem 
(CSP) is a set of constraints over a set of 
variables that can take values in certain 
domain. 

• Question: Can we assign values to the 
variables such that all constraints are
satisfied?

• Boolean CSP: is a set  { ,…, of constraints over 
variables and their negations 

(literals). 

• Each constraint maps a set of literals to ; a literal 
can take the values ‘0’ or ‘1’.
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Constraint Satisfaction Problems (Cont’d)
• Various types of constraints (e.g., OR, AND, MAJORITY,..).

Example: ( (CNF-SAT, or 
SAT) 

• In the optimization version of CSPs (Max-CSPs) we seek 
an assignment to the variables which satisfies a maximal 
number of constraints

• The vast majority of interesting CSPs are NP-hard.

• Two common approaches for solving CSPs (and Max-
CSPs): parameterization and approximation.
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Solving CSPs
Approximations

• There are polynomial-time approximations for Max-CSPs 
[Alon, Fernandez de la Vega, Kannan and Karpinski 2002] [Trevisan
2004] [Austrin and Khot 2013] [Khot and Saket 2015] 

• Many Max-CSPs are APX-hard [Creignou 1995, Elbassioni] 

[Raman, Ray and Sitters 2009] even when the decision version 
is in P (e.g., 2-SAT)

Parameterized CSPs

• Wide literature on parameterized versions of CSPs [Grohe 
2006] [Samer and Szeider 2010] [Szeider 2011] [Gaspers and Szeider
2011] [Pichler, Rϋmmele, Szeider and Woltran 2014] [Gaspers and 
Szeider 2014] [Ganian, Ramanujan and Szeider 2017] [Bannach, 
Fleischmann and Skambath 2022]

• The parameters often relate to the structure of the input 
instance
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Example: Max-SAT

) )

The primal graph 
ଵ

ଷ

ଶ

ସ

CSP Graphs and Structural Parameters
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Example: Max-SAT

) )

The dual graph 
ଵ

ଶ

ଷ

CSP Graphs and Structural Parameters
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Example: Max-SAT

) )

The incidence graph 
ଵ

ଶ

ଷ

ସ

ହ

଺

ଵ

ଶ

ଷ

CSP Graphs and Structural Parameters

There are other types 
of graphs for a 
given CSP instance

(e.g., constraint 
hypergraph).
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Common Basic Parameters
• Number of variables

• Number of constraints

• Largest arity (size of a constraint scope)

• Largest overlap between two constraints scopes

• Largest difference between constraints scopes

• ….
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Some Common Structural Parameters
• Maximal degree of the instance graph 

(primal/dual/incidence graph, constraint hypergraph)

• Treewidth: The notion of treewidth measures how close is 
a graph to being a tree.

A tree decomposition of is a tree consisting of 
nodes where vertices. The tree 
satisfies the following properties: 

i.

ii. If is contained in both and then is contained in 
any node on the single path in between and 

iii. For any edge there is a node that contains both 
and 
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Structural Parameters (Cont’d)
• Treewidth:

The width of a tree decomposition is the the cardinality of 
the largest node in minus 1.

The treewidth of the graph , , is the minimum width 
of any tree decomposition of .
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Structural Parameters: Treewidth

A B

C D

E F

G

ABD

ACD

CDF

CEF FG

Graph G Tree decomposition of G

tw(G) =2



Structural Parameters (Cont’d)
• Clique-width is the minimal number of labels required to 

construct a graph using in each step one of the 
operations:

i. Creation of a new vertex with a label 

ii. Disjoint union of two labeled graphs

iii. Joining by an edge each vertex labeled with with each 
vertex labeled with , for some 

iv. Renaming a vertex with label to label 
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Max-SAT instance: )

ଵ

ଶ

ଷ

ଵ

ଶ

Finding the clique-width of a path graph G:

The incidence graph 

1 2 31 2 31 2 3

cw( )=3

Structural Parameters: Clique-width
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Solving Hard Instances of Max-SAT

• Approximation: The problem has constant factor 
approximations, but does not admit a polynomial-time 
approximation scheme (unless P = NP) [Krentel 1986]
[Cohen, Cooper and Jeavons 2004 ]

• Parameterization by clique-width: The problem is W[1]-
hard [Ordyniak, Paulusma and Szeider 2013]

• Approximation + parameterization: A (1 + ε)-
approximation can be found in time  f(k, ε)・nO(1) for 
Max-SAT parameterized by clique-width [Dell, Kim, 
Lampis, Mitsou and Mömke 2017]
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Example: FPT-AS for Max-SAT
Use as parameter the clique-width

Main ideas:

• Distinguish between small, medium and large clauses 
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FPT-AS for Max-SAT (Cont’d)
• Given and , we can choose and 

such that , where .

• Omit the medium clauses to obtain a well-separated 
instance

• Consider several cases for the remaining instance
38



FPT-AS for Max-SAT: Case 1

: then ignore . Return a random assignment SOL for 

the clauses in .

small clauses

௜

ଵ ଶ,…, ௌ

medium clauses

௜

ௌ ାଵ ௌ ାଶ,…, ௌ ା ெ

large clauses

௜

௠ି ௅ ାଵ …, ௠

Almost all 
clauses in 

are in L 
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FPT-AS for Max-SAT: Case 2

• : Then ignore 
ଵ

ଶ

௜

௝

௡

ଵ

ௌ

௠

…
…

…

௠ି ௅ ାଵ…

S

L

has no large bicliques

Solve for using an 
FPT algorithm for 
Max-SAT with 
bounded treewidth

40



FPT-AS for Max-SAT: Case 3

• If and , find a good set of variables , i.e.,

(i)  There are at most  small clauses which contain

variables in .

(ii) There are at most m large clauses that contain less 

than variables in .

• Ignore the variables of in the small clauses.

• Compute a random assignment SOL1 for the variables in 
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ଵ

ଶ

௜

௝

௞

ଵ

|ௌ|

…
…

… S
ଶଷ

…

ଶ ௜, ௞

has no large bicliques

’

FPT-AS for Max-SAT: Case 3

• Solve for using an FPT algorithm for Max-SAT with 
bounded treewidth and return SOL2

Output 
SOL= SOL1 SOL2
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Analysis

• Assume w.l.o.g that , and show that at least 

clauses are satisfied in each case.

Case 1: Ignore and return a random assignment SOL for the 

clauses in 

• At most small clauses are unsatisfied 

• At most of the large clauses are unsatisfied (in 

expectation)

• Therefore, at most 

clauses are unsatisfied in expectation. 43



Analysis (Cont’d)
Case 2: Ignore and solve for using an FPT algorithm for
Max-SAT with bounded treewidth

Lemma [Gurski and Wanke, 2000]: Let be a graph of clique-width 
such that has no subgraph . Then has treewidth at 

most 

• The number of unsatisfied large or medium clauses is at 
most  

• Let be the number of satisfied clauses in an optimal 
solution for , then 
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Analysis (Cont’d)
Case 3: Find a good set of variables 
• Compute a random assignment SOL1 for the variables

 in 
• Compute SOL2, a solution for S without variables in 

using an FPT algorithm for Max-SAT with bounded 
treewidth. Output SOL= SOL1 SOL2 SOL= SOL1 SOL2

• It can be shown that a good set exists.

Intuition: 

• If L has more than clauses, there must be a variable 

that appears in ‘many’ large clauses and only in ‘few’ 
small clauses

• Use this property to construct Y iteratively
45



Analysis (Cont’d)
Case 3: Find a good set of variables 
• Compute a random assignment SOL1 for the variables

 in 
• Compute SOL2, a solution for S without variables in 

using an FPT algorithm for Max-SAT with bounded 
treewidth. Output SOL= SOL1 SOL2 SOL= SOL1 SOL2

• The incidence graph for ( after the variables in are 
omitted) has bounded treewidth.

• By similar arguments,

in expectation.
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FPT-AS for Max-SAT:Summary
Theorem: Given and a Max-SAT instance with 

clauses and variables, and clique-width , there is a 
randomized algorithm that outputs a truth assignment that 
satisfies at least clauses in time 

.
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More Results for Parameterized 
Approximations of CSPs

• Max-DNF parameterized by clique-width is W[1]-hard, and 
there is no FPT-AS, unless FPT = W[1] [Dell, Kim, Lampis, 
Mitsou and Mömke 2017]

• Max-CSP with MAJORITY constraints (i.e., a constraint is 
satisfied only if at least half of its literals are true) is W[1]-
hard, parameterized by the Feedback Vertex Set. The 
problem admits and FPT-AS [Dell, Kim, Lampis, Mitsou and 
Mömke 2017]
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Summary 

• Some parameterized CSPs are known to be W-hard. 
For such problems, it is natural to explore the 
existence of parameterized approximations.

- Solving Max-SAT exactly is W-hard  even for  highly 
restricted dense graph parameters;  however, Max-SAT 

admits an FPT-AS when parameterized by clique-width.

- In contrast, Max-DNF parameterized by clique- width is W-
hard and admits no FPT-AS unless  FPT=W[1].

• For some CSPs W-hardness can (almost) be 
circumvented using parameterized approximation, 
while others are inapproximable.
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Open Problems

• Parameterized approximations for other Max-CSPs that 
are W-hard? For example, Max-MAJORITY-CSP is W[1]-
hard when parameterized by treewidth. Does it admit 
an FPT-AS?

• How the techniques used for design of FPT algorithms 
can be used to obtain parameterized approximations 
for CSPs?

• Choice of parameters/instance graph? So far, the 
parameters used for parameterized approximations 
relate to the incidence graph of the input instance.


