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Parameterized Complexity

Main idea: Instead of expressing the running time as a
function T(n) of n, we express it as a function T(n, k) of the
iInput size, n, and some parameter k of the input.

We want to be efficient for inputs where k is small

Possible choices for the parameter k:

The size k of the solution we are looking for.
The maximum degree of the input graph.
The diameter of the input graph.

Maximum length of a clause in the input Boolean
formula.



Fixed-parameter tractability

A parameterized problem is fixed-parameter tractable
(FPT) if for an input of size n and parameter value k there
Is an f(k)n¢ time algorithm for some constant c.

Example: Vertex Cover parameterized by the solution size
kis FPT: can be solved in time O(1.273k+kn)



W-hardness

Negative evidence similar to NP-completeness. If a
problem is W-hard, then it is unlikely to be in FPT.

FPT c W[1] € W[2] € -

Some W-hard problems:

* Finding a clique/independent set of size k.
* Finding a dominating set of size k.

* Finding k pairwise disjoint sets.
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Approximation using Problem Parameters

Idea: Instead of finding an approximation algorithm with
running time n®), find an approximation algorithm

with running time f(k) - n®"), where k is some parameter of
the optimization problem instance.

Example: [Bockenhauer et al., 2007] Metric TSP with

Deadlines is the standard metric TSP problem, extended

with a set D of deadline nodes. The salesperson must reach
v € D within time at most d(v).

Let |D| be the parameter.



Metric TSP with Deadlines

« Approximation: The problem has no constant factor
approximation (unless P = NP).

« Parameterization: The problem parameterized by |D|
Is not in FPT

* Approximation + parameterization: A 2.5-approximation
can be found in time O(n*+ |D|! - |D|)



Approximation schemes
Polynomial-time approximation scheme (PTAS):
Input: Instance x, € > 0
Output: (1+ €)-approximate solution

* PTAS: running time is |x|""/ ¢
« EPTAS: running time is f(1/ €) = |x|°()
» FPTAS: running time is (1/ €)° + [x|°)

Connections with parameterized complexity:

* Methodological similarities between EPTAS and FPT
design.

« Lower bounds on the efficiency of approximation
schemes.



FPT-approximation schemes

FPT-AS:
Input: Instance (x, k), € >0
Output: (1+ €)-approximate solution

Running time: f(e ,k) . |[x|°(") , for some computable
function f.

This is a parameterized version of EPTAS.
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Partial Vertex Cover

Select k vertices, maximizing the
number of covered edges.
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Partial Vertex Cover

Select k vertices, maximizing the
number of edges covered.

&« o
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Partial Vertex Cover

« Approximation: The problem has a constant factor

approximation, but has no PTAS (unless P = NP)
[Hochbaum and Pathria 1998, Petrank 1994]

« Parameterization: The problem parameterized by k is
WI[1]-hard [Guo, Niedermeier and Wernicke 2005]

« Approximation + parameterization: A (1 + €)-

approximation can be found in time f(k, €) = n©()
[Marx 2008]

13



Partial Vertex Cover: FPT-AS

Theorem: Partial Vertex Cover admits an FPT-AS with
parameter k, the number of vertices in the solution.

Proof: Sort the vertices in non-increasing order by
degrees, and let D= 2 (’2()/ €.

« Case 1:d(v,) > D.
The algorithm outputs S={v,,... , v, }.
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Partial Vertex Cover: FPT-AS
« Case 1:d(v,)>D.

- The algorithm outputs S={v,,... v, }. These k vertices
cover at least Y./, d(v) — () edges.

- An optimal solution covers at most Y., d(v,) edges.
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Partial Vertex Cover: FPT-AS
 Case 1:d(vy) =2D.

The algorithm covers at least ', d(v,) — (%) edges. An
optimal solution covers at most }'*_, d(v,) edges.

Example: ><:
Assume k=5.

There are 10 vertices with degree 4 16
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Partial Vertex Cover: FPT-AS
 Case 1:d(vy) =2 D.

The algorithm covers at least ', d(v,) — (%) edges. An
optimal solution covers at most >, d(v,) edges.

-@ e
P

If the algorithm selects the 5 star centers: 20
edges are covered.
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Partial Vertex Cover: FPT-AS
 Case 1:d(vy) =2 D.

The algorithm covers at least ', d(v,) — (%) edges. An
optimal solution covers at most >, d(v,) edges.

-@ s
s

If the algorithm selects the clique vertices: 10
edges are covered.

19



Partial Vertex Cover: FPT-AS
« Case 1:d(v,)>D.
The value of the solution is at least

Z?ﬂ d(v,) — (]z() >1— (]z() > 1
S dw) D - 1+e

times the optimum.
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Partial Vertex Cover: FPT-AS
 Case 2:d(v4) =D.
Then the optimum value is at most kD.

Use Color Coding to find OPT:
for all 1= ¢ < kD, check if it is possible to cover at least ¢
edges with k vertices.

Running time dominated by the Color Coding subroutine.
Overall, f(k, €)-poly(n).
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FPT approximations for W-hard Problems: Summary

« A straightforward combination of approximation and FPT.
f(k) = n®™M or f(k, ) - n®" time approximation algorithms,
where k is some parameter of the optimization problem.

« We can obtain constant factor approximation or

approximation schemes for problems where polynomial-
time algorithms cannot.
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Constraint Satisfaction Problems

An instance of constraint satisfaction problem
(CSP) is a set of constraints over a set of

variables that can take values in certain e
domain. g g

Question: Can we assign values to the -
variables such that all constraints are

satisfied?

Boolean CSP: Wisaset {C4,..., C),,} of m constraints over

n variables X(¥) = {x4, ..., x,,} and their negations
(literals).

Each constraint ; maps a set of literals to {0,1} ; a literal
can take the values ‘0’ or ‘1.
24



Constraint Satisfaction Problems (Cont'd)
« Various types of constraints (e.g., OR, AND, MAJORITY,..).

Example: (xq V —=x, V =x, V xc) A (X, V =x3) A X, (CNF-SAT, or
SAT)

 In the optimization version of CSPs (Max-CSPs) we seek
an assignment to the variables which satisfies a maximal
number of constraints

* The vast majority of interesting CSPs are NP-hard.

« Two common approaches for solving CSPs (and Max-
CSPs): parameterization and approximation.

25



Solving CSPs

Approximations

* There are polynomial-time approximations for Max-CSPs
[Alon, Fernandez de la Vega, Kannan and Karpinski 2002] [Trevisan
2004] [Austrin and Khot 2013] [Khot and Saket 2015]

« Many Max-CSPs are APX-hard [Creignou 1995, Elbassioni]

[Raman, Ray and Sitters 2009] even when the decision version
iIsin P (e.qg., 2-SAT)

Parameterized CSPs

« Wide literature on parameterized versions of CSPs [Grohe
2006] [Samer and Szeider 2010] [Szeider 2011] [Gaspers and Szeider
2011] [Pichler, RUmmele, Szeider and Woltran 2014] [Gaspers and
Szeider 2014] [Ganian, Ramanujan and Szeider 2017] [Bannach,
Fleischmann and Skambath 2022]

* The parameters often relate to the structure of the input
iInstance



CSP Graphs and Structural Parameters

Example: Max-SAT W

(X1 V—x, Vx3) A (X, V—xy)

The primal graph Gy:
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CSP Graphs and Structural Parameters

Example: Max-SAT W

(X1 V _Ixz V x3) /\ (xz V _Ix4)/\ (X4 V x6)

&

The dual graph Gy:

28



CSP Graphs and Structural Parameters

Example: Max-SAT W

(X1 V=axy, VX3)A (X Vaxa Vaxs Vxg) A(—xg VX, V—xg)

The incidence graph Gy:

There are other types
of graphs for a
given CSP instance

(e.g., constraint

hypergraph).




Common Basic Parameters
Number of variables
Number of constraints
Largest arity (size of a constraint scope)
Largest overlap between two constraints scopes

Largest difference between constraints scopes
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Some Common Structural Parameters

« Maximal degree of the instance graph
(primal/dual/incidence graph, constraint hypergraph)

 Treewidth: The notion of treewidth measures how close is
a graph to being a tree.

A tree decomposition of ¢ = (V,E) is a tree T consisting of
nodes X, ..., X,,, where X; is a subset of vertices. The tree
satisfies the following properties:

i. Ul'Xl':V

ii. If vis contained in both X; and X; then v is contained in
any node on the single path in T between X; and X;

lii. For any edge (u,v) there is a node that contains both u

and v.
31



Structural Parameters (Cont'd)
 Treewidth:

The width of a tree decomposition is the the cardinality of
the largest node in T minus 1.

The treewidth of the graph G, tw(G), is the minimum width
of any tree decomposition of G.
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Structural Parameters: Treewidth

Graph G Tree decomposition of G
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V.

Structural Parameters (Cont'd)

Clique-width is the minimal number of labels required to
construct a graph G using in each step one of the
operations:

Creation of a new vertex with a label i
Disjoint union of two labeled graphs

Joining by an edge each vertex labeled with i with each
vertex labeled with j, for some i + j

Renaming a vertex with label i to label j
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Structural Parameters: Clique-width

Max-SAT instance: (x; V —=x, ) A (x, V —1X3)

(v
The incidence graph Gy: (up
(Gy)=3 2 (u2)
cw Wy -
(3

Finding the cliqgue-width of a path graph G:
(O—O—(—D—

1 71 B¥1 %2 3
(—®
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Solving Hard Instances of Max-SAT

« Approximation: The problem has constant factor
approximations, but does not admit a polynomial-time

approximation scheme (unless P = NP) [Krentel 1986]
[Cohen, Cooper and Jeavons 2004 |

« Parameterization by clique-width: The problem is W][1]-
hard [Ordyniak, Paulusma and Szeider 2013]

* Approximation + parameterization: A (1 + ¢€)-
approximation can be found in time f(k, €) - n®" for

Max-SAT parameterized by clique-width [Dell, Kim,
Lampis, Mitsou and Momke 2017]
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Example: FPT-AS for Max-SAT

Use as parameter the clique-width
Main ideas:

* Distinguish between small, medium and large clauses

small clauses medium clauses large clauses
| |

A
[ l

C1, Cy,y Cis | Cisi+1 Cis|+2smees CIS|+|MI| Cin-|Ll+17+ Cm

1ICi| < d d<|C|<D |C;| > D
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FPT-AS for Max-SAT (Cont'd)

Given W and £ > 0, we can choose d > 1 and D = ¢ *d
such that |[M| < em, where m = |V]|.

Omit the medium clauses to obtain a well-separated
iInstance

small clauses i e/ large clauses

Cy, Cayenry Cis)

ICL|Sd |Cl|>D

» Consider several cases for the remaining instance
38



FPT-AS for Max-SAT: Case 1

S| < % . then ignore S. Return a random assignment SOL for
the clauses in L.

mall claus edium clause large clauses
| | Cisi+1, Clsppsa s Cisieim Cm-tzfs1s Cm
Almost all
clauses in ¥

arein L
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FPT-AS for Max-SAT: Case 2

+ |L| <=~ Then ignore L

G, @‘@ “
(72 s

Solve for S using an Q
FPT algorithm for @' @’ |
Max-SAT with |
bounded treewidth @

)@’ ;

CN;L*IJ has no large bicliques
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FPT-AS for Max-SAT: Case 3
o If|L| > % and |S| > %, find a good set of variables Y, i.e.,

(i) There are at most % small clauses which contain

variables in Y.
(i) There are at most <?m large clauses that contain less

than 1 /¢ variables in Y.

 Ignore the variables of Y in the small clauses.

« Compute a random assignment SOL1 for the variables in Y
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FPT-AS for Max-SAT: Case 3

Output
SOL=S0OL1u SOL2

CN;L*IJ has no large bicliques

« Solve for S’ using an FPT algorithm for Max-SAT with
bounded treewidth and return SOL2

42



Analysis

 Assume w.l.o.gthat ¢ < % , and show that at least

(1 — )OPT clauses are satisfied in each case.

Case 1: Ignore S and return a random assignment SOL for the
clauses in L

« At most £2m small clauses are unsatisfied

D
« At most (%) < Z of the large clauses are unsatisfied (in

expectation)
* Therefore, at most
Em

Em
£im + -+t <em

clauses are unsatisfied in expectation. 43



Analysis (Cont'd)

Case 2: Ignore L and solve for S using an FPT algorithm for
Max-SAT with bounded treewidth

Lemma [Gurski and Wanke, 2000]: Let ¢ be a graph of clique-width
k, such that ¢ has no subgraph K,, ,,. Then G has treewidth at

most 3k(n — 1) — 1.

« The number of unsatisfied large or medium clauses is at
most

&m &m
em+ — <—
4 2

« Let OPTs be the number of satisfied clauses in an optimal
solution for S, then

OPT — OPTg < =~ <& OPT

44



Analysis (Cont'd)

Case 3: Find a good set of variables Y.

« Compute a random assignment SOL1 for the variables
inY.

 Compute SOL2, a solution for S without variables in
Y, using an FPT algorithm for Max-SAT with bounded
treewidth. Output SOL=SOL1U SOL2

* |t can be shown that a good set Y exists.
Intuition:

 If L has more than % clauses, there must be a variable

that appears in ‘many’ large clauses and only in ‘few’
small clauses

» Use this property to construct Y iteratively
45



Analysis (Cont'd)

Case 3: Find a good set of variables Y.

« Compute a random assignment SOL1 for the variables
inY.

 Compute SOL2, a solution for S without variables in
Y, using an FPT algorithm for Max-SAT with bounded
treewidth. Output SOL=SOL1U SOL2

« The incidence graph for S’ (S after the variables in Y are
omitted) has bounded treewidth.

* By similar arguments,
Em
OPT — OPTg, < 3 < e OPT

In expectation.
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FPT-AS for Max-SAT:Summary

Theorem: Given ¢ > 0 and a Max-SAT instance ¥ with

m clauses and n variables, and clique-width cw, there is a
randomized algorithm that outputs a truth assignment that
satisfies at least (1 — €)OPT clauses in time

f(g,cw)poly(n + m).
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More Results for Parameterized
Approximations of CSPs

Max-DNF parameterized by clique-width is W[1]-hard, and

there is no FPT-AS, unless FPT = W[1] [Dell, Kim, Lampis,
Mitsou and Momke 2017]

Max-CSP with MAJORITY constraints (i.e., a constraint is

satisfied only if at least half of its literals are true) is W[1]-

hard, parameterized by the Feedback Vertex Set. The

problem admits and FPT-AS [Dell, Kim, Lampis, Mitsou and
Momke 2017]
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Summary

« Some parameterized CSPs are known to be W-hard.
For such problems, it is natural to explore the
existence of parameterized approximations.

« For some CSPs W-hardness can (almost) be
circumvented using parameterized approximation,
while others are inapproximable.

- Solving Max-SAT exactly is W-hard even for highly
restricted dense graph parameters; however, Max-SAT
admits an FPT-AS when parameterized by clique-width.

- In contrast, Max-DNF parameterized by clique- width is W-
hard and admits no FPT-AS unless FPT=W]1].
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Open Problems

Parameterized approximations for other Max-CSPs that
are W-hard? For example, Max-MAJORITY-CSP is W[1]-
hard when parameterized by treewidth. Does it admit
an FPT-AS?

How the techniques used for design of FPT algorithms
can be used to obtain parameterized approximations
for CSPs?

Choice of parameters/instance graph? So far, the
parameters used for parameterized approximations
relate to the incidence graph of the input instance.
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