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Abstract

For every integer ` ≥ 7, we give a structural description of the class
of graphs whose chordless cycles of length at least 4 all have length `.

1 Introduction

A hole in a graph is an induced cycle of length at least 4. For an integer
k ≥ 7, we study the class Ck of graphs where every hole has length k. Note
that when k is even, this is a class of perfect graphs, and when k is odd,
this is a class of even-hole-free graphs. Both these classes are well studied
and we do not recall their definition. They have celebrated decomposition
theorems (see [4] and [9]), but no full structural description. This motivates
studying Ck.

In [16], the class of (4K1, C4, C6, C7)-free graphs is studied. It is a
subclass of C5. In [12], the class of (4K1, C4, C6)-free graphs is studied. In
this class, every hole has length 5 or 7. In [2], the class of rings of length k
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is defined for every integer k ≥ 4 (see Section 3.2 for the definition), and it
is used as a basic class for several decompositions theorems. Rings of length
k form a subclass of Ck. In [15], a polynomial time algorithm that colors
every ring is given. In [14], it is proved that for every fixed integer k, there
exist rings of length k of arbitrarily large rankwidth.

In [1] and [3], polynomial-time algorithms that, given a graph G and
u, v ∈ V (G), decide whether there exists a path from u to v that is not a
shortest path are described. It is easy to deduce from such algorithms an
algorithm to recognize Ck in polynomial time.

Here, we provide first a structural description of graphs in C2`+1 for any
` ≥ 3. It says that every graph in the class is constructed in some precise
way or has a universal vertex or has a clique cut. The formal statement
is given in Theorem 7.1. This work appears in the PhD thesis of Cléophée
Robin [17]. Part of it and algorithmic applications will appear in the PhD
thesis of Jake Horsfield. In the second part of this work, we provide a similar
description of graphs in C2` for any ` ≥ 4. The formal statement is given in
Theorem 10.1.

A similar description was obtained independently by Linda Cook and
Paul Seymour. Much of it forms part of the PhD thesis [7] of Linda Cook
and both groups decided to write a joint work based on this version, see [8].
Our statement is different but equivalent to the one in [8] as will be shown
in the PhD thesis of Jake Horsfield. We publish the present version as a
preprint because the approach is not the same and for later reference.

2 Definition and notation

We denote by G the complement of a graph G.
When x is a vertex of a graph G and A is a subset of vertices of G or

an induced subgraph of G, we denote by NA(x) the set of neighbors of x
that are in A. Note that x /∈ NA(x). We set NA[x] = {x} ∪ NA(x). If
X ⊆ V (G), we set NA(X) = (

⋃
x∈X NA(x)) \X and NA[X] = NA(X) ∪X.

We sometimes write N instead of NV (G) (when there is no risk of confusion).
A set X ⊆ V (G) is complete to a set Y ⊆ V (G) if they are disjoint

and every vertex of X is adjacent to every vertex of Y . A set X ⊆ V (G)
is anticomplete to a set Y ⊆ V (G) if they are disjoint and no vertex of X
is adjacent to a vertex of Y . We sometimes say that x is complete (resp.
anticomplete) to Y to mean that {x} is complete (resp. anticomplete) to Y .

A vertex v in a graph G is isolated if it has no neighbors in G. It is
universal if it is adjacent to all vertices of G \ v. A graph G is connected if
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for every pair of vertices u, v there exists a path from u to v in G. A graph
is anticonnected if its complement is connected. A connected component of
a graph G is a subset X of V (G such that G[X] is connected and X is
maximal w.r.t. this property. An anticonnected component of a graph G is a
subset X of V (G) such that G[X] is anticonnected and X is maximal w.r.t.
this property.

We will use the notion of hypergraph; that is, a structure similar to
graphs except that the edges (called hyperedges) may contain an arbitrary
positive number of vertices. While all the graphs that we use are simple, in
hypergraphs, we allow hyperedges that contain a single vertex and multiple
hyperedges (that is, there can be different hyperedges on the same set of
vertices). Observe that we do not allow an empty hyperedge.

A cutset in a graph G is a set S of vertices such that G\S is disconnected.
A clique in a graph is a set of pairwise adjacent vertices. In a graph, we
view the empty set as a clique, and as a clique cutset of any disconnected
graph. A stable set in a graph is a set of pairwise non-adjacent vertices.

For k ≥ 1, we denote by Pk the path on k vertices, that is, the graph
with vertex-set {p1, . . . , pk} and edge-set {p1p2, . . . , pk−1pk}. We denote
it by p1p2 . . . pk. If 1 ≤ i ≤ j ≤ k, we then denote by piPpj the path
pipi+1 . . . pj . For k ≥ 3, we denote by Ck the cycle on k vertices; that is,
the graph with vertex-set {p1, . . . , pk} and edge-set {p1p2, . . . , pk−1pk, pkp1}.
We denote it by p1p2 . . . pkp1. We denote it by p1p2 . . . pkp1. When Ck is a
subgraph of a graph G (possibly not induced), an edge with both ends in
{p1, ..., pk} that is not an edge of Ck is called a chord of Ck. We denote by
2K2 the complement of C4.

We say that P is a path in a graph G (or P is a path of G) to mean that
P is a path that is an induced subgraph of G. A hole in a graph G is a cycle
of length at least 4 that is an induced subgraph of G. The length of a path,
cycle or hole is the number of its edges. A hole is even or odd depending on
the parity of its length.

A graph G contains a graph H if H is isomorphic to an induced subgraph
of G and G is H-free if G does not contain H. For a class of graphs H, we
say that G is H-free, if G is H-free for all H in H.

3 A survey of some classes of graphs

Here we present several known classes of graphs and their properties. We do
not need all of them, but we believe that presenting them all gives a better
understanding of the class we work on.
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3.1 Classes of perfect graphs

A graph is chordal if it is hole-free. A graph is a cograph if it is P4-free.
A graph is a split graph if it is (C4, C5, 2K2)-free. A graph is a quasi-
threshold graph if it is (P4, C4)-free (quasi-threshold graphs are sometimes
called trivially perfect graphs, see [13]). A graph is a threshold graph if it
is (P4, C4, 2K2)-free (threshold graphs are sometimes called graphs with
Dilworth number 1 ). A graph is a half graph if it is (3K1, C4, C5)-free.

Observe that these six classes are all classes of perfect graphs. The classes
of cographs, split graphs and threshold graphs are self-complementary while
the classes of chordal graphs, quasi-threshold and half graphs are not. In
Figure 1, a Venn diagram of seven graph classes is represented (chordal and
quasi− threshold mean complements of chordal and quasi-threshold graphs
respectively). In every set, a typical example of the class is represented. The
diagram provides several alternative definitions of the classes we work on
(for instance, a threshold graph is a split cograph, a split graph is a chordal
graph whose complement is chordal, and so on). All the information given
by Figure 1 is easily recovered from the definitions of the corresponding
classes.

Theorem 3.1 ([10]) A graph G is chordal if and only if every non-
complete induced subgraph of G has a clique cutset.

Theorem 3.2 ([18]) A graph G is a cograph if and only if every induced
subgraph of G on at least two vertices is either not connected or not anti-
connected.

Theorem 3.3 ([11]) A graph G is a split graph if and only if V (G) can be
partitioned into a (possibly empty) clique and a (possibly empty) stable set.

The line graph of a hypergraph H is the graph G whose vertex-set is
E(H) and where two hyperedges of H are adjacent vertices of G whenever
their intersection is non-empty. Recall that in this paper, hypergraphs may
have multiple hyperedges (that are distinct hyperedges with the same ver-
tices in them). A hypergraph is laminar is for every pair X,Y of hyperedges,
either X ⊆ Y or Y ⊆ X or X ∩ Y = ∅.

Theorem 3.4 ([20]) For all graphs G the following statements are equiv-
alent.

(a) G is a quasi-threshold graph.
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Figure 1: Venn diagram of seven classes of graphs
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(b) Every induced subgraph of G is disconnected or has a universal vertex.

(c) G is the line graph of a laminar hypergraph.

Definition 3.5 If u and v are vertices of a graph G we write u ≤G v if
N(u) \ {v} ⊆ N(v) \ {u} and u <G v if N(u) \ {v} ( N(v) \ {u}.

Lemma 3.6 The relations ≤G and <G are transitive, that is, for all vertices
u, v, w of some graph G, if u ≤G v and v ≤G w, then u ≤G w (resp. if u <G v
and v <G w, then u <G w).

We define ≥G and >G accordingly (i.e. x ≥G y if and only if y ≤G x)
and extend these relations to sets of vertices X and Y as follows: X ≤G Y
if and only if for every x ∈ X and y ∈ Y , x ≤G y and so on.

Theorem 3.7 ([5]) For all graphs G the following statements are equiva-
lent.

(a) G is a threshold graph.

(b) Every induced subgraph of G has an isolated vertex or a universal
vertex.

(c) For all vertices u and v of G, u ≤G v or v ≤G u.

It is convenient to sort the vertices of a threshold graph. Formally, an
ordering v1, . . . , vk such that vi ≤G vj for all integers i and j satisfying
1 ≤ i ≤ j ≤ k is called a domination ordering. There is another convenient
ordering of the vertices of a threshold graph. By characterization (b) in
Theorem 3.7, every threshold graph can be obtained by the following induc-
tive process: start with a vertex u1, assume for some k ≥ 1 that vertices
u1, . . . , uk are already constructed, and then add a vertex uk+1 that is either
complete or anticomplete to {u1, . . . , uk}. The order u1, . . . , un is then called
an elimination ordering of the threshold graph (and it is not a domination
ordering in general).

An example is represented in Figure 2. On the top, a threshold graph
J on {v1, . . . , v10} is represented for which (v1, . . . , v10) is a domination
ordering. Vertices are circles with a number in them that gives the place of
the vertex in the elimination ordering. On the bottom, the complement J ′

of J is represented. It is also a threshold graph but the domination ordering
is reversed (it is (v10, . . . , v1)), while the elimination ordering remains the
same.
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10 9 4 2 1 3 5 6 7 8

10 9 4 2 1 3 5 6 7 8

v10 v9 v8 v7 v6 v5 v4 v3 v2 v1

Figure 2: A threshold graph and its complement

Theorem 3.8 (Folklore) A graph G is a half graph if and only if V (G)
can be partitioned into two (possibly empty) cliques K and K ′ such that for
all vertices x and y in K (resp. in K ′), either x ≤G y or y ≤G x.

Proof. If G is a half graph, then the complement of G contains (as a sub-
graph, not necessarily induced) no cycle of odd length because a shortest
such cycle cannot have length 3 (it would yield a 3K1 in G), cannot have
length 5 (it would yield a C5 in G) and cannot have length at least 7 (it
would yield a C4 in G). It follows that the complement of G is a bipar-
tite graph, so V (G) can be partitioned into two cliques as claimed. The
condition on ≤G then follows from the fact that G contains no C4.

The converse statement is clear. 2

3.2 Classes defined by excluding Truemper configurations

Truemper configurations are graphs that play a role in many decomposition
theorems, see [19]. They are the prisms, thetas, pyramids and wheels. Let
us define them.

A prism is a graph made of three vertex-disjoint paths P1 = a1 . . . b1,
P2 = a2 . . . b2, P3 = a3 . . . b3 of length at least 1, such that a1a2a3 and b1b2b3

are triangles and no edges exist between the paths except those of the two
triangles.

A pyramid is a graph made of three paths P1 = a . . . b1, P2 = a . . . b2,
P3 = a . . . b3 of length at least 1, two of which have length at least 2, vertex-
disjoint except at a, and such that b1b2b3 is a triangle and no edges exist
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between the paths except those of the triangle and the three edges incident
to a. The vertex a is called the apex of the pyramid.

A theta is a graph made of three internally vertex-disjoint paths P1 =
a . . . b, P2 = a . . . b, P3 = a . . . b of length at least 2 and such that no edges
exist between the paths except the three edges incident to a and the three
edges incident to b.

Observe that the lengths of the paths used in the three definitions above
are designed so that the union of any two of the paths induce a hole. A
prism, pyramid or theta is balanced if the three paths in the definition are
of the same length. It is unbalanced otherwise.

Figure 3: Pyramid, prism, theta and wheel (dashed lines represent paths)

A wheel W = (H, c) is a graph formed by a hole H (called the rim)
together with a vertex c (called the center) that has at least three neighbors
in the hole.

A wheel is a universal wheel if the center is adjacent to all vertices of
the rim. A wheel is a twin wheel if the center is adjacent to exactly three
vertices of the rim and they induce a P3. A wheel is proper if it is neither a
twin wheel nor a universal wheel.

Truemper configurations are of interest here because of the following
easy observation.

Lemma 3.9 Every unbalanced prism, every unbalanced pyramid, every un-
balanced theta and every proper wheel contains holes of different lengths.

Every pyramid contains an odd hole. Every prism and every theta con-
tains an even hole.

Proof. In a prism, pyramid or theta, the union of any two paths used in the
definition induces a hole. Paths of different lengths are then easily used to
provide holes of different lengths. In a proper wheel, the rim and a shortest
hole are holes of different lengths.

In a pyramid, paths of the same parity, that exist since there are three
paths, induce an odd hole. In thetas and prisms, they induce an even hole.2
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The following variant is more useful for our study.

Lemma 3.10 If ` ≥ 2 is an integer and G ∈ C2`+1, then every Truemper
configuration of G is a twin wheel, a universal wheel or a pyramid whose
three paths all have length `.

If ` ≥ 2 is an integer and G ∈ C2`, every Truemper configuration of G is
a twin wheel, a universal wheel, a theta whose three paths all have length `
or a prism whose three paths all have length `− 1.

Proof. Clear from Lemma 3.9. 2

A graph G is universally signable if G is (prism, pyramid, theta, wheel)-
free.

Theorem 3.11 ([6]) A graph G is universally signable if and only if every
induced subgraph of G is a hole, a complete graph or has a clique cutset.

A graph G is a ring if its vertex-set can be partitioned into k ≥ 4 sets
K1, . . . ,Kk such that (with subscripts understood to be taken modulo k):

(a) K1, . . . , Kk are cliques;

(b) for all i ∈ {1, . . . , k}, Ki is anticomplete to V (G)\ (Ki−1∪Ki∪Ki+1);

(c) for all i ∈ {1, . . . , k}, some vertex of Ki is complete to Ki−1 ∪Ki+1;

(d) for all i ∈ {1, . . . , k} and all x, x′ ∈ Ki, either x ≤G x′ or x′ ≤G x.

The integer k in the definition above is the length of the ring. Observe
that when k ≥ 4, the hole Ck is a ring of length k. Observe also that, by
Theorem 3.8, for any integer 1 ≤ i ≤ k, the graph G[Ki ∪ Ki+1] is a half
graph. We refer to the cliques K1, . . . ,Kk as the cliques of the ring G.

Lemma 3.12 Every hole in a ring G of length k has length k.

Proof. We prove that a hole C in G contains at most one vertex in each
clique of the ring. Suppose otherwise. Let x, x′ ∈ Ki be two vertices of C
and suppose up to symmetry that x ≤G x′. Hence, the neighbor of x in
C \ x′ is also adjacent to x′, so C contains a triangle, a contradiction.

Hence, C contains exactly one vertex in each clique of the ring. So, it
has length k. 2

The following is a corollary of Theorem 1.6 from [2].
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Theorem 3.13 If G is (prism, theta, pyramid, proper wheel, C4, C5)-free,
then one of the following holds.

(a) G is a ring of length at least 6;

(b) G has a clique cutset;

(c) G has a universal vertex.

4 Odd templates

Here we define and study the main basic class of Theorem 7.1.

4.1 Modules in threshold graphs

Let G be a graph. A module of G is a set X ⊆ V (G) such that every
vertex in V (G) \X is either complete or anticomplete to X. Observe that
all subsets of V (G) of cardinality 0, 1 or |V (G)| are modules of G. We will
use the notion of module only in the context of threshold graphs. The reader
can check that sets of vertices that are intervals for both elimination and
domination orderings are modules. We omit the proof since we do not need
this formally. We now state three lemmas.

Lemma 4.1 Let J be a threshold graph and X ⊆ V (J) such that |X| ≥ 2.
Then J̄ is a threshold graph, X is a module of J if and only if it is a module
of J̄ , and exactly one of J [X] and J̄ [X] is anticonnected.

Proof. Being a threshold graph and module are properties that are closed
under taking the complement. By Theorem 3.7, exactly one of J [X] or J̄ [X]
contains an isolated vertex, and the other one contains a universal vertex.
Hence, since |X| ≥ 2, exactly one of J [X] or J̄ [X] is connected and the other
one is anticonnected. 2

Lemma 4.2 Let J be a threshold graph. If X is an anticonnected module of
J that contains at least two vertices, then N(X) is a clique that is complete
to X. Moreover, N(X) >J X.

Proof. Since X is a module, N(X) is complete to X. Suppose that N(X)
is not a clique and let u and v be two non-adjacent vertices in N(X). Since
|X| ≥ 2 and X is anticonnected, X contains two non-adjacent vertices u′, v′
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that together with u and v form a C4 in J . This contradicts J being a
threshold graph.

Suppose that N(X) >J X does not hold. So, there exists u ∈ N(X) and
v ∈ X with v ≥J u. Since u ∈ N(X), u is complete X, so v is complete to
X \ {v}. This contradicts X being anticonnected. 2

Lemma 4.3 Let J be a threshold graph and X ⊆ V (J) a module of J . If
X contains some isolated vertices of J , then either X contains only isolated
vertices of J , or X contains all non-isolated vertices of J .

Proof. Let S be the set of all isolated vertices of J and T = V (J) \ S. By
assumption, X contains a vertex of S. If X contains only vertices of S, then
the conclusion holds, so suppose that X contains at least one vertex of T .
Suppose for a contradiction that X does not contain all of T . Since J [T ]
is connected (because it is a threshold graph with no isolated vertices and
hence by Theorem 3.7 it contains a universal vertex), there exists an edge
uv of J with u ∈ T ∩X and v ∈ T \X. Since X contains isolated vertices,
this contradicts X being a module. 2

4.2 Templates

For an integer ` ≥ 2, an odd `-template is any graph G that can be built
according to the following process.

(a) Choose a threshold graph J on vertex set {1, . . . , k}, k ≥ 3.

(b) Choose a laminar hypergraph H on vertex set {1, . . . , k} such that:

1. every hyperedge X of H is a module of J of cardinality at least 2
and

2. at least one hyperedge W of H contains all vertices of H.

(c) For each i ∈ {1, . . . , k}, G contains two vertices vi and v′i that are
linked by a path of G of length ` − 1. The k paths built at this
step are vertex disjoint and are called the principal paths of the odd
template.

(d) The set of vertices of G is V (G) = A ∪A′ ∪B ∪B′ ∪ I where:

1. I is the set of all internal vertices of the principal paths,

2. A = {v1, . . . , vk},
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3. A′ = {v′1, . . . , v′k},
4. B = {vX : X hyperedge of H such that J [X] is anticonnected},
5. B′ = {v′X : X hyperedge of H such that J̄ [X] is anticonnected}.

Note that by Lemma 4.1, for every hyperedge X of H, either vX ∈ B
or v′X ∈ B′ (and not both).

(e) The set of edges of G is defined as follows.

1. for every vi, vj ∈ A, vivj ∈ E(G) if and only if ij ∈ E(J),

2. for every v′i, v
′
j ∈ A′, v′iv

′
j ∈ E(G) if and only if ij /∈ E(J),

3. for every vX , vY ∈ B, vXvY ∈ E(G) if and only if X ∩ Y 6= ∅,

4. for every v′X , v′Y ∈ B′, v′Xv′Y ∈ E(G) if and only if X ∩ Y 6= ∅,

5. for every vi ∈ A, vX ∈ B, vivX ∈ E(G) if and only if i ∈ NJ [X],

6. for every v′i ∈ A′, v′X ∈ B′, v′iv
′
X ∈ E(G) if and only if i ∈ NJ̄ [X],

7. for every v ∈ I, v is incident to exactly two edges (those in its
principal path).

The following notation is convenient.

Notation: For every vertex x ∈ B such that x = vX where X is a hyperedge
of H, we set Hx = {vi : i ∈ X}. Similarly, for every vertex x ∈ B′ such that
x = v′X where X is a hyperedge of H, we set H ′x = {v′i : i ∈ X}.

We now list some properties of templates that follow directly from the
definition.

(i) G[A] is a threshold graph isomorphic to J and G[A′] is a threshold
graph isomorphic to J̄ (and hence to the complement of G[A]).

(ii) For all x ∈ B, Hx is a module of G[A] and G[Hx] is anticonnected. Also
for all x ∈ B′, H ′x is a module of G[A′] and G[H ′x] is anticonnected.

(iii) G[B] is isomorphic to the line graph of the hypergraph HB on vertex
set A and hyperedge set {Hx : x ∈ B}. Also G[B′] is isomorphic to
the line graph of the hypergraph HB′ on vertex set A′ and hyperedge
set {H ′x : x ∈ B′}. Hence G[B] and G[B′] are a quasi-threshold graphs
by Theorem 3.4.

(iv) There is an edge between vi ∈ A and x ∈ B if and only if vi ∈ NA[Hx],
and there is an edge between v′i ∈ A′ and x ∈ B′ if and only if v′i ∈
NA′ [H

′
x].
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Lemma 4.4 There exist vertices w and w′ that are universal vertices in
respectively G[A ∪ B] and G[A′ ∪ B′], and such that either w ∈ A and
w′ ∈ B′, or w ∈ B and w′ ∈ A′.

Proof. By Theorem 3.7, G[A] contains a vertex u that is either universal or
isolated. If u is universal, then for every x ∈ B, u ∈ N(Hx) (u cannot be
in Hx since G[Hx] is anticonnected by property (ii) of templates). So, u is
adjacent to x by property (iv) of templates. Hence, u is a universal vertex
of G[A ∪B].

Otherwise, u is an isolated vertex of G[A]. So, G[A] is anticonnected.
Hence, the vertex w corresponding to the hyperedge W from condition (b2)
of templates is in B. By property (iv) of templates, w is a universal vertex
of G[A ∪B].

The proof for G[A′ ∪ B′] is similar. So, w and w′ exist, and by the way
we construct them, we see that either w ∈ A and w′ ∈ B′, or w ∈ B and
w′ ∈ A′. 2

Let w and w′ be as in Lemma 4.4. The 7-tuple (A,B,A′, B′, I, w,w′) is
then called an `-partition of G.

Let us give a simple example. Consider an integer ` ≥ 2 and a threshold
graph J on three vertices {1, 2, 3} with no edges. So, G[A] has no edges,
G[A′] is a triangle on three vertices v′1, v

′
2, v
′
3, and for i = 1, 2, 3, there is a

path of length ` − 1 from vi to v′i. Consider H the hypergraph on {1, 2, 3}
with a unique hyperedge that is {1, 2, 3}. We now see that G is a balanced
pyramid with apex w and triangle v′1v

′
2v
′
3. Under these circumstances, the

sets A = {v1, v2, v3}, B = {w}, A′ = {v′1, v′2, v′3}, B′ = ∅, I = V (G) \ (A ∪
B ∪A′ ∪B′), w and v′3 form an `-partition of G.

It is worth noting that the `-partition above is not unique. Here is
another one. Call u the neighbor of v′3 in the path from v3 to v′3 with interior
in I (possibly, u = v3). Set A1 = {w, v1, v2}, B1 = ∅, A′1 = {u, v′1, v′2},
B′1 = {v′3} and I1 = V (G) \ (A1 ∪B1 ∪A′1 ∪B′1). It can be checked that A1,
B1, A′1, B′1, I1, w and v′3 form another `-partition of G. See Figure 4. Some
edges are dashed in several ways, this will be explained later, so far, they
are just edges of G.

Lemma 4.5 For all integers ` ≥ 2, every pyramid Π such that Π ∈ C2`+1

is an odd `-template.

Proof. Since Π ∈ C2`+1, its three paths have length `. The explanations
above show it is an odd `-template. 2
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Figure 4: Two 3-partitions of a pyramid whose paths all have length 3

We now give a more complicated example represented in Figure 5. The
threshold graph J has 10 vertices. Each vertex of G[A] and G[A′] is rep-
resented with a number in a circle that represents the elimination ordering
of the threshold graph it belongs to. The hypergraph H has the follow-
ing hyperedges: X1 = {1, 2}, X2 = {1, 2, 3}, X3 = {9, 10}, X4 = {5, 6, 7},
X5 = {5, 6, 7, 8}, X6 = {4, 5, 6, 7, 8} and X7 = {1, . . . , 10}. The vertex of
B ∪B′ corresponding to a hyperedge Xi is denoted by xi.

4.3 Structure of odd templates

Throughout this subsection, ` ≥ 2 is an integer and (A,B,A′, B′, I, w,w′) is
an `-partition of an odd `-template G.

Lemma 4.6 If x ∈ B (resp. x ∈ B′), then Hx (resp. H ′x) is the unique
anticomponent of G[NA(x)] (resp. G[NA′(x)]) that contains at least two ver-
tices.

Proof. Since G is C4-free and NA(x) contains at least two non-adjacent
vertices, G[NA(x)] contains a unique anticomponent X of size at least 2.
Since by property (ii) of templates, Hx is an anticonnected module of G[A], it
is also an anticonnected module of G[NA(x)]. Since every vertex of NA(x) is
either in Hx or complete to Hx, Hx must be an anticomponent of G[NA(x)],
and since it contains at least two vertices, it is equal to X. 2
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Figure 5: An odd 4-template
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Lemma 4.7 If x, y ∈ B (resp. ∈ B′) are such that xy /∈ E(G), then Hx∪{x}
(resp. H ′x ∪ {x}) is anticomplete to Hy ∪ {y} (resp. H ′y ∪ {y}).

Proof. Suppose x, y ∈ B and xy /∈ E(G). Then by condition (e3) of tem-
plates, Hx and Hy are disjoint.

Suppose there is at least one edge from Hx to Hy. Since they are both
modules of G[A], it follows that Hx is complete to Hy, so Hy ⊆ N(Hx).
Hence, by Lemma 4.2, Hy is a clique. Since Hy contains at least two vertices,
this contradicts Hy being anticonnected. So, Hx is anticomplete to Hy.
Hence, by property (iv) of templates, x is anticomplete to Hy and y is
anticomplete to Hx. So, Hx ∪ {x} is anticomplete to Hy ∪ {y} because
xy /∈ E(G) holds from our assumption.

The proof for x, y ∈ B′ is similar. 2

Lemma 4.8 Every vertex of G has degree at least 2 and every vertex of
B ∪B′ has degree at least 3.

Proof. Vertices in I are all in the interior of some path, so they have degree
at least 2.

Vertex w has degree at least 2 since |A| ≥ 3. A vertex v ∈ A \ {w}
therefore has degree at least 2 (one neighbor in I, and w). So every vertex
of A has degree at least 2. The proof for A′ is similar.

Let x be a vertex of B. If x = w, then x has degree at least 3 (because
|A| ≥ 3), so we may assume x 6= w. By, property (ii) of templates, |Hx| ≥ 2
and w /∈ Hx because Hx is anticonnected. So x has degree at least 3 as
claimed (at least two neighbors in Hx, and w). The proof for x ∈ B′ is
similar. 2

The following shows that odd templates can be considered as a general-
ization of balanced pyramids (we do not need it and include it because we
believe it helps understanding the structure of the class we work on).

Lemma 4.9 For every integer ` ≥ 2, every odd `-template G contains a
pyramid.

Proof. Consider three vertices vi, vj and vh in A and the corresponding
vertices v′i, v

′
j and v′h in A′. Exactly one of G[{vi, vj , vh}] and G′[{v′i, v′j , v′h}]

is connected (because they have three vertices and one is isomorphic to
the complement of the other). So, up to symmetry, we may assume that
G[{vi, vj , vh}] is disconnected (and therefore contains at most one edge).
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Note that w is distinct from vi, vj and vh since G[{vi, vj , vh}] is discon-
nected. We see that w and the three principal paths linking {vi, vj , vh} to
{v′i, v′j , v′h} form a pyramid (if G[{vi, vj , vh}] contains one edge e, then the
triangle is formed by e and w, and otherwise it is v′iv

′
jv
′
h). 2

From the definition of odd `-templates, every vertex x ∈ B corresponds
to a set Hx ⊆ A. These sets form a hypergraph HB on the vertex-set A
(that is isomophic to a sub-hypergraph of H). Let us build an extention
HA of HB by adding more hyperedges: for every vertex v ∈ A, we add the
hyperedge

Hv = NA[v] ∩ {u ∈ A : u ≤G[A] v}.

Note that v ∈ Hv.

Lemma 4.10 HA is a laminar hypergraph and G[A∪B] is isomorphic to its
line graph (in particular, G[A ∪ B] is a quasi-threshold graph and therefore
a chordal graph). A similar statements holds for G[A′ ∪B′].

Proof. By construction, every vertex of A∪B corresponds to a hyperedge of
HA. We have to check that the ends of every edge of G[A ∪ B] correspond
to hyperedges of HA that are included one in the other, and that the ends of
every non-edge correspond to a pair of disjoint hyperedges. This will prove
that G[A∪B] is isomorphic to the line graph of HA and that HA is laminar.
Let us check all the cases.

For x, y ∈ B, since HB is laminar and G[B] is isomorphic to its line
graph, we have nothing to prove.

Let u, v ∈ A. By Theorem 3.7, we may assume up to symmetry that
u ≥G[A] v. If uv ∈ E(G), then clearly Hv ⊆ Hu. Suppose uv /∈ E(G), and
let t be a vertex of A such that t ≤G[A] v. So, t ≤G[A] u. If tv ∈ E(G), then
uv ∈ E(G), a contradiction. So, tv /∈ E(G) and Hv = {v}. Since v /∈ N [u],
we have that Hu ∩Hv = ∅.

Consider finally vertices u ∈ A and x ∈ B. Suppose first that ux ∈ E(G).
By property ((iv)) of templates, we have that u ∈ NA[Hx]. If u ∈ Hx,
then Hu ⊆ Hx by Lemma 4.2 (specifically, we use NA(Hx) >G[A] Hx to
conclude that NA(Hx) ∩ Hu = ∅, and then since Hu ⊆ NA[Hx] it follows
that Hu ⊆ Hx). If u ∈ NA(Hx), then by Lemma 4.2 (again also using that
NA(Hx) >G[A] Hx), Hx ⊆ Hu. So, an edge indeed yields an inclusion of the
corresponding hyperedges.

Suppose now that ux /∈ E(G). So, u /∈ N [Hx]. Since u is not in Hx and
has no neighbor in Hx, it follows that Hu is disjoint from Hx.
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So HA is a laminar hypergraph and G[A ∪ B] is isomorphic to its line
graph. It follows from Theorem 3.4 that G[A∪B] is a quasi-threshold graph
and therefore a chordal graph. 2

Lemma 4.11 Every hole of G is formed by two principal paths of G and a
single vertex of A∪B ∪A′ ∪B′ that does not belong to these principal paths
(it therefore has length 2` + 1).

Proof. By Lemma 4.10, a hole C of G cannot contain only vertices of A∪B,
and similarly, it cannot contain only vertices of A′ ∪B′. So it must contain
vertices of some principal path, and also of a second principal path. In fact,
C must go through exactly two principal paths, since G[A] is isomorphic
to the complement of G[A′], if three paths are involved, there would be a
vertex of C with three neighbors in C, a contradiction.

Since G[A] is isomorphic to the complement of G[A′], up to a symmetry,
for some nonadjacent vertices u, v ∈ A, the hole C is made of a path P =
u . . . v with interior in I ∪A′ (whose length is 2`− 1) and a path Q = u . . . v
of G[A ∪ B]. By Lemma 4.10, Q has length at most 2 (because a quasi-
threshold graph is P4-free), and since uv /∈ E(G), it has length 2. So, C has
length 2` + 1 as claimed. 2

4.4 Connecting vertices of a template

Lemma 4.12 If x ∈ B and y ∈ B′, then there exists in G two paths P and
Q of length `+1 from x to y such that P (resp. Q) contains a principal path
P0 (resp. Q0), and P0 6= Q0.

Proof. We set X = {i ∈ {1, . . . , k} : vi ∈ Hx} and Y = {i ∈ {1, . . . , k} :
v′i ∈ H ′y}. So, X and Y are hyperedges of H and since H is laminar, either
X ⊆ Y , Y ⊆ X or X ∩ Y = ∅.

If X ⊆ Y , then let i, j be distinct members of X (and therefore of Y ).
The paths xviPiv

′
iy and xvjPjv

′
jy are the paths we are looking for. The

proof is similar when Y ⊆ X.
If X ∩ Y = ∅, then let i, j, q, r be distinct integers such that i, j ∈ X

and q, r ∈ Y . Since G[A] is isomorphic to the complement of G[A′], we
may assume up to symmetry that vivq ∈ E(G). So, v′iv

′
q /∈ E(G). Since

H ′y is a module of G[A′], v′iv
′
r /∈ E(G). It follows that vivr ∈ E(G). So,

vr, vq ∈ NA(Hx). Hence, by property (iv) of templates, xvr, xvq ∈ E(G). It
follows that xvqPqv

′
qy and xvrPrv

′
ry are the two paths we are looking for.2
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Lemma 4.13 If x ∈ A ∪ B and y ∈ A′ ∪ B′, then there exists in G a path
P of length `− 1, ` or ` + 1 from x to y that contains a principal path.

More specifically:

• If x ∈ A and y ∈ A′, then P has length `− 1 or `.

• If x ∈ A and y ∈ B′, or if x ∈ B and y ∈ A′, then P has length ` or
` + 1.

• If x ∈ B and y ∈ B′, then P has length ` + 1.

Proof. Suppose first that x ∈ A, say x = vi. If y ∈ A′, then set y = v′j . If
i = j, then Pi has length `− 1. If i 6= j, then one of vivjPjv

′
j or viPiv

′
iv
′
j is

a path of length `. If y ∈ B′, then one of viPiv
′
iy or viPiv

′
iw
′y is the path

we are looking for. The proof is similar when y ∈ A′.
We may therefore assume that x ∈ B and y ∈ B′. So one of the two

paths obtained in Lemma 4.12 can be chosen. 2

4.5 Odd pretemplates

Checking that a graph is an odd `-template is tedious. We now introduce
a simpler notion that is in some sense equivalent. For every integer ` ≥ 3,
an odd `-pretemplate is a graph G whose vertex-set can be partitioned into
five sets A, B, A′, B′ and I with the following properties.

(a) N(B) ⊆ A and N(A ∪B) ⊆ I.

(b) N(B′) ⊆ A′ and N(A′ ∪B′) ⊆ I.

(c) |A| = |A′| = k ≥ 3, A = {v1, . . . , vk} and A′ = {v′1, . . . , v′k}.

(d) For every i ∈ {1, . . . , k}, there exists a unique path Pi from vi to v′i
whose interior is in I.

(e) Every vertex in I has degree 2 and lies on a path from vi to v′i for
some i ∈ {1, . . . , k}.

(f) All paths P1, . . . , Pk have length `− 1.

(g) G[A ∪B] and G[A′ ∪B′] are both connected graphs.

(h) Every vertex of B is in the interior of a path of G[A ∪ B] with both
ends in A.
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(i) Every vertex of B′ is in the interior of a path of G[A′ ∪B′] with both
ends in A′.

We then say that (A,B,A′, B′, I) is an `-pretemplate partition of G.
Note that templates are defined for all integers ` ≥ 2, while pretemplates
are defined only when ` ≥ 3. In fact we do not need odd 2-templates, we
defined them for possible later use.

It is easy to check that when ` ≥ 3, the five first elements of every
`-partition of G is an `-pretemplate partition. The condition on the con-
nectivity of G[A ∪B] and G[A′ ∪B′] follows Lemma 4.4. The condition (h)
follows from the fact for every x ∈ B, Hx contains two non-adjacent vertices,
so a vertex x ∈ B lies on a path of length 2 with ends in A and condition (i)
holds similarly. Conversely, we prove the following lemma (it is important
to note that ` ≥ 3).

Lemma 4.14 Let ` ≥ 3 be an integer. If G ∈ C2`+1 is an odd `-
pretemplate, then G is an odd `-template. Moreover, for every odd `-
pretemplate partition (A,B,A′, B′, I) of G, there exist w and w′ in V (G)
such that (A,B,A′, B′, I, w,w′) is an `-partition of G.

Proof. Let (A,B,A′, B′, I) be an `-pretemplate partition of G. We first
study the structure of G[A] and G[A′].

(1) For all distinct i, j ∈ {1, . . . , k}, vivj ∈ E(G) if and only if v′iv
′
j /∈ E(G).

In particular, G[A] is isomorphic to the complement of G[A′].

If vivj , v
′
iv
′
j ∈ E(G), then Pi and Pj form a hole of even length, a contradic-

tion. If vivj , v
′
iv
′
j /∈ E(G), then Pi, Pj , a path from vi to vj in G[A∪B] and

a path from v′i to v′j in G[A′ ∪ B′] form a hole of length at least 2` + 2, a
contradiction. This proves (1).

(2) Every path of G[A ∪B] with both ends in A is of length at most 2.

Let P = vi . . . vj be a path of G[A ∪ B] with both ends in A. If P has
length at least 3, then by (1), paths P , Pi and Pj form a hole of length at
least 2` + 2, a contradiction. This proves (2).

(3) G[A] is a threshold graph.

G[A] is obviously C4-free. Since the complement of C4 is 2K2 and since
G[A′] is also C4-free, it follows by (1) that G[A] is 2K2-free. By (2), G[A]
is P4-free. So G[A] is (P4, C4, 2K2)-free and is therefore a threshold graph.
This proves (3).
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We now study the structure of G[B] and its relation with G[A].

(4) For every vertex x ∈ B, G[NA(x)] has a unique anticonnected component
of size at least 2.

By the definition of odd pretemplates, x is in the interior of a path P =
vi . . . vj of G[A ∪ B] with both ends in A. By (2), P has length 2, so x is
adjacent to vi and vj . Hence G[NA(x)] has an anticonnected component
of size at least 2. It is unique, for otherwise G[A] contains a C4. This
proves (4).

For all x ∈ B, we define Hx to be the anticonnected component of
G[NA(x)] of size at least 2 whose existence follows from (4).

(5) For every x in B, Hx is a module of G[A].

Otherwise, since Hx is anticonnected and is not a module, there exists vh ∈
A\Hx and non-adjacent vi, vj ∈ Hx such that vivh ∈ E(G) and vjvh /∈ E(G).
Note that xvh /∈ E(G) because otherwise, vh would be in Hx. Hence, vi, x,
Pj and Ph form a hole of length 2` + 2, a contradiction. This proves (5).

(6) If xy is an edge of G[B], then Hx ⊆ Hy or Hy ⊆ Hx.

Up to symmetry, we may assume that NA(x) ⊆ NA(y), for otherwise vertices
vi ∈ NA(x) \NA(y) and vj ∈ NA(y) \NA(x) either form a C4 with x and y
or a hole of length 2` + 2 with Pi and Pj .

By (4), G[NA(y)] has only one anticonnected component of size at least 2,
namely Hy. Since Hx is anticonnected, has size at least 2 and is included in
NA(y), it must be included in Hy. This proves (6).

(7) If x and y are non-adjacent vertices of B, then Hx and Hy are disjoint.

On the contrary, suppose that x and y are nonadjacent vertices of B but
there exists a vertex v ∈ Hx ∩Hy. Since Hx is anticonnected and of size at
least 2, there exists vi ∈ Hx non-adjacent to v. Note that viy /∈ E(G), for
otherwise x, y, vi and v form a C4. Similarly, there exists a vertex vj ∈ Hy

that is non-adjacent to v and to x. If vivj ∈ E(G), then {x, y, v, vi, vj}
induces a C5, a contradiction. Otherwise, Pi, Pj , x, y and v form a hole of
length 2` + 3, a contradiction. This proves (7).

We are now ready to define the hypergraph H. For every x ∈ B, we
defined a set Hx ⊆ A. We may define similarly a set H ′x ⊆ A′ for every
x ∈ B′. From (6) and (7), the sets Hx for x ∈ B form a laminar hypergraph
HB (with vertex set A). Symetrically, the sets H ′x for x ∈ B′ form a laminar
hypergraphHB′ (with vertex set A′). LetH be the hypergraph whose vertex
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set is {1, . . . , k} and such that H ⊆ {1, . . . , k} is a hyperedge of H if and
only if H = {i : vi ∈ Hx} for some x ∈ B or H = {i : v′i ∈ H ′x} for some
x ∈ B′.

(8) The hypergraph H is laminar.

If H is not laminar, then there exist X,Y ∈ E(H) such that X\Y , Y \X and
X ∩ Y are all non-empty. Since HB and HB′ are both laminar, there exists
x ∈ B such that Hx = {vi : i ∈ X} and y ∈ B′ such that H ′y = {v′i : i ∈ Y }.

We set Hy = {vi : i ∈ Y }. Note that Hx \Hy, Hy \Hx and Hx ∩Hy are
all non-empty. Also, because of the properties of H ′y and by (1), G[Hy] is
connected (because G[H ′y] is anticonnected) and Hy is a module of G[A].

Since G[Hx] is anticonnected, there exist non-adjacent vertices u ∈ Hx \
Hy and v ∈ Hx ∩Hy. Since G[Hy] is connected, there exists a path from v
to t ∈ Hy \Hx and we may assume that vt is an edge. Since Hy is a module
of G[A], ut /∈ E(G). So, t is adjacent to v and non-adjacent to u. This
contradicts Hx being a module of G[A]. This proves (8).

We may now finish the proof of Lemma 4.14. We show how G can be
built by the process described in the definition of odd templates. We start
by setting V (J) = {1, . . . , k}, and by making i adjacent to j in J if and
only if vivj ∈ E(G). By (3), J is a threshold graph as required. Clearly
condition (d) of odd `-templates holds, the paths linking A to A′ are as in
condition (c) of odd `-templates and condition (e7) of odd `-templates holds.
By (1), conditions (e1) and (e2) of odd `-templates hold. We then consider
the hypergraph H defined above. It is laminar by (8). By (5), condition (b1)
of templates is satisfied.

By definition of Hx, for every x in B, NA(x) ⊆ NA[Hx]. Suppose that
there exists u ∈ NA[Hx] \ NA(x). Since by (5) Hx is a module, it follows
from Lemma 4.2 that u is complete to Hx, so x and u together with two non-
adjacent vertices from Hx induce a C4, a contradiction. Hence, NA(x) =
NA[Hx] and condition (e5) of odd templates is satisfied.

By (6) and (7), condition (e3) of templates is satisfied.
By symmetry and by (1), conditions (e4) and (e6) of templates are sat-

isfied. Therefore condition (e) of templates is satisfied.
To conclude the proof, let us check condition (b2) of templates. By (1),

(3) and Theorem 3.7, up to symmetry, we may assume that G[A] contains
an isolated vertex vi. Since G[A ∪ B] is connected and |A| ≥ 3 by the
definition of odd pretemplates, there exists a path P in G[A∪B] from vi to
a vertex u ∈ A \ {vi}. By (2) and since vi has no neighbor in A, we have
that P = uyvi where y ∈ B. So, Hy contains vi. We may therefore consider
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the hyperedge W of H that contains i and that is inclusion wise maximal
w.r.t. this property. If there exists j ∈ {1, . . . , k}\W , since vjvi /∈ E(G), we
deduce as above that H has a hyperedge Z that contains i and j. Because
of j, Z ⊆ W is impossible; because of i, W ∩ Z = ∅ is impossible; and
because of the maximality of W , W ( Z is impossible. Hence, W and Z
contradict H being laminar. This proves that W = {1, . . . , k}, as claimed
in condition (b2) of templates.

Hence, G[A∪B] has universal vertex w. Also, G[A′∪B′] has a universal
vertex w′ (we may apply Lemma 4.4 since we now know that G is an odd
`-template). So, (A,B,A′, B′, I, w,w′) is an `-partition of G. 2

4.6 Twins and proper partitions

Two distinct vertices x and y in a graph are twins if N [x] = N [y] (in
particular, x and y are adjacent). A graph is twinless if it contains no twins.

Lemma 4.15 Let (A,B,A′, B′, I, w,w′) be an `-partition of an odd `-
template G. Two vertices x and y of G are twins if and only if x, y ∈ B and
Hx = Hy, or x, y ∈ B′ and H ′x = H ′y.

Proof. If x, y ∈ B and Hx = Hy, or x, y ∈ B′ and H ′x = H ′y, then x and y
are obviously twins.

We claim that for all x ∈ A∪I∪A′, there exist two vertices a, b ∈ NG(x)
such that N [a] ∩ N [b] = {x}. If x ∈ I choose a and b to be the only two
neighbors of x. If x ∈ A, then set a = w when x 6= w, and choose for a any
vertex of A \ {x} when x = w. Choose for b the neighbor of x in I. In both
cases, by condition (e7) of templates, NG[a] ∩ NG[b] = {x}. The proof is
similar when x ∈ A′. So, x has no twin in G. 2

An `-partition (A,B,A′, B′, I, w,w′) of an odd `-template G is proper if
one of G[A] or G[A′] contains at least two isolated vertices.

Lemma 4.16 For all integers ` ≥ 3, every twinless odd `-template G admits
a proper `-partition.

Proof. Let (A,B,A′, B′, I, w,w′) be an `-partition of G such that the number
M of isolated vertices of G[A] is maximum. We suppose that v1, . . . , vk is a
domination ordering of G[A].

By Theorem 3.7 and since we may swap A,B,w and A′, B′, w′, by the
maximality of M , v1 is an isolated vertex of G[A]. It follows that w ∈ B.
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By definition of templates, v′1 is a universal vertex of G[A′ ∪ B′]. Suppose
for a contradiction that v2 is not isolated in G[A]. So, M = 1.

Let Hx be any hyperedge of HB containing v1. By Lemma 4.3, since
Hx contains a non-isolated vertex of G[A], it contains all of them. So,
Hx = A. Hence, N [x] = N [w], so x = w since G is twinless. This proves
that N(v1) = {w, v+

1 } where v+
1 is the neighbor of v1 in I. Let v′+1 be the

neighbor of v′1 in I. We now describe a new partition of the vertices of G.
We set:

• A1 = {w, v2, . . . , vk},

• B1 = B \ {w},

• A′1 = {v′+1 , v′2, . . . , v
′
k},

• B′1 = B′ ∪ {v′1} and

• I1 = {v1} ∪ I \ {v′+1 }.

All conditions of the definition of a pretemplate are easily checked
to be satisfied by (A1, B1, A

′
1, B

′
1, I1). By Lemma 4.11, every hole in G

has length 2` + 1. We may therefore apply Lemma 4.14 to prove that
(A1, B1, A

′
1, B

′
1, I1, w, v

′
1) is an `-partition of G. So, (A′1, B

′
1, A1, B1, I1, v

′
1, w)

contradicts that maximality of M since G[A′1] has two isolated vertices,
namely v′+1 and v′k (note that since M = 1, it follows by Theorem 3.7 that
G[A \ {v1}] has a universal vertex ; in particular vk is a universal vertex of
G[A \ {v1}] and hence v′k is an isolated vertex of G[A′1]). 2

Lemma 4.17 Every proper `-partition (A,B,A′, B′, I, w,w′) of a twinless
odd `-template satisfies one of the following:

• w ∈ B, w is the unique universal vertex of G[A∪B], G[A] contains at
least two isolated vertices, Hw = A, w′ ∈ A′ and A′ \ {w′} contains at
least one universal vertex of G[A′].

• w ∈ A, A\{w} contains at least one universal vertex of G[A], w′ ∈ B′,
w′ is the unique universal vertex of G[A′ ∪B′], G[A′] contains at least
two isolated vertices and H ′w′ = A′.

Proof. Since (A,B,A′, B′, I, w,w′) is a proper `-partition, up to symmetry,
we may assume that G[A] contains two isolated vertices. So, w ∈ B. By
definition of `-partitions, it follows that w′ ∈ A′. Since G is twinless and

24



G[A] contains isolated vertices, w is the unique universal vertex of G[A∪B].
By Lemma 4.6, Hw = A. Also A′ \ {w′} contains at least one universal
vertex of G[A′] since G[A] contains two isolated vertices. 2

We do not use the following lemma formally, but it illustrates a key
property of proper partitions. In non-proper partitions, there may exist
vertices in A that have degree 2 and have one neighbor in A and one in
I. These are hard to think of, because they yield edges with both ends in
A that can be “blown up” into a general half graph as we will see in the
next section. The next lemma states that this situation does not occur with
proper partitions.

Lemma 4.18 Suppose ` ≥ 3 and G is an odd `-template with a proper `-
partition (A,B,A′, B′, I, w,w′). If a vertex v in A∪B∪A′∪B′ has degree 2
(in G), then v ∈ A ∪A′ and v is adjacent to a vertex of B ∪B′ and has its
other neighbor in I.

Proof. Up to symmetry, suppose that G[A] contains at least two isolated
vertices. So, w ∈ B. Consider a vertex v ∈ A∪B ∪A′ ∪B′ that is of degree
2 in G. By Lemma 4.8, v /∈ B ∪B′. Since G[A′] has two universal vertices,
every vertex in A′ has degree at least 3, so v ∈ A, and v is adjacent to w ∈ B
and to some vertex in I as claimed. 2

5 Blowup

Our goal in this section is to see how a bigger graph can be obtained from
a template G by turning every vertex into a non empty clique. This will be
called blowing up G. In the blowup operation, non-adjacent vertices yield
cliques that are anticomplete to each other. Adjacent vertices u and v yield
cliques that are complete to each other in some situations (when uv is a
so-called solid edge of the template), but in some other situations, they may
yield pairs of cliques that induce a more general half graph, like when a ring
is obtained from “blowing up” a chordless cycle. This happens when uv
is a so-called flat or optional edge of the template. We now define all this
formally.

Throughout all this section, ` ≥ 3 is an integer, G is a an odd `-template
with a fixed an `-partition (A,B,A′, B′, I, w,w′).
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5.1 Flat, optional and solid edges

An edge of G is flat if at least one of its end is in I. An edge of G is optional
if one end is a vertex x ∈ B (resp. x ∈ B′) and the other end is a vertex
u ∈ Hx that is an isolated vertex of G[Hx] (resp. a vertex u ∈ H ′x that is an
isolated vertex of G[H ′x]). An edge that is neither flat nor optional is solid.
See Figure 5 where solid edges are represented by solid lines, flat edges by
doted lines and optional edges by dashed lines.

Observe that the status of an edge depends on the `-partition of the odd
`-template. See Figure 4, where the same template is represented with two
different `-partitions. Recall that throughout this section, the `-partition is
fixed, and so is the status of the edges.

Lemma 5.1 If ux is an optional edge of G with u ∈ A and x ∈ B, then
NA(Hx) = NA(u). Moreover, if y ∈ B \ {x} and yu ∈ E(G), then Hx ⊆ Hy

or Hy ⊆ Hx (in particular, xy ∈ E(G)).

Proof. Since Hx is a module of G[A] and u is isolated in Hx, we have
NA(Hx) = NA(u). If the second conclusion fails, then since HB is laminar,
Hy ∩ Hx = ∅. So xy /∈ E(G). Since yu ∈ E(G) and u /∈ Hy, we have
u ∈ NA(Hy), so u is complete to Hy since Hy is a module. So Hy ⊆
NA(u) = NA(Hx), which is a clique by Lemma 4.2. This contradicts Hy

being anticonnected. 2

A clique of G is solid if all its edges are solid.

Lemma 5.2 If ux is an optional edge of G such that u ∈ A and x ∈ B,
then NA∪B(u) is a solid clique of G.

Proof. By Lemma 5.1, NA(Hx) = NA(u). By Lemma 4.2, NA(Hx) = NA(u)
is a clique. It is solid because edges with both ends in A are solid. Hence
NA(u) is a solid clique.

By Lemma 5.1 all vertices from NB(u) are adjacent since they correspond
to hyperedges of HB that are included in each other. Therefore, NB(u) is
a clique and it is solid because edges with both ends in B are solid. Hence
NB(u) is a solid clique.

It remains to prove that NA(u) is complete to NB(u) and that all edges
between these two sets are solid. So let y ∈ B and v ∈ A be two neighbors
of u. Note that v /∈ Hx and possibly y = x. If u ∈ Hy, then vy is an edge
because v ∈ NA(u) (and so v ∈ NA[Hy]), and it is a solid edge because v is
not an isolated vertex of Hy. If u /∈ Hy, then by Lemma 5.1, Hy ⊆ Hx. So,
u ∈ NA(Hy) since uy ∈ E(G), and this contradicts u being isolated in Hx.2
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Lemma 5.3 Let C be a cycle of G of length at least 4 with no solid chord.
If C is not a hole then there exist three consecutive vertices x, y, u in C
such that:

- u ∈ A, x, y ∈ B, {u} ⊆ Hy ⊆ Hx and u is an isolated vertex of Hx, or
- u ∈ A′, x, y ∈ B′, {u} ⊆ H ′y ⊆ H ′x and u is an isolated vertex of H ′x.

In particular ux is an optional edge of G and a chord of C.

Proof.
We may assume that C has a chord e for otherwise it is a hole. This

chord cannot be a flat edge of G because a flat edge contains a vertex of
I, so a vertex of degree 2, and it therefore cannot be a chord of any cycle.
Hence, e is an optional edge of G. So, up to symmetry, we may assume that
e = ux with u ∈ A and x ∈ B. By definition of optional edges, u is an
isolated vertex of G[Hx].

Let u′ and y be the two neighbors of u along C. If u′, y ∈ A∪B, then by
Lemma 5.2, u′y is a solid chord of C, a contradiction. So, up to symmetry,
y ∈ A ∪B and u′ ∈ I.

Suppose first that y ∈ A. Since uy ∈ E(G) and u is isolated in Hx, we
have that y ∈ NA(Hx). If follows that xy ∈ E(G), and moreover, xy is a
solid edge since y /∈ Hx. Since x and y are both in C and C has no solid
chord, C visits consecutively u′, u, y and x. Let x′ be the neighbor of x in
C \ y. If x′ ∈ B then Hx ∩Hx′ 6= ∅, and since y is complete to Hx, y has
a neighbor in Hx′ . It follows that yx′ is an edge of G, the edge yx′ is solid,
and is therefore a solid chord of C, a contradiction. Hence x′ ∈ A, and so
since xx′ is an edge, x′ ∈ NA[Hx]. If x′ ∈ Hx, then yx′ is a solid chord of C,
and if x′ ∈ N(Hx), then (since Hx is a module of G[A]) x′u is a solid chord
of C, in each case a contradiction.

Suppose now that y ∈ B. If Hy ⊆ Hx, then xy is an edge that is solid
and hence is an edge of C, so the conclusion of the lemma holds. So we may
assume by Lemma 5.1 that Hx ⊆ Hy. In particular, xy is an edge, and since
it is solid, u, y and x are consecutive along C. Let v be the neighbor of x
in C \ y. If v ∈ B, then Hv ∩Hx 6= ∅, so Hv ∩Hy 6= ∅, showing that yv is
a solid chord of G, a contradiction. Hence, v ∈ A. We have uv /∈ E(G) for
otherwise uv would be a solid chord of G. Hence, v ∈ Hx since vx ∈ E(G)
and Hx is a module of G[A]. So, v ∈ Hy (and hence vy ∈ E(G)) and v is an
isolated vertex of Hy, for otherwise vy would be a solid chord of G.

Now, we have three consecutive vertices y, x, v in C such that: v ∈ A,
y, x ∈ B, {v} ⊆ Hx ⊆ Hy and v is an isolated vertex of Hy. So, the
conclusion of the lemma is satisfied again with these three vertices. 2
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5.2 Blowups and holes

Let G be a twinless odd `-template with an `-partition (A,B,A′, B′, I, w,w′)
A blowup of G is any graph G∗ that satisfies the following:

(a) For every vertex u of G there is a clique Ku in G∗ on ku ≥ 1 vertices
u1, . . . , uku such that uku = u ; for distinct vertices u, v of G, Ku∩Kv =
∅ and V (G∗) =

⋃
u∈V (G) Ku, so V (G) ⊆ V (G∗).

(b) For all vertices u ∈ V (G) and all integers 1 ≤ i ≤ j ≤ ku, in G∗

N [ui] ⊆ N [uj ] (in particular, for all u, v ∈ V (G), G∗[Ku∪Kv] is a half
graph).

(c) If u and v are non-adjacent vertices of G, then Ku is anticomplete to
Kv (in particular uv /∈ E(G∗)).

(d) If uv is a solid edge of G, then Ku is complete to Kv (in particular
uv ∈ E(G∗)).

(e) If uv is a flat edge of G, then u is complete to Kv and v is complete
to Ku (in particular uv ∈ E(G∗)).

(f) If ux is an optional edge of G with u ∈ A and x ∈ B (resp. u ∈ A′ and
x ∈ B′), then u is complete to Kx (in particular uv ∈ E(G∗)).

(g) If ux and uy are optional edges of G with u ∈ A, x, y ∈ B and Hy ( Hx

(resp. u ∈ A′, x, y ∈ B′ and H ′y ( H ′x), then every vertex of Ku with
a neighbor in Ky is complete to Kx.

(h) w (resp. w′) is a universal vertex of G∗[
⋃

u∈A∪B Ku] (resp.
G∗[

⋃
u∈A′∪B′ Ku]).

Observe that G = G∗[V (G)] follows clearly from the definition, so G is
an induced subgraph of G∗. For every vertex u of G, the clique Ku is called
a blown up clique, more specifically the clique blown up from u.

Note that to define the blowup of a graph, it is first needed to fix an
`-partition of it. Also, it should be stressed that the blowup is defined only
for twinless graphs. Hence, in condition (g) of the definition, since G is
twinless, when x 6= y, Hy ( Hx is equivalent to Hy ⊆ Hx because Hx = Hy

would imply that x and y are twins.

Lemma 5.4 A hole C in a blowup of a twinless odd `-template contains at
most one vertex in each blown up clique.
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Proof. Since a hole is triangle-free, C intersects any clique in at most two
vertices. So suppose for a contradiction that some blown up clique Kv

contains two vertices x and y of C. Let x′ be the neighbor of x in C \ y and
y′ be the neighbor of y in C \ x. Since by condition (b) of the definition of
the blowup we have that in G∗, N [x] ⊆ N [y] or N [y] ⊆ N [x], one of xyx′ or
xyy′ is a triangle of C, a contradiction. 2

Lemma 5.5 In a blowup G∗ of a twinless odd `-template G, every hole has
length 2` + 1.

Proof. Let C∗ be a hole in G∗. By Lemma 5.4, it contains at most one
vertex in each blown up clique. Let C be the subgraph of G that is induced
by all vertices v such that some vertex of C∗ is in Kv. By Lemma 5.4,
|V (C∗)| = |V (C)|. By the definition of blowup (specifically conditions (c)
and (d)), C∗ is isomorphic to some graph obtained from C by removing
optional or flat edges of G. Hence, C is a cycle of G with no solid chord. If
C is a hole of G, then since it has the same length as C∗, by Lemma 4.11,
C∗ has length 2` + 1. Hence, we may assume that C has chords, so by
Lemma 5.3, without loss of generality, C contains three consecutive vertices
x, y, u such that: u ∈ A, x, y ∈ B, {u} ( Hy ( Hx and u is an isolated
vertex of Hx. Note that it follows that both ux and uy are optional edges
of G. Because of C∗, the vertex ui of Ku ∩V (C∗) has a neighbor in Ky. So,
by condition (g) of blowups, ui is complete to Kx. Hence, C∗ has a chord,
a contradiction. 2

5.3 Preblowup

Checking that a graph is the blowup of a template is tedious. Here we
provide a simpler notion and prove it is in some sense equivalent.

A preblowup of an odd `-template G with an `-partition
(A,B,A′, B′, I, w,w′) is any graph G∗ obtained from G as follows.
Every vertex u of A ∪ A′ ∪ I is replaced by a clique Ku on ku ≥ 1
vertices such that u ∈ Ku. We denote by A∗ the set

⋃
u∈AKu and use

a similar notation A′∗ and I∗. The set B (resp. B′) is replaced by a
set B∗ (resp. B′∗) of vertices such that B ⊆ B∗ (resp. B′ ⊆ B′∗). So,
V (G∗) = A∗∪B∗∪A′∗∪B′∗∪ I∗. The sets A∗, B∗, A′∗, B′∗, I∗ are disjoint.
Vertices of G are adjacent in G∗ if and only if they are adjacent in G, so
G is an induced subgraph of G∗. Finally, we require that the following
conditions hold (throughout N refers to the neighborhood in G∗):
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(a) For all u ∈ A, N(Ku) ⊆ A∗ ∪B∗ ∪Ku+ where u+ is the neighbor of u
in I and:

1. For every u∗ ∈ Ku, NA(u∗) = NA[u].

2. Every vertex of Ku has a neighbor in Ku+ .

(b) N(B∗) ⊆ A∗ and:

1. If w ∈ B, then there exists w∗ ∈ B∗ that is complete to A∗.

2. If u∗ ∈ B∗, then there exist non-adjacent a, b ∈ A such that u∗

has neighbors in both Ka and Kb.

(i) For all u ∈ I, N(Ku) ⊆ Ka ∪Kb where a and b are the neighbors of u
in G, and:

1. Every vertex u∗ ∈ Ku has at least one neighbor in each of Ka

and Kb.

Conditions (a′) and (b′) analogous to (a) and (b) hold for A′ and B′.

Recall that to blowup (resp. preblowup) a template, one needs to
first fix an `-partition. If this partition is proper, the blowup (resp.
preblowup) is proper. Recall that by Lemma 4.16, a proper `-partition
(A,B,A′, B′, I, w,w′) exists for every twinless odd `-template G (but this
remark will be used only in the next section, so far we just assume the
`-partition we work with is proper).

When G∗ is a preblowup of a template G, the domination score of G
w.r.t. G∗ is (where N refers to the neighborhood in G∗):

s(G,G∗) =
∑

x∈A∪A′∪I
|{x∗ ∈ Kx : N [x∗] ⊆ N [x]}|

Observe that the blowup is defined only for twinless templates while
the preblowup is defined for any template. It is straightforward to check
that a blowup is a particular preblowup. The following is a converse of this
statement.

Lemma 5.6 Let ` ≥ 3 and let G∗ be a proper preblowup of an odd `-template
with k ≥ 3 principal paths. If G∗ ∈ C2`+1, then G∗ is a proper blowup of
a twinless odd `-template G with k principal paths (in particular, G is an
induced subgraph of G∗).
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Proof. Among all the induced subgraphs of G∗ that are odd `-templates and
for which G∗ is a proper preblowup, we suppose that G is one that maximizes
s(G,G∗). We denote by (A,B,A′, B′, I, w,w′) the proper `-partition of G
that is used for its preblowup and by (A∗, B∗, A′∗, B′∗, I∗) the corresponding
partition of the vertices of G∗.

(1) There exist vertices w∗ and w′∗ that are complete to respectively A∗\{w∗}
and A′∗ \ {w′∗}, and such that either w∗ ∈ B∗ and w′∗ ∈ A′∗, or w∗ ∈ A∗

and w′∗ ∈ B′∗.

If w ∈ A, then from the definition of w (see Lemma 4.4), the definition of
A∗ and condition (a1), it follows that w∗ = w is complete to A∗ \ {w∗}. If
w ∈ B, by condition (b1) there exists w∗ ∈ B∗ that is complete to A∗.

The statement about w′∗ holds by symmetry. The last statement comes
from the fact that by Lemma 4.4 exactly one of w,w′ is in A ∪ A′, and the
other one is in B ∪B′. This proves (1).

(2) For every principal path Pu = u . . . u′ of G and u∗ ∈ Ku, there exists in
G∗ a path Pu∗ of length ` − 1 from u∗ to some u′∗ ∈ Ku′ whose interior is
in

⋃
x∈I∩V (Pu) Kx. Moreover, the interior of Pu∗ is anticomplete to V (G∗) \⋃

v∈V (Pu) Kv.

The existence of a path from u∗ to some u′∗ ∈ Ku′ whose interior is in⋃
x∈I∩V (P ) Kx follows from conditions (a), (i), (i1), and (a2) of preblowup.

Its length is `−1 by condition (c) of templates. The statement about its in-
terior follows from conditions (a), (b) and (i) of preblowup. This proves (2).

(3) For all u, v ∈ A such that uv /∈ E(G), Ku is anticomplete to Kv. A
similar statement holds for A′.

Suppose that there exists u∗ ∈ Ku and v∗ ∈ Kv such that u∗v∗ ∈ E(G∗).
By condition (a1) of preblowup, u 6= u∗ and v 6= v∗. Let Pu = u . . . u′

and Pv = v . . . v′ be principal paths. Denote by u+ the neighbor of u in
Pu and by v+ the neighbor of v in Pv. By property ((i)) of a template,
u′v′ ∈ E(G). Hence uPuu

′v′Pvvv
∗u∗u is a cycle C. By conditions (a) and

(a1) of preblowup, the only possible chords in C are u+u∗ and v+v∗. Without
loss of generality, we may assume that u∗u+ ∈ E(G∗) for otherwise C is a
hole of length 2` + 2, a contradiction.

Let Pv∗ be a path of length `− 1 from v∗ to v′∗ as defined in (2). Since
v′∗ ∈ Kv′ and by (a1) applied to A′, v′∗u′ ∈ E(G∗) and v∗Pv∗v

′∗u′Puu
+u∗v∗

is a hole of length 2`, a contradiction.
The result for A′ holds symmetrically. This proves (3).
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(4) For all u, v ∈ A such that uv ∈ E(G), Ku is complete to Kv. A similar
statement holds for A′.

Suppose that there exists u∗ ∈ Ku and v∗ ∈ Kv such that u∗v∗ /∈ E(G∗).
Let Pu∗ = u∗ . . . u′∗ and Pv∗ = v∗ . . . v′∗ be defined as in (2). Observe that
u′∗ ∈ Ku′ and v′∗ ∈ Kv′ . Furthermore u′v′ /∈ E(G) by property ((i)) of
templates. Hence, by (3), u′∗v′∗ /∈ E(G∗).

We claim that there exists a vertex a ∈ (A∪B) \ {u, v} that is adjacent
to both u∗ and v∗. If w∗ 6= u, v, then by (1) and condition (a2), we may
choose a = w∗. Otherwise, up to symmetry, w∗ = u. Since the `-partition of
G is proper, by Lemma 4.17, A contains a universal vertex x distinct from
w∗ = u. If x 6= v, we set a = x. If x = v, then both u and v are universal
vertices of G[A] and we may choose for a any vertex of A \ {u, v}. This
proves our claim.

Now, au∗Pu∗u
′∗w′∗v′∗Pv∗v

∗a is a hole of length 2` + 2, a contradiction.
The result for A′ holds symmetrically. This proves (4).

(5) For all u ∈ I and u1, u2 ∈ Ku, either N [u1] ⊆ N [u2] or N [u2] ⊆ N [u1].

Otherwise, there exists x∗1 ∈ N [u1] \ N [u2] and x∗2 ∈ N [u2] \ N [u1]. Note
that x∗1x

∗
2 /∈ E(G∗) for otherwise, {x∗1, x∗2, u1, u2} induces a C4. It follows

that x∗1 and x∗2 belong respectively to distinct cliques Kx1 and Kx2 , where
x1 and x2 are the two neighbors of u along some principal path P = v . . . v′

of G. Because of x∗1, x∗2 and condition (i1) of preblowup, there exists a path
P ∗ of length ` from some v∗ ∈ Kv to some v′∗ ∈ Kv′ whose interior is in⋃

x∈I∩V (P ) Kx.

Let q 6= v be a vertex of A and Q = q . . . q′ be a principal path of G, and
suppose up to symmetry that qv /∈ E(G). Now, by conditions (i) and (a1)
of preblowup and (1), P ∗, Q and w∗ form a hole of length 2` + 2. This
proves (5).

(6) For all u ∈ I and u∗ ∈ Ku, N [u∗] ⊆ N [u].

Otherwise, by (5), there exists a vertex u∗ ∈ Ku such that N [u] ( N [u∗].
Hence (V (G) \ {u}) ∪ {u∗} induces a subgraph G0 of G∗ and it is easy to
verify that G∗ is a preblowup of G0. This contradicts to the maximality of
s(G,G∗). This proves (6).

By (5), for every u ∈ I, the clique Ku can be linearly ordered by the
inclusion of the neighborhoods as u1, . . . , uku with u = uku by (6) (so, for
1 ≤ i ≤ j ≤ ku, N [ui] ⊆ N [uj ]). From condition (i) of the preblowup it
also follows that, in G∗, u is complete to the cliques associated to its two
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neighbors in G.

(7) For every u ∈ A and u1, u2 ∈ Ku, either N [u1] ⊆ N [u2] or N [u2] ⊆
N [u1]. A similar statement holds for A′.

Otherwise, there exist x1 ∈ N [u1]\N [u2] and x2 ∈ N [u2]\N [u1]. Note that
x1x2 /∈ E(G∗) for otherwise, {x1, x2, u1, u2} induces a C4.

Observe first that by (3) and (4), NA∗ [u1] = NA∗ [u2]. Hence by (a) of
preblowup, x1, x2 ∈ B∗∪Ku+ where u+ is the neighbor of u in the principal
path that contains u. Without loss of generality and since Ku+ is a clique,
x1 ∈ B∗.

By condition (b2), there exist non-adjacent a, b ∈ A such that x1 has
neighbors a∗ ∈ Ka and b∗ ∈ Kb, and by (3) a∗b∗ /∈ E(G∗). Note that a∗, b∗ 6=
u2 because u2x1 /∈ E(G∗). If u2 is complete to {a∗, b∗}, then {u2, a

∗, x1, b
∗}

induces a C4, a contradiction. So, up to symmetry u2a
∗ /∈ E(G). So,

a∗ /∈ Ku and by (4) and (3), a∗u1 /∈ E(G∗). Observe that x2a
∗ /∈ E(G∗) for

otherwise {a∗, x1, u1, u2, x2} induces a C5.
Suppose that x2 ∈ B∗. As above, we can show that x2 has a neighbor

c∗ ∈ A∗ that is anticomplete to {u1, u2, x1}. Note that a∗c∗ /∈ E(G∗) for
otherwise {x1, a

∗, c∗, x2, u2, u1} induces a C6. Let Pa∗ = a∗ . . . a′∗ and Pc∗ =
c∗ . . . c′∗ be defined as in (2).

By (3) and (4) and since a∗c∗ /∈ E(G∗), a′∗c′∗ ∈ E(G∗). So, by conditions
(a), (b) and (i), u1x1a

∗Pa∗a
′∗c′∗Pc∗c

∗x2u2u1 is a hole of length 2` + 4, a
contradiction.

So x2 ∈ Ku+ . Hence by condition (i1) of preblowup, there exists a path
Q of length `− 2 from x2 to some u′∗ ∈ Ku′ . Now x2Qu′∗a′∗Pa∗a

∗x1u1u2x2

is a hole of length 2` + 2, a contradiction.
The result for A′ holds symmetrically. This proves (7).

(8) For all u ∈ A and u∗ ∈ Ku, N [u∗] ⊆ N [u]. A similar statement holds
for A′.

Otherwise, there exists a vertex u∗ ∈ Ku such that N [u] ( N [u∗]. Hence,
(V (G) \ {u}) ∪ {u∗} induces a subgraph G0 of G∗ and it is easy to verify
that G∗ is a preblowup of G0 (that is a template by Lemma 4.14 and whose
partition is proper by (3) and (4)). This contradicts the maximality of
s(G,G∗). The result for A′ holds symmetrically. This proves (8).

By (7), for every u ∈ A ∪ A′, the clique Ku can be linearly ordered by
the inclusion of the neighborhoods as u1, . . . , uku , and by (8) uku = u (so,
for 1 ≤ i ≤ j ≤ ku, N [ui] ⊆ N [uj ]).

(9) If xy is an edge of G[B∗], then either NA∗(x) ⊆ NA∗(y) or NA∗(y) ⊆
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NA∗(x).

Otherwise, there exists u∗ ∈ NA∗(x)\NA∗(y) and v∗ ∈ NA∗(y)\NA∗(x). Note
that u∗v∗ /∈ E for otherwise {u∗, x, y, v∗} induces a C4. So, for some u, v ∈ A,
we have u∗ ∈ Ku and v∗ ∈ Kv. Hence, by (4), uv /∈ E(G). Let Pu∗ =
u∗ . . . u′∗ and Pv∗ = v∗ . . . v′∗ be defined as in (2). So, xu∗Pu∗u

′∗v′∗Pv∗v
∗yx

form a hole of length 2` + 2, a contradiction. This proves (9).

(10) For every x ∈ B∗, there exist non-adjacent u, v ∈ A such that xu, xv ∈
E(G∗).

This follows from condition (b2) of preblowup and from (8). This
proves (10).

Two vertices x, y in B∗ are equivalent if NA(x) = NA(y).

(11) If x and y are equivalent vertices of B∗, then xy ∈ E(G∗).

If xy /∈ E(G∗), then x, y and two of their neighbors provided by (10) induce
a C4. This proves (11).

Vertices of B∗ are partitioned into equivalence classes. By (11), each
equivalence class is a clique X, and by (9), vertices of X can be linearly
ordered according to the inclusion of neighborhoods in A∗. In each such a
clique X we choose a vertex x maximal for the order and call B1 the set of
these maximal vertices. For every x ∈ B1, we denote by Kx the clique of B∗

of all vertices equivalent to x. Observe that if w∗ ∈ B, then w∗ is a maximal
vertex of its clique. Hence, we can set w∗ ∈ B1.

So, for every u ∈ B1, the clique Ku can be linearly ordered by the
inclusion of the neighborhod in A∗ as u1, . . . , uku with u = uku (so, for
1 ≤ i ≤ j ≤ ku, NA∗(ui) ⊆ NA∗(uj)).

Statements similar to (9), (10), (11) hold for B′∗ and we define B′1 as
well.

We set G1 = G∗[A∪B1 ∪A′ ∪B′1 ∪ I] and claim that (A,B1, A
′, B′1, I) is

an `-pretemplate partition of G1. Since G1[A∪I∪A′] is exactly G[A∪I∪A′],
conditions (c), (d), (e) and (f) hold. Adding the fact that NG1(B1) ⊆ A∗ ∩
V (G1) = A by condition (b) of preblowup, condition (a) for a pretemplate
holds and symmetrically also condition (b). Now condition (g) holds because
w∗ and w′∗ are complete to respectively A∪B1 and A′∪B′1. By (10), the last
two conditions for a pretemplate are fulfilled by (A,B1, A

′, B′1, I). Hence,
by Lemma 4.14, G1 is a an odd `-template. It is twinless by Lemma 4.15.
We also notice that by construction w∗ and w′∗ belong to G1. Furthermore,
by (1), w∗ (respectively w′∗) is complete to A \ {w∗} (respectively A′ \
{w′∗}). From the definition of a template it is easy to conclude that w∗
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(respectively w′∗) is universal in G1[A∪B1] (respectively G1[A′∪B′1]). Hence
(A,B1, A

′, B′1, I, w
∗, w′∗) is a proper `-partition of G1.

We now prove that G∗ is a proper blowup of G1.
By the definition of a preblowup and by (11), for all u ∈ V (G1), Ku is a

clique and V (G∗) =
⋃

u∈V (G1) Ku

(12) If u, v ∈ V (G1) and uv /∈ E(G1), then Ku is anticomplete to Kv.

Suppose u, v ∈ V (G1) and uv /∈ E(G1). If u ∈ I or v ∈ I, the conclusion
follows directly from condition (i) of preblowup. So we may assume up to
symmetry that u ∈ A∪B1. By conditions (a) and (b) of preblowup, we may
assume v ∈ A ∪B1. If u, v ∈ A, then the result follows from (3), so we may
assume that v ∈ B1.

Now suppose for a contradiction that there exist u∗ ∈ Ku and v∗ ∈ Kv

such that u∗v∗ ∈ E(G1). By the choice of vertices in B1, for all v∗ ∈ Kv,
N [v∗] ⊆ N [v]. So u∗v ∈ E(G1). For the same reason or by (8), for all u∗ ∈
Ku, N [u∗] ⊆ N [u]. Hence uv ∈ E(G1), a contradiction. This proves (12).

(13) If uv is a solid edge of G1 then Ku is complete to Kv.

Otherwise, let u∗ ∈ Ku and v∗ ∈ Kv such that u∗v∗ /∈ E(G). Since uv is a
solid edge, up to symmetry, u, v ∈ A or u, v ∈ B1 or u ∈ A, v ∈ B1 and in
this last case u is not an isolated vertex of G[Hv].

By (4) the case where u and v are in A cannot happen. Assume then
that v ∈ B1. By Lemma 4.6, there exist a, b ∈ Hv (and hence in A) that
are not adjacent. Assume that u is also in B1. Since u and v are adjacent,
by (9) we may assume without loss of generality that Hv ⊆ Hu and so a
and b belong to Hu too. Then, by the definition of Ku and Kv, we get a C4

induced by {u∗, v∗, a, b}, a contradiction. So u should be in A, and to avoid
a C4 induced by {u∗, v∗, a, b}, u∗ should be non-adjacent to at least one of
a and b, say a. In particular, a 6= u. Then, by (4), ua /∈ E(G1). So u does
not belong to N(Hv) and since uv is an edge of G1, we get that u ∈ Hv.
Since uv is solid, u has at least one neighbor in Hv, and it is not adjacent
to a ∈ Hv. Hence, as Hv is anticonnected, there exist non-adjacent vertices
c, d ∈ Hv such that uc /∈ E(G1) and ud ∈ E(G1). Now u∗Pu∗u

′∗c′Pccv
∗du∗

is a hole of length 2` + 2, a contradiction again.
This proves (13).

(14) For all u ∈ V (G1) and 1 ≤ i ≤ j ≤ ku, N [ui] ⊆ N [uj ].

The result follows from how vertices are ordered after the proof of (5) (ver-
tices in I), (7) (vertices in A or A′) and (11) (vertices in B1 or B′1). This
proves (14).
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(15) If uv is a flat edge of G1, then u is complete to Kv and v is complete
to Ku.

By definition of a flat edge, either u and v are in I or one is in I and the
other is in A or in A′. The result follows from (6), (8), and conditions (a2)
(applied to A or A′) and (i1) of the preblowup. This proves (15).

(16) If ux is an optional edge of G1 with u ∈ A and x ∈ B1 (resp. u ∈ A′

and x ∈ B′1), then u is complete to Kx.

The result follows from the definition of Kx when x ∈ B1. This proves (16).

(17) If ux and uy are optional edges with u ∈ A, x, y ∈ B1 and Hy ( Hx

(resp. u ∈ A′, x, y ∈ B′1 and H ′y ( H ′x), then every vertex of Ku with a
neighbor in Ky is complete to Kx.

Otherwise, let u∗ be a vertex in Ku that has a neighbor y∗ in Ky and a
non-neighbor x∗ in Kx. Since Hx and Hy are not disjoint, xy is a solid edge
of G1 and by (13), x∗y∗ ∈ E(G1).

Since x and y are not equivalent, there exists a vertex a such that a ∈
NA(y) \ NA(x) or a ∈ NA(x) \ NA(y). In the first case, by definition of a
template, a ∈ A \ NA[Hx]. Then since Hy ( Hx and Hx is a module of
A we get that a is anticomplete to Hx and hence to Hy. So a /∈ NA(y), a
contradiction; we may then conclude that a ∈ NA(x) \NA(y)

By definition of the cliques in B, x∗a ∈ E(G∗) and y∗a /∈ E(G∗). There-
fore, to avoid a C4 induced by {x∗, y∗, u∗, a}, it should be that u∗a /∈ E(G∗).

Now aPaa
′u′∗Pu∗u

∗y∗x∗a is a hole of length 2`+ 2 a contradiction. This
proves (17).

(18) w∗ (resp. w′∗) is a universal vertex of G∗[
⋃

u∈A∪B1
Ku] (resp.

G∗[
⋃

u∈A′∪B′1
Ku]).

By (1), w∗ is complete to A∗ \ {w∗} and so to
⋃

u∈AKu \ {w∗}. Further-
more, from the definition of G1 we know that w∗ is complete to B1 \ {w∗}.
If w∗ ∈ B1, since all edges between vertices in B1 are solid, by (13), w∗ is
complete to B∗\{w∗}. Similarly, if w∗ ∈ A, by (13) and (16), we get that w∗

is complete to B∗. In both cases w∗ is a universal vertex of G∗[
⋃

u∈A∪B Ku].
The proof for w′∗ is symmetric. This proves (18).

From all the claims above, G∗ satisfies all conditions to be a proper
blowup of G1. 2

36



6 Graphs in C2`+1 that contain a pyramid

The goal of this section is to prove the the following.

Lemma 6.1 Let ` ≥ 3 be an integer. If G is a graph in C2`+1 and G
contains a pyramid, then one of the following holds:

(a) G is a proper blowup of a twinless odd `-template;

(b) G has a universal vertex;

(c) G has a clique cutset.

The rest of this section is devoted to the proof of Lemma 6.1. So from
here on ` ≥ 3 is an integer and G is a graph in C2`+1 that contains a pyra-
mid Π. By Lemma 3.10, the three paths of Π have length `. By Lemma 4.5,
Π is an odd `-template. Hence, we may define an integer k and a sequence
F0, F1, F2 of induced subgraphs of G as follows.

• k is the maximum integer such that G contains an odd `-template with
k principal paths. Observe that by Lemma 4.15, G in fact contains a
twinless template with k principal paths, because twins can be elim-
inated from templates by deleting hyperedges with equal vertex-set
while there are some.

• In G, pick a proper blowup F1 of a twinless odd `-template F0 with k
principal paths. Note that F0 exists and the proper `-partition needed
for the proper blowup exists by Lemma 4.16.

• Suppose that F0 and F1 are chosen subject to the maximality of the
vertex-set of F1 (in the sense of inclusion). Note that possibly F0 is not
a maximal template in the sense of inclusion, it can be that a smaller
template leads to a bigger blowup (but F0 has k principal paths).

• F2 is obtained from F1 by adding all vertices of G\F1 that are complete
to F1.

Lemma 6.2 V (F2) \ V (F1) is a (possibly empty) clique that is complete to
F1.

Proof. Otherwise, G contains a C4. 2

We now introduce some notation. We denote by (A,B,A′, B′, I, w,w′)
the proper `-partition that is used to blow up F0. When u is a vertex of
F0, we denote by Ku the clique of F1 that is blown up from u. We set
A∗ =

⋃
u∈AKu. We use a similar notation B∗, A′∗, B′∗ and I∗.
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6.1 Technical lemmas

We now prove lemmas that sum up several structural properties of G.

Lemma 6.3 If u ∈ A ∪ A′ ∪ I ∪ {w,w′} and v ∈ NV (F0)(u), then u is
complete to Kv.

Proof. We prove this lemma using the conditions from the definition of
blowups. If u ∈ {w,w′}, then the result follows from condition (h). If
u ∈ A ∪ A′, then the conclusion follows from conditions (d), (e) and (f). If
u ∈ I, then the conclusion follows from condition (e). 2

Very often, Lemma 6.3 will be used in the following way. Suppose there
exists a principal path P = u . . . u′ of F0. Suppose there exists a vertex
x of P and x∗ ∈ Kx. Then by Lemma 6.3 and condition (c) of blowups,
{x∗}∪ (V (P ) \ {x}) induces a path of F1. If y 6= x is a vertex of P and y∗ ∈
Ky, then {x∗, y∗}∪(V (P )\{x, y}) might fail to induce a path of F1, because
it is possible that xy ∈ E(G) while x∗y∗ /∈ E(G). But under the assumption
that x∗y∗ ∈ E(G) or xy /∈ E(G), we do have that {x∗, y∗} ∪ (V (P ) \ {x, y})
induces a path of F1. Several variant of this situation will appear soon and
we will simply justify them by refering to Lemma 6.3.

When u is a vertex in A, we denote by Pu the unique principal path of
F0 that contains u. Its end in A′ is then denoted by u′. We denote by u+

the neighbor of u in Pu. We denote by u++ the neighbor of u+ in Pu \ u.
Note that u+ ∈ I and u++ ∈ I ∪A′ (u++ ∈ A′ if and only if ` = 3).

For any distinct u, v ∈ A, from the definition of templates, exactly one of
V (Pu)∪V (Pv)∪{w} or V (Pu)∪V (Pv)∪{w′} induces a hole that is denoted
by Cu,v. Such a hole is called a principal hole.

Note that there are two kinds of principal holes: those that contain w,
and those that contain w′. Recall that by Lemma 4.11, every hole of a
template contains two principal paths plus an extra vertex, but it may fail
to be a principal hole (because it may fail to contain w or w′). Though we
do not use this information formally, it is worth noting that by Lemma 6.3,
when C is a principal hole,

⋃
v∈V (C) Kv induces a ring. But when C is a

non-principal hole, it may happen that
⋃

v∈V (C) Kv does not induce a ring
(because there might be in C an optional edge uv with u ∈ A and v ∈ B, and
after the blowup process, there might be no vertex in Kv that is complete
to Ku).

Lemma 6.4 If u ∈ V (F0) and u∗ ∈ Ku, then u∗ has two neighbors in
V (F0) \Ku that are not adjacent.
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Proof. If u ∈ I, then let P be the principal path that contains u. By
Lemma 6.3, u∗ is adjacent to the two neighbors of u in P .

If u ∈ A ∪ A′, say u ∈ A up to symmetry, then we claim that u has a
neighbor z in A∪B. This is clear if u is not isolated in A and otherwise we
set z = w. By Lemma 6.3, z and u+ are non-adjacent neighbors of u∗.

If u ∈ B, then by the definition of a template, Hu contains two non
adjacent vertices a and b that are neighbors of u. By Lemma 6.3, a and b
are both adjacent to u∗. 2

Lemma 6.5 If uv is an edge of F0[A∪A′∪I∪{w,w′}], then some principal
hole of F0 goes through uv.

Proof. If at least one of u, v is in I then uv is an edge of a principal path
and we know that this principal path belongs to a principal hole. Else, since
A ∪ {w} is anticomplete to A′ ∪ {w′}, up to symmetry both u and v are in
A or u = w ∈ B and v ∈ A.

If u, v ∈ A then Cu,v is a principal hole containing uv.
If u = w ∈ B and v ∈ A : since w is in B, G[A] has no universal vertex

and there exists a ∈ A which is not adjacent to v. Now w,Pv, Pa form a
principal hole containing the edge uv. 2

Lemma 6.6 If K is a clique of F0, K∗ =
⋃

v∈K Kv and D is a connected
induced subgraph of G \ F2 such that NV (F1)(D) ⊆ K∗, then NV (F1)(D) is a
clique.

Proof. For suppose not. This means that there exists u∗, v∗ ∈ K∗ and
xu, xv ∈ D such that u∗v∗ /∈ E(G) and xuu

∗, xvv
∗ ∈ E(G) (possibly xu =

xv). Since D is connected, there exists a path P in D from xu to xv.
Suppose that u∗, xu, v∗, xv and P are chosen subject to the minimality of
P . It follows that u∗xuPxvv

∗ is a path, and recall that by assumption its
interior is anticomplete to F1 \K∗.

Since u∗v∗ /∈ E(G), u∗ and v∗ are in different blown-up cliques. Denote
by Ku and Kv the blown-up cliques such that u∗ ∈ Ku and v∗ ∈ Kv. By
hypothesis, uv ∈ K and so uv ∈ E(G). Since u∗v∗ /∈ E(G), by condition (d)
of blowups, uv is not a solid edge of G.

If uv is a flat edge of F0, then by Lemma 6.5 a principal hole C goes
through uv. Note that apart from u and v, no vertex of C is in K since
K is a clique. By Lemma 6.3, in G, ({u∗, v∗}) ∪ V (C)) \ {u, v} induces a
path Q of length 2`. So P and Q form a hole of length at least 2` + 2, a
contradiction.
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If uv is an optional edge of F0, say with u ∈ A and v ∈ B, then u ∈ Hv,
and there exists a in Hv such that au /∈ E(F0). Therefore, Pu, Pa and
v form a hole C∗. By condition (f) of blowups (if va is optional), or by
condition (d) (if va is solid), a is complete to Kv. By Lemma 6.3 it follows
that ({u∗, v∗})∪V (C∗)) \ {u, v} induces a path Q of length 2`. So P and Q
form a hole of length at least 2` + 2, a contradiction again. 2

When C is a hole of G, a vertex v of V (G) \ V (C) is minor w.r.t. C if
NV (C)(v) is included in a 3-vertex path of C. A vertex of V (G) \V (C) that
is not minor w.r.t. C is major w.r.t. C.

Lemma 6.7 If x ∈ V (G) \V (F2) and C is a principal hole of F0, then x is
minor w.r.t. C.

Proof. Suppose up to symmetry that w ∈ V (C) and suppose C = Cu,v.
If x is major w.r.t. C, then C and x form a theta or a wheel that is not
a twin-wheel. So by Lemma 3.10, x and C form a universal wheel. Let
Pt = t . . . t′ be a principal path where t 6= u, v. If t is complete to {u, v},
then xt ∈ E(G) for otherwise {t, u, v, x} induces a C4. Hence x has at
least 4 neighbors in Cu,t, so by Lemma 3.10, x is complete to Pt. If t is not
complete to {u, v}, say tu /∈ E(G), then x again has at least 4 neighbors in
Cu,t because w ∈ V (Cu,t), so again x is complete to Pt.

We proved that x is complete to all principal paths, so to I ∪A∪A′. Let
y ∈ B ∪ B′. By definition of a template y has two neighbors a and b, both
in A or both in A′, that are non-adjacent. Therefore a, b, y and x form a
C4, unless x is adjacent to y. This proves that x is complete to B ∪B′, and
so to V (F0).

Let z be a vertex of F0 and z∗ ∈ Kz. By Lemma 6.4, there exists
a, b ∈ V (F0) such that z∗a, z∗b ∈ E(G) and ab /∈ E(G), so since there is no
C4 in G it should be that xz∗ ∈ E(G). This proves that x is complete to
F1. Hence, x ∈ V (F2), a contradiction. 2

Lemma 6.8 Let a and b be two non-adjacent vertices of some principal hole
C of F0. If some vertex x of V (G) \ V (F2) has neighbors in both Ka and
Kb, then a and b have a common neighbor c in C, x is adjacent to c, and x
is anticomplete to every Kd such that d ∈ V (C) \ {a, b, c}.

Proof. Let a∗ ∈ Ka and b∗ ∈ Kb be two neighbors of x. Since ab /∈ E(G), by
Lemma 6.3, {a∗, b∗} ∪ V (C) \ {a, b} induces a hole C∗. Since x is adjacent
to a∗ and b∗, by Lemma 3.10, x has another neighbor c in C∗ (and in fact in
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C since c 6= a∗, b∗). If c is not adjacent to a∗ and b∗, then x is major w.r.t.
C∗, so by Lemma 3.10, C∗ and x form a universal wheel. It follows that x
is major w.r.t. C, a contradiction to Lemma 6.7.

We proved that a and b have a common neighbor c in C and that x is
adjacent to c. Suppose for a contradiction that x has a neighbor d∗ ∈ Kd

where d ∈ V (C) \ {a, b, c}. By the same argument as above, since x has
neighbors in Kd and Kc, c and d must have a common neighbor in C, and
this common neighbor must be a or b, say a up to symmetry. So, x has
neighbors in Kd and Kb while b and d have no common neighbors in C, so
we may reach a contradiction as above. 2

6.2 Connecting vertices of F1

We here explain how lemmas of Subsection 4.4 are extended from F0 to F1.

Lemma 6.9 If u∗ ∈ A∗ ∪ B∗ and v∗ ∈ A′∗ ∪ B′∗, then there exists in F1 a
path P ∗ of length ` − 1, ` or ` + 1 from u∗ to v∗ that contains the interior
of a principal path.

More specifically:

• If u∗ ∈ A∗ and v∗ ∈ A′∗, then P ∗ has length `− 1 or `.

• If u∗ ∈ A∗ and v∗ ∈ B′∗, or if u∗ ∈ B∗ and v∗ ∈ A′∗, then P ∗ has
length ` or ` + 1.

• If u∗ ∈ B∗ and v∗ ∈ B′∗, then P ∗ has length ` + 1.

Proof. Let u and v be such that u∗ ∈ Ku and v∗ ∈ Kv. Let P be a path
in F0 like in Lemma 4.13 from u to v (so P contains the interior of some
principal path Q). By Lemma 6.3, {u∗, v∗} ∪ V (P ) \ {u, v} induces a path
of the same length as P that contains the interior of Q. 2

Lemma 6.10 If u∗ ∈ B∗ and v∗ ∈ B′∗, then there exist in G two paths P ∗

and Q∗ from u∗ to v∗ both of length at most ` + 1 such that P ∗ (resp. Q∗)
contains the interior of a principal path P (resp. Q), and P 6= Q.

Proof. Let u and v be such that u∗ ∈ Ku and v∗ ∈ Kv. Let P = u . . . v
and Q = u . . . v be as in the conclusion of Lemma 4.12. By Lemma 6.3,
{u∗, v∗}∪V (P ) \ {u, v} and {u∗, v∗}∪V (Q) \ {u, v} are the desired paths.2
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Lemma 6.11 If some vertex x of G is adjacent to the ends of a path P of
length at most ` + 1 of G \ x, then x is complete to V (P ).

Proof. Otherwise, a shortest cycle in G[V (P ) ∪ {x}] has length at least 4
and at most `+3. Since ` ≥ 3 implies `+3 < 2`+1, this is a contradiction.2

6.3 Attaching a vertex to F1

In this subsection, we show that for all vertices x of G \ F2, NV (F1)(x) is
a clique (see Lemma 6.15). In Figure 6, several situations where NV (F1)(x)
is not a clique are represented and we explain informally how they lead to
a contradiction. The first figure is an odd 3-template F0 with its vertices
w and w′, and here F1 = F0. Then, vertex x1 can be included in Ky1 , a
contradiction to the maximality of F1 (see Lemma 6.12). The vertex x2

cannot be included in an existing blown up clique, but it can be added to F0

to yield a bigger template (see Lemma 6.12). The vertex x3 can be added
to Ku6 (see Lemma 6.13). The vertex x4 can be added to Ku1 , but at the
expense of modifying the template (see Lemma 6.13). The vertex x5 can be
added to Ki3 (see Lemma 6.14).

The vertex x6 is kind of pathological because it cannot be added to any
blown-up clique, and does not increase the template. The idea for this one
is to observe that {x6}∪V (F0)\{y1, u

+
6 } induces a template and that y1 can

be incorporated in the set Ku6 and Kx6 = Ku+
6
∪ {x6} (see Lemma 6.15).

Note that in this case, we increase the size of the blowup while decreasing
the size of the template.

In each case, we prove that adding x yields a preblowup of F0, so that
the maximality of F1 is contradicted.

Lemma 6.12 If x ∈ G \ F2 has no neighbor in I∗, then NV (F1)(x) is a
clique.

Proof. Suppose for a contradiction that NV (F1)(x) is not a clique.

(1) We may assume that NV (F1)(x) ⊆ A∗ ∪B∗.

If x has neighbors in both A∗ ∪B∗ and A′∗ ∪B′∗, then consider a path P as
in Lemma 6.9 from a neighbor of x in A∗∪B∗ to a neighbor of x in A′∗∪B′∗.
By Lemma 6.11, x is complete to V (P ). This is a contradiction since x has
no neighbor in I∗. Hence x does not have neighbors in both A∗ ∪ B∗ and
A′∗ ∪B′∗, and our claim follows up to symmetry. This proves (1).

42



w

w′

y1 y2
x1 x2

u6

x3

x5

x4

i3

u1

i3

y1

u6

x6

u+
6

u++
6

Figure 6: Vertices attaching to an odd 3-template
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(2) There exist non-adjacent a, b ∈ A such that x has neighbors in both Ka

and Kb.

By Lemma 6.6, since NV (F1)(x) is not a clique, there should exist two
non-adjacent vertices a, b ∈ V (F0) such that x has a neighbor a∗ ∈ Ka and
a neighbor b∗ ∈ Kb. By (1), a, b ∈ A ∪B.

If a, b ∈ A, then our conclusion holds, so we may assume that b ∈ B.
If a ∈ A, then since ab /∈ E(G), Hb is anticomplete to a. Let P ∗a be the

path induced by {a∗} ∪ (V (Pa) \ {a}). Let v ∈ Hb. We may assume that
xv /∈ E(G) for otherwise our claim holds (with a and v). Note that since
ab, av /∈ E(G), by (c) of blowup, a∗b∗, a∗v /∈ E(G). Now, the paths P ∗a , Pv,
a∗xb∗v form a hole of length 2`+ 2, a contradiction. Hence, we may assume
a ∈ B.

Since ab /∈ E(G), by Lemma 4.7, {a} ∪Ha is anticomplete to {b} ∪Hb.
We may assume that x is anticomplete to Ha ∪ Hb for otherwise we may
apply the proofs above. Hence, for u ∈ Ha and v ∈ Hb, the two paths Pu

and Pv together with the path ua∗xb∗v form a hole of length 2` + 3. This
proves (2).

Now the sets Ku for all u ∈ A ∪ A′ ∪ I, B∗ ∪ {x} and B′∗ form a
preblowup of F0. All conditions are easily checked. In particular x satisfies
condition (b) by (1) and (b2) by (2)). So, by Lemma 5.6, G[V (F1)∪{x}] is a
proper blowup of some `-template with k principal paths. This contradicts
the maximality of F1. 2

Lemma 6.13 If there exist x ∈ V (G) \ V (F2) and u ∈ A such that x has
neighbors in both Ku and Ku+ and is anticomplete to Ku++, then NV (F1)(x)
is a clique.

Proof. Suppose for a contradiction that NV (F1)(x) is not a clique.

(1) x is anticomplete to A′∗ ∪B′∗ ∪ (I∗ \Ku+).

If x has a neighbor t∗ in some Kt such that t ∈ (A′∪I)\{u+}, then note that
t 6= u++ by assumption. Let C be a principal hole that contains t and u.
There is a contradiction to Lemma 6.8 because by (c) of blowup u, u+ and
t cannot be consecutive along C.

It remains to prove that x is anticomplete to B′∗. Otherwise, x has a
neighbor t ∈ B′∗. Consider a path P from t to the neighbor of x in Ku as
in Lemma 6.9 and let Q be the principal path whose interior is contained in
P . By Lemma 6.11, x is complete to V (P ). This is a contradiction because
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if Q = Pu then x is anticomplete to Ku++ , and if Q 6= Pu then we already
proved that x is anticomplete to (A′∗ ∪ I∗) \Ku+ . This proves (1).

From here on, u∗ and u+∗ are neighbors of x in respectively Ku and Ku+ .
Note that x has a neighbor y∗ ∈ Ky for some y ∈ A∪B \ {u}, for otherwise,
by (1), NV (F1)(x) ⊆ Ku ∪Ku+ and by Lemma 6.6, NV (F1)(x) is a clique, a
contradiction.

(2) If w ∈ B, then x has a neighbor w∗ ∈ B∗ that is complete to A∗.

We may assume that x is non-adjacent to w, for otherwise by condition (h)
of blowups, we may choose w∗ = w. In particular y∗ 6= w.

We claim that we may assume that y∗ has a non-neighbor v∗ such that
v∗ ∈ Kv, v ∈ A and v 6= u.

If y∗ ∈ B∗, this is because we may assume that y∗ has a non-neighbor
v∗ ∈ A∗ (so v∗ ∈ Kv for some v ∈ A) for otherwise we choose w∗ = y∗ from
the start. It remains to check that u 6= v. This is because if u = v, then
there exists a path Q of length 1, 2 or 3 from x to v∗ with interior in Ku+

(through xv∗, u+, u+∗ or u+u+∗). Hence, xQv∗wy∗x is a hole of length 4, 5
or 6, a contradiction.

If y∗ ∈ A∗, then u∗y∗ ∈ E(G) for otherwise, {x, y∗, w, u∗} induces a
C4. By condition (c) of blowups, uy ∈ E(G). It follows that none of u
and y is isolated in G[A], so the existence of v∗ follows from Lemma 4.17
that guarantees the existence of isolated vertices in G[A] since w ∈ B by
assumption.

So, our claim is proved. Note that xv∗ /∈ E(G) for otherwise {x, y∗, w, v∗}
induces a C4. Now either xy∗wv∗v+Pvv

′w′u′Puu
++u+∗x is a hole of length

2` + 3 (in case u′v′ /∈ E(G)) or xy∗wv∗v+Pvv
′u′Puu

++u+∗x is a hole of
length 2` + 2 (in case u′v′ ∈ E(G)). In both cases we get a contradiction.
This proves (2).

(3) NA(x) \ {u} = NA(u).

If there exists v ∈ NA(x) \ NA[u], then vPvv
′u′Puu

++u+∗xv is a hole of
length 2`, a contradiction.

Conversely, suppose there exists v ∈ NA(u) \ NA(x). We claim that
there exists a path Q of length 2 from x to some z ∈ NA(u) with interior in
(A∗ ∪B∗) \ (Ku ∪Kz).

If w ∈ B, then we may choose z = v and Q = xw∗z by (2).
Otherwise, w ∈ A. So, by Lemma 4.17, G[A] contains at least two

universal vertices. So, let t ∈ A \ {u, v} be adjacent to u and v (if u and
v are the universal vertices of G[A], t can be any vertex of A \ {u, v} and
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otherwise choose t to be a universal vertex).
If x has a neighbor t∗ in Kt, then we choose Q = xt∗v. So, suppose x is

anticomplete to Kt (in particular, y 6= t). If x has a neighbor v∗ in Kv, then
we choose Q = xv∗t. So, suppose x is anticomplete to Kv (in particular,
y 6= v). Now, by the way we chose v and t, one of v or t is a universal vertex
of G[A] and therefore a universal vertex of G[A∗ ∪ B∗]. So, we may choose
Q = xy∗v or Q = xy∗t.

So, our claim is proved. Hence z′PzzQxu+∗u++Puu
′w′z′ is a hole of

length 2` + 2, a contradiction. This proves (3).

(4) x is complete to Ku.

Suppose there exists r ∈ Ku such that rx /∈ E(G). We claim that x and r
have a common neighbor z in (A∗ ∪B∗) \Ku.

If w ∈ B, then rw∗ ∈ E(G) by (2) so we may choose z = w∗. If w ∈ A,
then by Lemma 4.17, some vertex z ∈ A \ {u} is a universal vertex of G[A],
and by (3), z is adjacent to x. So, z exists as claimed.

If xu+ ∈ E(G) then {r, z, u+, x} induces a C4, a contradiction. Hence
xu+ /∈ E(G). Now by condition (e) of blowups, either {x, z, r, u+∗} induces
a C4 or {x, z, r, u+, u+∗} induces a C5. This proves (4).

Now, the sets Kv for all v ∈ (A \ u)∪ I ∪A′, Ku ∪ {x}, B∗ and B′∗ form
a preblowup of F0. All conditions are easy to check. In particular, Ku∪{x}
is a clique by (4), conditions (a), (b) and (i) follows from (1), condition (a1)
from (3), condition (b1) from (2) and condition (a2) from our assumptions.

Hence, by Lemma 5.6 G[V (F1)∪{x}] is a proper blowup of some twinless
odd `-template with k principal paths that is an induced subgraph of G a
contradiction to the maximality of F1. 2

Lemma 6.14 If x ∈ V (G) \ V (F2) has no neighbor in B∗ ∪ B′∗, then
NV (F1)(x) is a clique.

Proof. Suppose for a contradiction that NV (F1)(x) is not a clique. By
Lemma 6.12, x has neighbors in I∗. So x has a neighbor in a clique blown
up from an internal vertex of some principal path Pv = v . . . v′. Let a (resp.
b) be the vertex of Pv closest to v (resp. to v′) along Pv and such that x has
a neighbor in Ka (resp. Kb).

Suppose first that a = b (so a ∈ I). Then x has a neighbor in some
Ky with y ∈ V (F0) \ {a}, and since by assumption x has no neighbor in
B∗ ∪ B′∗, y ∈ A ∪ A′ ∪ I. So, y and a are non-adjacent members of some
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principal hole. By Lemma 6.8, x has a neighbor in some clique Kd where d
is adjacent to a = b, a contradiction to a = b.

Suppose now that ab ∈ E(G). If both a and b are internal vertices of
Pv, then as in the previous paragraph, we may deduce from Lemma 6.8
that NV (F1)(x) ⊆ Ka ∪ Kb. So, by Lemma 6.6, NV (F1)(x) is a clique, a
contradiction. It follows that at least one of a or b is an end of Pv. Up to
symmetry, we may assume that a = v and b = v+. Note that x is then
anticomplete to Kv++ . Hence, by Lemma 6.13, NV (F1)(x) is a clique, a
contradiction.

Hence, a 6= b and ab /∈ E(G). So, by Lemma 6.8, a and b have a common
neighbor u in Pv. So, a, u and b are consecutive along Pv (in particular,
u ∈ I).

(1) x is complete to Ku.

Otherwise, let u∗ ∈ Ku be a non-adjacent to x. There exists a path Qa of
length 2 or 3 from u∗ to x with interior in Ka (either xa∗u∗, or xa∗au∗ for
some a∗ in Ka). There exists a similar path Qb. So, Qa and Qb form a hole
of length 4, 5 or 6, a contradiction. This proves (1).

(2) x is anticomplete to V (F1) \ (Ka ∪Ku ∪Kb).

This follows from Lemma 6.8 and from the fact that x is anticomplete to
B∗ ∪B′∗. This proves (2).

(3) x has neighbors in each of Ka, Kb.

This follows from the definition of a and b. This proves (3).

Now the sets Kv for all v ∈ (A∪A′∪I)\{u}, Ku∪{x}, B∗ and B′∗ form
a preblowup of F0. All conditions are easily checked, in particular Ku ∪{x}
is a clique by (1), it satisfies condition (i) by (2) and condition (i1) by (3).

Hence by Lemma 5.6, G[V (F1)∪{x}] is a proper blowup of some twinless
odd `-template with k principal paths that is an induced subgraph of G. This
contradicts the maximality of F1. 2

Lemma 6.15 For all vertices x of G \ F2, NV (F1)(x) is a clique.

Proof. Suppose for a contradiction that NV (F1)(x) is not a clique.

(1) There exists a principal path Pu = u . . . u′ of F0 such that x is anticom-
plete to I∗ \

⋃
v∈V (Pu) Kv.

Otherwise, there exist two principal paths P and Q of F0, a in the interior
of P and b in the interior of Q such that x has neighbors in both Ka and Kb.
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Note that P and Q are in some principal hole C of F0. By Lemma 6.8, a
and b have a common neighbor c in C. This contradicts a and b being in
the interior of distinct principal paths. This proves (1).

(2) We may assume that x has no neighbor in B′∗ and has a neighbor y∗ ∈
Ky where y ∈ B.

Suppose that x has a neighbor u∗ ∈ B∗ and a neighbor v∗ ∈ B′∗. Let P and
Q be like in Lemma 6.10. By Lemma 6.11, x is complete to both V (P ) and
V (Q). In particular, x has neighbors in the interior of two distinct principal
paths, a contradiction to (1). So, up to symmetry, we may assume that x
has no neighbor in B′∗. Hence, by Lemma 6.14, x has neighbors in B∗. This
proves (2).

(3) x is adjacent to u, u+ and has a neighbor in Ku++. Moreover, x is
anticomplete to (A∗ ∪ I∗ ∪A′∗ ∪B′∗) \ (Ku ∪Ku+ ∪Ku++).

By Lemma 6.12, x has at least one neighbor in I∗ and by (1), such a neighbor
is in a clique blown up from an internal vertex of Pu. So, let v be the vertex
of Pu closest to u′ along Pu such that x has a neighbor v∗ ∈ Kv. So v 6= u
and v ∈ A′ ∪ I. We set Q = y∗uPuv if y∗u ∈ E(G) and Q = y∗wuPuv
otherwise. Let Q∗ be the path induced by {v∗} ∪ (V (Q) \ {v}) and observe
that Q∗ has length at most ` + 1. By Lemma 6.11, x is complete to Q∗.
If v /∈ {u+, u++}, then x has neighbors in at least 4 cliques blown up from
vertices of Pu and this contradicts Lemma 6.8. If v = u+, x is adjacent to u
(since x is complete to Q∗) and anticomplete to Ku++ , so by Lemma 6.13,
NV (F1)(x) is a clique, a contradiction. So, v = u++, meaning that x is
adjacent to u and u+, and is anticomplete to I∗ \ (Ku+ ∪Ku++) by (1).

If x has neighbors in some Ka for a ∈ A\{u} then x and Cu,a contradict
Lemma 6.8. Hence x is anticomplete to A∗ \ {Ku}.

By (2), x is anticomplete to B′∗. It remains to check that x is anticom-
plete to A′∗ \ Ku++ . So, suppose x has a neighbor z∗ in some Kz where
z ∈ A′ \ {u++}. Then a principal hole that contains z and u contradicts
Lemma 6.8. This proves (3).

Let u++∗ be a neighbor of x in Ku++ and P ∗u be the path induced by
(V (Pu) \ {u++}) ∪ {u++∗}.
(4) For every z ∈ B such that x is adjacent to some z∗ in Kz we have
NA(z) = NA[u] (in particular NA(y) = NA[u]).

Suppose there exists v ∈ NA(z) \NA[u]. By condition (d) or (f) of blowups,
vz∗ ∈ E(G). So, by (3), xz∗vPvv

′u′P ∗uu
++∗x is a hole of length 2`, a con-
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tradiction. This proves that NA(z) ⊆ NA[u]. In particular, u has at least
one neighbor in Hz, so by condition (e5) of templates, uz ∈ E(G).

Suppose there exists v ∈ NA(u) \ NA(z) (so z and v are not universal
vertices of G[A ∪ B]). By condition (c) of blowups, vz∗ /∈ E(G). By (3),
xv /∈ E(G). Hence xd ∈ E(G) for every universal vertex d of G[A ∪ B], for
otherwise xz∗dvPvv

′w′u′P ∗uu
++∗x is a hole of length 2` + 2.

Now, by (3) and Lemma 4.17, w ∈ B. So, there exists an isolated vertex
c ∈ A. Again by (3), xc /∈ E(G) and xwcPcc

′u′P ∗uu
++∗x is a hole of length

2`, a contradiction. This proves (4).

(5) NF1(x) ⊆ Ku++ ∪Ku+ ∪Ku ∪Ky

By (3) NF1(x) ⊆ Ku++ ∪ Ku+ ∪ Ku ∪ B∗. Suppose there exists z∗ ∈ Kz

such that xz∗ ∈ E(G) and z ∈ B \ {y}. By (4), NA(z) = NA[u] and
NA(y) = NA[u]. So, by Lemma 4.15, y and z are twins of F0, a contradiction.
This proves (5).

(6) y 6= w.

If y = w, then w ∈ B. So by Lemma 4.17, there exist isolated vertices in
G[A]. But by (4), NA(w) = NA[u] so u is a universal vertex of G[A], so
G[A] has a universal vertex and an isolated vertex, a contradiction. This
proves (6).

(7) NKy(x) is complete to NA[u].

By (4), NA(y) = NA[u]. The result follows from conditions (d) and (f) of
blowups. This proves (7).

(8) x is complete to Ku+.

By (3), ux ∈ E(G). Suppose for a contradiction that there exists u+∗ ∈
Ku+ non-adjacent to x. By condition (e) of blowups, u+∗u, u+∗u++ ∈
E(G). Hence xu++ /∈ E(G) for otherwise {x, u++, u+∗, u} induces a C4.
But now, either {x, u++∗, u+∗, u} induces a C4 (if u+∗u++∗ ∈ E(G)) or
{x, u++∗, u++, u+∗, u} induces a C5 (if u+∗u++∗ /∈ E(G)), a contradiction.
This proves (8).

(9) Ku ∪Ky is a clique.

Since by (4) NA(y) = NA[u], u cannot be an isolated vertex of Hy. Hence,
uy is a solid edge. So, by condition (d) of blowups, Ku is complete Ky. This
proves (9).

We define B0 = B∗ \NKy(x).
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Now the sets Kv for all v ∈ (A∪I∪A′)\{u, u+}, Ku∪NKy(x), Ku+∪{x},
B0 and B′∗ form a preblowup of F0. All conditions are easy to check. In
particular, Ku ∪ NKy(x) is a clique by (9), Ku+ ∪ {x} is a clique by (8),
conditions (a), (b) and (i) follows from (5), condition (a1) from (7), condition
(a2) holds because x is complete to NKy(x), condition (i1) follows from (3)
and condition (b1) holds because (6) implies that if w ∈ B then w ∈ B0.

Hence, by Lemma 5.6, G[V (F1)∪{x}] is a proper blowup of some twinless
odd `-template with k principal paths that is an induced subgraph of G, a
contradiction to the maximality of F1. 2

6.4 Attaching a component

Lemma 6.16 If D is a connected component of G \ F2, then N(D) is a
clique.

Proof. Suppose that N(D) is not a clique. By Lemma 6.2, NV (F1)(D) is not
a clique. So, there exist a and b in D such that NV (F1)(a)∪NV (F1)(b) is not
a clique, and a path P from a to b in D. We choose a and b subject to the
minimality of the length of P . By Lemma 6.15, a 6= b (so P has length at
least 1).

We set S∗a = NV (F1)(a) and S∗b = NV (F1)(b). By Lemma 6.15, S∗a and S∗b
are both cliques. Note that possibly S∗a ∩ S∗b 6= ∅. We denote by int(P ) the
set of the internal vertices of P . We set S∗◦ = NV (F1)(int(P )).

We set Sa = {t ∈ V (F0) : S∗a ∩Kt 6= ∅}. We define Sb and S◦ similarly.
Note that Sa is possibly not included in S∗a, and the same remark holds for
Sb and S◦.

(1) There exist non-adjacent x∗a ∈ S∗a and x∗b ∈ S∗b . Moreover, for all such
x∗a and x∗b , x∗aaPbx∗b is a path.

The existence of x∗a and x∗b follows from the definition of a and b, and
x∗aaPbx∗b is a path because of the minimality of P . This proves (1).

(2) S∗a ∪ S∗◦ and S∗b ∪ S∗◦ are cliques (in particular, S∗◦ is a (possibly empty)
clique of F1 that is complete to both S∗a \ S∗◦ and S∗b \ S∗◦).

If S∗a ∪ S∗◦ is not a clique, then let x∗y∗ be a non-edge in S∗a ∪ S∗◦ . Since S∗a
is a clique by Lemma 6.15, we may assume y∗ ∈ S∗◦ . By definition of S∗◦ , y

∗

has a neighbor in int(P ), and then x∗, y∗ and some subpath of P contradict
the minimality of P .

The proof is similar for S∗b ∪ S∗◦ . This proves (2).
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Note that while S∗a ∪ S∗b is not a clique by assumption, it might be that
Sa ∪ Sb is a clique (for instance when Sa = {u}, Sb = {v} and uv is an
optional edge of F0).

(3) Sa ∪ S◦ and Sb ∪ S◦ are cliques of F0 (in particular, Sa and Sb are
(non-empty) cliques of F0 and S◦ is a (possibly empty) clique of F0 that is
complete to both Sa \ S◦ and Sb \ S◦).

If Sa ∪ S◦ is not a clique, then let xy be a non-edge of Sa ∪ S◦. Since
x ∈ Sa ∪ S◦, there exists x∗ ∈ Kx ∩ (S∗a ∪ S∗◦) and y∗ ∈ Ky ∩ (S∗a ∪ S∗◦). By
condition (c) of blowups, since xy /∈ E(G), Kx is anticomplete to Ky. So,
x∗y∗ /∈ E(G), a contradiction to (2).

The proof is similar for Sb ∪ S◦. This proves (3).

(4) If a hole C of F1 contains two non adjacent vertices x ∈ S∗a and y ∈ S∗b ,
then P and C form a pyramid ΠC,x,y. More specifically, C contains a vertex
z such that either:

• S∗a ∩ V (C) = {x, z}, S∗b ∩ V (C) = {y} ; the apex of ΠC,x,y is y, its
triangle is axz, and its three paths, all of length `, are the path from
x to y in C \ z, the path from y to z in C \ x, and the path from a to
y obtained by adding the edge by to P ; or

• S∗b ∩ V (C) = {y, z}, S∗a ∩ V (C) = {x} ; the apex of ΠC,x,y is x, its
triangle is byz, and its three paths, all of length `, are the path between
y and x in C \ z, the path from z to x in C \ y, and the path from b to
x obtained by adding the edge ax to P .

Note that since S∗a is a clique, S∗a ∩ V (C) contains x and at most one other
vertex which should be adjacent to x. The same holds for S∗b and y.

Let us assume that S∗◦ ∩ V (C) 6= ∅. Then by (2), there exists a unique
vertex t ∈ S∗◦ ∩ V (C), S∗a ∩ V (C) ⊆ {x, t} and S∗b ∩ V (C) ⊆ {y, t}. Hence
C and P form a proper wheel centered at t, a contradiction to Lemma 3.10.
So, S∗◦ ∩ V (C) = ∅.

If a and b have a common neighbor t in C, then x and y are the two
neighbors of t in C and so, C and P form a proper wheel centered at t, again
a contradiction to Lemma 3.10. So the neighborhoods of a and b in C are
disjoint.

From this, we obtain that C and P form a theta, a prism or a pyramid.
So, by Lemma 3.10, C and P form a pyramid whose three paths have length
`. This can happen only if we are in one of the two cases described in (4).
This proves (4).
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(5) Sa ∩ I = Sb ∩ I = ∅.

Otherwise, up to symmetry, Sa ∩ I 6= ∅. So, there exists a principal path
Pu = u . . . u′ of F0 whose interior intersects Sa. By (3), Sa is a clique, so
1 ≤ |Sa| ≤ 2 and Sa ⊆ V (Pu). We now break into three cases.

Case 1: Sb ⊆ V (Pu).
By (1) there exist vertices xa and xb of Pu such that there exist non

adjacent vertices x∗a ∈ S∗a ∩Kxa and x∗b ∈ S∗b ∩Kxb
.

We first show that there exist such xa and xb that are not adjacent.
Otherwise, and since Sa, Sb ⊆ V (Pu), we have that Sa ∪ Sb = {xa, xb}. By
replacing xa and xb by x∗a and x∗b in any principal hole C containing Pu we
obtain a path PC of length 2` and V (PC) ∪ V (P ) induces a hole of length
at least 2` + 3, a contradiction. So we may assume that xa and xb are not
adjacent.

Let C be any principal hole of F0 that contains Pu. By Lemma 6.3,
{x∗a, x∗b} ∪ (V (C) \ {xa, xb}) induces a hole C∗. Let us apply (4) to C∗,
x∗a and x∗b . We obtain that the shortest path in C∗ between x∗a and x∗b
has length `. However x∗a and x∗b both belong to the path of length ` − 1,
contained in C∗, which is obtained from Pu by replacing xa by x∗a and xb by
x∗b , a contradiction.

Case 2: Sb contains a vertex of some principal path Pv distinct from Pu. Up
to symmetry, since Sb is a clique (by (3)), we assume that b is anticomplete
to Kv′ .

Let y be the vertex of Pu closest to u′ such that a has a neighbor y∗ ∈ Ky.
Let z be the vertex of Pv closest to v such that b has a neighbor z∗ ∈ Kz.
Possibly y = u′ and z = v, but y 6= u since a has a neighbor in I∗ by
assumption, and z 6= v′ since b is anticomplete to Kv′ . In particular, yz /∈
E(G) and by condition (c) of blowups, y∗z∗ /∈ E(G).

Let C be the principal hole of F0 that contains Pu and Pv. By Lemma 6.3,
{y∗, z∗} ∪ (V (C) \ {y, z}) induces a hole C∗. Applying (4) to C∗, y∗ and
z∗, we obtain that P has length ` − 1 and that y∗ and z∗ are at distance `
on C∗. Hence y∗ and z∗ have no common neighbor in F0 and S◦ = ∅ by
(3). We denote by P ∗u the path obtained from Pu by replacing y by y∗ and
by P ∗v the path obtained from Pv by replacing z by z∗. Let P ∗ be the path
vP ∗v z

∗bPay∗P ∗uu
′ (in case z = v one should replace vP ∗v z

∗ by z∗, and in case
y = u′ one should replace y∗P ∗uu

′ by y∗). The length of P ∗ is at least ` + 1.
Consider now any principal path Pr for r ∈ A \ {u, v}. Depending on

the adjacencies of r with u and v, one of rvP ∗u′r′Prr or rwvP ∗u′r′Prr or
rvP ∗u′w′r′Prr or rwvP ∗u′w′r′Prr (with possibly u′ replaced by y∗ when
u′ = y) is a cycle of length at least 2`+ 2 with at most one chord that must
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be br (observe that ar′ cannot be an edge since Sa ⊆ V (Pu)). The only
possibility which avoids a hole of forbidden length is if z = v, y = u′ and
br, u′r′, vr are edges of G. This proves that v is complete to A \ {u, v} and
u′ is complete to A′ \ {u′, v′}.

Hence, G[A] has at most one isolated vertex (namely u), and G[A′] has at
most one isolated vertex (namely v′). This contradicts (A,B,A′, B′, I, w,w′)
being a proper `-partition of F0.

Case 3: we are neither in Case 1 nor in Case 2.
Since we are not in Case 1, Sb contains a vertex of F0 \ Pu, and since

we are not in Case 2, this vertex must be in B ∪ B′. Up to symmetry, we
assume that Sb∩B 6= ∅. Since Sb is a clique (by (3)), Sb∩ (B′∪A′∪I) = ∅.
Since we are not in Case 2, Sb ∩ (A \ {u}) = ∅. Hence, Sb ⊆ B ∪ {u} and
there exists x ∈ B ∩ Sb. Let x∗ ∈ Kx ∩ S∗b .

Let ua be the vertex of Sa which is the closest to u in Pu and let u′a be
the vertex of Sa which is the closest to u′ in Pu. Notice that, since Sa is a
clique (by (3)), either ua = u′a or uau

′
a is an edge. So it may be that ua = u

or u′a = u′ but since Sa ∩ I 6= ∅ we know that ua 6= u′ and u′a 6= u. Let
now u∗a ∈ Kua ∩S∗a and u′∗a ∈ Ku′a ∩S

∗
a. We denote by P ∗u the path obtained

from Pu by replacing ua by u∗a and, in case ua 6= u′a, by replacing u′a by u′∗a .
Notice that if u∗a 6= u′∗a then u∗au

′∗
a ∈ E(G) since S∗a is a clique.

Suppose that u′a = u+, where u+ is the neighbor of u in Pu. Since Hx

contains at least two vertices there exists v ∈ Hx \ {u}. By (3) and the fact
that P contains at least one edge, depending on the adjacency of u and v,
one of aPbx∗vPvv

′u′P ∗uu
′∗
a a or aPbx∗vPvv

′w′u′P ∗uu
′∗
a a is a hole of length at

least 2`+2, a contradiction. Hence from now on, we may assume that ua 6= u
(hence a is not adjacent to u) and that if ua = u+ then u′a 6= ua. Now by (3)
we get that S◦ = ∅.

Suppose that x is adjacent to u in F0. Depending on whether b is ad-
jacent to u not, one of u∗aaPbuP ∗uu

∗
a or u∗aaPbx∗uP ∗uu

∗
a is a hole, implying

that P has length at least `. Let us choose any vertex v ∈ Hx distinct
from u (since Hx has cardinality at least 2, such a vertex do exist). Then
aPbx∗vPvv

′(w′)u′Puu
′∗
a a is a hole of length at least 2` + 2, a contradiction.

Hence, from here on, we may assume that no vertex in B ∩ Sb is adjacent
to u.

So x is not adjacent to u in F0. Hence x∗ 6= w, u 6= w and w /∈ Sb.
Then to avoid a C4 bx∗wub, b is not adjacent to u and u∗aaPbx∗wuP ∗uu

∗
a is

a hole implying that P has length at least ` − 1. So, for any v ∈ Hx, the
hole x∗bPau′∗a P

∗
uu
′v′Pvvx

∗ (in case u′a = u′ one should replace u′∗a P
∗u′ by

u′∗a ) has length at least 2` + 2, a contradiction.
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This proves (5).

(6) We may assume that Sa ⊆ A ∪B and Sb ⊆ A′ ∪B′.

Otherwise, by (5) and since Sa and Sb are cliques (by (3)), we may assume
that Sa, Sb ⊆ A ∪B.

We claim that there exist non-adjacent vertices x∗ ∈ S∗a and y∗ ∈ S∗b , and
a path Q∗ from x∗ to y∗ of length at least 2`− 1 that forms a hole together
with P . This is a contradiction because it implies that P has length at
most 0. So, to conclude the proof, it remains to prove the existence of Q∗.

By (1), there exist non-adjacent x∗a ∈ S∗a and x∗b ∈ S∗b . Let xa and xb be
the vertices of F0 such that x∗a ∈ Kxa and x∗b ∈ Kxb

. Note that possibly xaxb
is an edge, but this happens only if xaxb is an optional edge of F0 (since
x∗ax

∗
b is not an edge). We break into three cases.

Case 1: xa, xb ∈ A.
Then xaxb /∈ E(G) (otherwise it would be a solid edge of F0), so from

the definition of templates, there exists a path Q of length 2`−1 from xa to
xb whose interior is in I ∪ A′. By Lemma 6.3, {x∗a, x∗b} ∪ (V (Q) \ {xa, xb})
induces the path Q∗ that we are looking for. Note that Q∗ and P form a
hole by (2), our assumption that Sa, Sb ⊆ A ∪B, and (3).

Case 2: xa ∈ A and xb ∈ B.
Whether xaxb is an optional edge or a non-edge, an immediate conse-

quence of the definition of a template is that there exists a vertex z ∈ Hxb

that is non-adjacent to xa. We may furthermore assume that z /∈ Sb since
else we are in the same situation as in Case 1. By definition of a template,
there exists a path Q0 of length 2`− 1 between x and z whose interior is in
I ∪A′. Then xbzQ0xa is a path of length 2` and by replacing in this path xa
and xb by respectively x∗a and x∗b , we obtain by Lemma 6.3 a path Q∗ of the
same length. Note that Q∗ and P form a hole by (2), (3), our assumption
that Sa, Sb ⊆ A ∪B, z /∈ Sb and z /∈ Sa (since Sa is a clique).

Case 3: xa, xb ∈ B.
Then xaxb /∈ E(G) (otherwise it would be a solid edge of F0). Hence,

by Lemma 4.7, Hxa ∪ {xa} is anticomplete to Hxb
∪ {xb}. So, let ua ∈ Hxa

and ub ∈ Hxb
, there exists then a path Q0 = ua . . . ub of length 2`− 1 with

interior in I ∪ A′. By Lemma 6.3, Q∗ = x∗auaQ0ubx
∗
b is also a path, it is of

length 2` + 1. We may assume that ua /∈ Sa and ub /∈ Sb since else we are
in the same situation as in Case 2. Now, by (2) and (3), Q∗ and P form a
hole of length at least 2` + 4.

This proves (6).

54



(7) S◦ = ∅.

By (6) and (3), if S◦ 6= ∅, then ` = 3, and there exists a unique principal
path Pu = u . . . u′ of F0 such that Sa = {u}, Sb = {u′} and S◦ = {c}
where c is the unique internal vertex of Pu. Let u∗ ∈ Ku ∩ S∗a, c∗ ∈ S∗◦ and
u′∗ ∈ Ku′ ∩ S∗b . Observe that by (2) c∗u∗, c∗u′∗ ∈ E(G).

Let Pv = v . . . v′ be a principal path distinct from Pu and suppose up to
symmetry that uv ∈ E(G). Now by (3), Pv, P , u∗, u′∗, w′ and c∗ form a
proper wheel centered at c∗, a contradiction to Lemma 3.10. This proves (7).

(8) P has length ` − 1, or P has length ` − 2 and we may assume that
Sa ∩A = ∅.

By (1) and (6), consider non-adjacent x∗ ∈ S∗a and y∗ ∈ S∗b where x∗ ∈
Kx ∩ S∗a and y∗ ∈ Ky ∩ S∗b for x ∈ Sa ∩ (A ∪B) and y ∈ Sb ∩ (A′ ∪B′).

If x ∈ A and y ∈ A′, then let C be a principal hole that contains x and
y. By Lemma 6.3, {x∗, y∗} ∪ (V (P ) \ {x, y}) induces a hole C∗. We may
apply (4) to C∗, x∗ and y∗. It follows that P has length `−1. By symmetry
we may therefore assume from here on that Sa ∩A = ∅.

Let y′∗ be a vertex in S∗b which is the closest to x∗ in F1. By Lemma 6.9,
there exists a path Q in F1 from x∗ to y′∗ of length ` or ` + 1. From our
assumption on y′∗ we get that Q and P form a hole (since S◦ = ∅ by (7)).
Therefore, if Q has length `, then P has length ` − 1 and if Q has length
` + 1, then P has length `− 2. This proves (8).

We may now conclude the proof.
If P has length `− 1, then we set A0 = A∪ {a}, A′0 = A′ ∪ {b} and I0 =

I ∪ int(P ). We claim that (A0, B,A′0, B
′, I0) is an `-pretemplate partition

of G[A0 ∪ B ∪ A′0 ∪ B′ ∪ I0]. All conditions are easily checked to hold (in
particular conditions (a), (b) and (g) are satisfied because by (6), a (resp. b)
has a neighbor in G[A∪B] (resp. G[A′∪B′]), condition (e) holds by (7) and
conditions (h) and (i) hold because they hold in F0). Then, by Lemma 4.14,
G contains an odd `-template with k + 1 principal paths, a contradiction to
the maximality of k.

So, by (8), P has length `− 2 and we may assume that Sa ∩A = ∅ and
Sa∩B 6= ∅ (recall that by (6), Sa ⊆ A∪B and Sb ⊆ A′∪B′). Let us choose
x ∈ Sa ∩B such that Hx is maximal (note that x is unique because Sa ∩B
is a clique and F0 is twinless). Let x∗ ∈ Kx ∩ S∗a. We set A0 = A ∪ {x∗},
B0 = B \ Sa, A′0 = A′ ∪ {b} and I0 = I ∪ int(P ) ∪ {a}. Note that the path
x∗aPb has length `− 1 and has interior in I0. We break into two cases.

Case 1: b has a neighbor in A′ ∪B′∗.
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We claim that in that case (A0, B0, A
′
0, B

′∗, I0) is an `-pretemplate par-
tition of G[A0 ∪ B0 ∪ A′0 ∪ B′∗ ∪ I0]. All conditions are easily checked to
hold (in particular condition (g) is satisfied for A0 ∪ B0 because if x = w,
then x∗ is complete to (A0 ∪ B0) \ {x∗}, and otherwise, by the maximality
of Hx, w ∈ A0 ∪ B0, condition (g) is satisfied for A′0 ∪ B′∗ because b has a
neighbor in A′ ∪B′∗ and by the rules of the blowup, conditions (a), (b), (h)
and (i) hold because they hold in F0 and by the rules of the blowup). Then,
by Lemma 4.14, G contains an odd `-template in with k+1 principal paths,
a contradiction to the maximality of k.

Case 2: b has no neighbor in A′ ∪B′∗.
Then, by (6) there exists x′∗ ∈ Kx′ ∩ S∗b for some x′ ∈ A′.
Let A′1 = (A′0 ∪ {x′∗}) \ {x′}. If w′ ∈ B′ we set B′1 = {w′} and else we

set B′1 = ∅. We claim that (A0, B0, A
′
1, B

′
1, I0) is an `-pretemplate partition

of G[A0 ∪B0 ∪A′1 ∪B′1 ∪ I0].
Most conditions are easily checked to hold as in the previous case. Notice

that conditions (g) and (i) hold because x′∗ is by definition adjacent to b
and by the rules of the blowup, G[A′1 \ {b}] is isomorphic to G[A′0 \ {b}] and
x′∗ is adjacent to w′. Then, by Lemma 4.14, G contains an odd `-template
in with k + 1 principal paths, a contradiction to the maximality of k. 2

6.5 End of the proof

We may now conclude the proof of Lemma 6.1. If G \ F1 is empty, then
conclusion (a) holds. If G \ F1 is non-empty and G \ F2 is empty, then
conclusion (b) holds. Otherwise, we consider a connected component D of
G \ F2 and apply Lemma 6.16. We then see that G has a clique cutset, so
conclusion (c) holds.

7 Proof of Theorem 7.1

Theorem 7.1 Let ` ≥ 3 be an integer. If G is a graph in C2`+1 then one of
the following holds:

(a) G is a ring of length 2` + 1;

(b) G is a proper blowup of a twinless odd `-template;

(c) G has a universal vertex or

(d) G has a clique cutset.
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Proof. By Lemma 3.10, G contains no prism no theta and no proper wheel.
Also, clearly G contains no C4 and no C5. Hence, by Theorem 3.13, we may
assume that G contains a pyramid for otherwise one of the conclusions (a),
(c) or (d) holds. The result then follows from Lemma 6.1. 2

8 Even templates

8.1 Even `-template partitions

For an integer ` ≥ 4, an even `-template partition of a graph G is a partition
of the vertex-set of G into five sets A, B, A′, B′ and I satisfying the following
conditions.

(a) A = AK ∪ AS where AK = {v1, . . . , vk}, AS = {vk+1, . . . , vk+s} and
k + s ≥ 3.

(b) A′ = A′K ∪A′S where A′K = {v′1, . . . , v′k} and A′S = {v′k+1, . . . , v
′
k+s}.

(c) For each i ∈ {1, . . . , k}, vi and v′i are linked by a path of G of length
`− 1 and for each i ∈ {1, . . . , s}, vk+i and v′k+i are linked by a path of
G of length `− 2. These k + s paths are vertex disjoint and they are
called the principal paths of the partition.

(d) I is the set of all internal vertices of the principal paths, every vertex
in I has degree 2 in G.

(e) Both AK and A′K are cliques of G and both AS and A′S are stable sets
of G. For i ∈ {1, . . . , k} and j ∈ {1, . . . , s}, exactly one of vivk+j and
v′iv
′
k+j is an edge. Furthermore G[A] and hence G[A′] are threshold

graphs.

(f) There exists a laminar hypergraph H on vertex set {v1, . . . , vk+s} such
that:

- every hyperedge X of H is an anticonnected module of G[A] of
cardinality at least 2 and

- if G[A] is not connected then at least one hyperedge of H contains
all vertices of A.

(g) There exists a laminar hypergraphH′ on vertex set {v′1, . . . , v′k+s} such
that:
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- every hyperedge X ′ of H′ is a module of G[A′] of cardinality at
least 2 and

- if G[A′] is not connected then least one hyperedge of H′ contains
all vertices of A′.

(h) B = {vX : X hyperedge of H}, B′ = {v′X : X hyperedge of H′}.
The set of edges of G incident to vertices in B∪B′ is defined as follows:

(i) for every vX , vY ∈ B, vXvY ∈ E(G) if and only if X ∩ Y 6= ∅,

(j) for every v′X , v′Y ∈ B′, v′Xv′Y ∈ E(G) if and only if X ∩ Y 6= ∅,

(k) for every vi ∈ A, vX ∈ B, vivX ∈ E(G) if and only if vi ∈ NG[A][X],

(l) for every v′i ∈ A′, v′X ∈ B′, v′iv
′
X ∈ E(G) if and only if v′i ∈ NG[A′][X].

The following notation is convenient.

Notation: For every vertex x ∈ B such that x = vX where X is a hyperedge
of H, we set Hx = X. Similarly, for every vertex x ∈ B′ such that x = v′X
where X is a hyperedge of H′, we set H ′x = X.

We now list some properties of even `-template partitions that follow
directly from the definition.

(i) G[A] and G[A′] are threshold graphs such that, - A = AK ∪ AS and
A′ = A′K ∪ A′S , - G[AK ] and G[A′K ] are complete graphs having the
same number of vertices, - G[AS ] and G[A′S ] are complement of com-
plete graphs having the same number of vertices, - the subgraph of
G[A] induced by the edges between AK and AS is isomorphic to the
complement of the subgraph of G[A′] induced by the edges between
A′K and A′S .

(ii) For all x ∈ B, Hx is a module of G[A] and G[Hx] is anticonnected. Also
for all x ∈ B′, H ′x is a module of G[A′] and G[H ′x] is anticonnected.

(iii) G[B] is isomorphic to the line graph of the hypergraph H on vertex
set A and hyperedge set {Hx : x ∈ B}. Also G[B′] is isomorphic to
the line graph of the hypergraph H′ on vertex set A′ and hyperedge
set {H ′x : x ∈ B′}. Hence G[B] and G[B′] are quasi-threshold graphs
by Theorem 3.4.

(iv) There is an edge between vi ∈ A and x ∈ B if and only if vi ∈ NA[Hx],
and there is an edge between v′i ∈ A′ and x ∈ B′ if and only if v′i ∈
NA′ [H

′
x].
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By the fact that G[A] and G[A′] are threshold graphs in even and odd
template partitions, by Properties (ii) and (iv) of even template partitions
(which are the same as Properties (ii) and (iv) of odd templates) and con-
ditions (f) and (g) of even template partitions, we have the following lemma
whose proof is similar to the one of Lemma 4.4.

Lemma 8.1 There exist vertices w and w′ that are universal vertices in
respectively G[A ∪B] and G[A′ ∪B′].

Lemma 8.2 For an integer ` ≥ 4, every theta Θ such that Θ ∈ C2` has
an even `-template partition, every prism Σ such that Σ ∈ C2` has an even
`-template partition.

Proof. Since Θ ∈ C2`, its three paths have length `. Let x and y be the
common two extremities of these paths, let A and A′ be respectively the
set of neighbors of x and y and let I be the set of vertices of Θ that are
not in A ∪A′ ∪ {x, y}. It is easy to verify that (A, {x}, A′, {y}, I, x, y) is an
even `-template partition. Similarly all three paths of Σ have length `− 1.
Let A be the set of the vertices v1, v2, v3 of one of the triangles and A′ be
the set of vertices v′1, v

′
2, v
′
3 of the other triangle. It is easy to verify that

(A,∅, A′,∅, V (Σ) \ (A ∪A′), v1, v
′
1) is an even `-template partition. 2

Due to the similarities in odd and even template partitions as pointed
out above we also get the following results similar to Lemmas 4.6, 4.7 and
4.8 with the same proofs.

Lemma 8.3 If x ∈ B (resp. x ∈ B′), then Hx (resp. H ′x) is the unique
anticomponent of G[NA(x)] (resp. G[NA′(x)]) that contains at least two ver-
tices.

Lemma 8.4 If x, y ∈ B (resp. x, y ∈ B′) are such that xy /∈ E(G), then
Hx ∪ {x} (resp. H ′x ∪ {x}) is anticomplete to Hy ∪ {y} (resp. H ′y ∪ {y}).

Lemma 8.5 Every vertex of G has degree at least 2 and every vertex of
B ∪B′ has degree at least 3.

We may also extendH into a hypergraphHA with vertex-set A by adding
to its edge-set the hyperedge Hv = NA[v] ∩ {u ∈ A : u ≤G[A] v} for every
vertex v ∈ A. Similarly we extend H′ into a hypergraph H′A′ . The following
lemma has the same proof as Lemma 4.10.
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Lemma 8.6 HA is a laminar hypergraph and G[A∪B] is isomorphic to its
line graph (in particular, G[A ∪ B] is a quasi-threshold graph and therefore
a chordal graph). A similar statements holds for H′A′ and G[A′ ∪B′].

8.2 Even `-templates

We will now need more notion and notation.
Given an even `-template partition of G, we define a hypergraph HG

whose vertex set is {k + 1, k + 2, . . . k + s} and whose hyperedges are sets of
indices of the vertices of AS∪AS′ in hyperedges of HA∪HA′ . More formally,
E(HG) = EA ∪ EA′ where

- EA = {{i : vi ∈ H ∩AS} : H hyperedge of HA s.t. H ∩AS 6= ∅}
- EA′ = {{i : vi ∈ H ∩A′S} : H hyperedge of HA′ s.t. H ∩A′S 6= ∅}.
Notice that HG may contain distinct hyperedges containing the same set

of vertices.

A circular sequence C = (j1, e1, j2, ..., jt, et, j1), where the ji’s are distinct
vertices of HG and the ei’s are distinct hyperedges of HG, is said to be a
hyper cycle of length t of HG if

• each ji belongs to ei−1 and ei (where et+1 = e1) and to no other
hyperedge of C,

• any two distinct hyperedges of C that belong both to EA or both to
EA′ are disjoint.

We notice that by definition each ei contains ji and ji+1 and no other
vertex of C, hence any two consecutive hyperedges ei and ei+1 of C have a
non empty intersection and none is included in the other. So, since HA and
HA′ are both laminar hypergraphs, the hyperedges of C belong alternately
to EA and EA′ . In particular the length of C is even.

For an integer ` ≥ 3 and a graph G, a strong even `-template partition
of G is an even `-template partition (A,A′, B,B′, I) of G, such that HG

contains no hyper cycle of length greater than 2.
A graph G which has a strong even `-template partition is called an even

`-template. We will denote by (A,B,A′, B′, I, w,w′) an even `-template
G with strong even `-template partition (A,B,A′, B′, I) such that w is a
universal vertex of G[A ∪ B] and w′ is a universal vertex of G[A′ ∪ B′] (by
Lemma 8.1, such w and w′ do exist).
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Lemma 8.7 Let G be an even `-template and (A,A′, B,B′, I) be a strong
even `-template partition of G. Every hole H of G contains two principal
paths of G and either

- these two principal paths have length `− 1 and they induce H,

- one principal path has length ` − 1, the other has length ` − 2 and H
contains exactly one more vertex which belongs to AK ∪B ∪A′K ∪B′,

- both principal paths have length ` − 2, H contains exactly two more
vertices, one in AK ∪B and the other in A′K ∪B′.

In all cases H has length 2`, and so G ∈ C2`.

Proof. Let H be a hole of G. By Lemma 8.6, G[A ∪ B] contains no P4

and no C4, so H cannot contain only vertices of A ∪ B, and similarly, it
cannot contain only vertices of A′ ∪B′. So H must contain vertices of some
principal path, and hence it contains an even number of principal paths.

In case H contains two principal paths of length ` − 1 then their end-
points are linked by two disjoint edges (by the definition of an even template
partition). So these paths form a hole of length 2` and H contains no other
principal path.

Assume now that H contains exactly one path Pu = u . . . u′ of length
`−1 and at least one path Pv = v . . . v′ of length `−2, for some u ∈ AK and
v ∈ AS . By the definition of an even template partition, there exists exactly
one edge between Pu and any principal path of length `−2, hence H cannot
contain three such paths and should hence contain exactly one, namely Pv.
Up to symmetry, we may assume that uv /∈ E(G) and then the hole H is
made of the path uPuu

′v′Pvv of length 2` − 2 and a path Q = u . . . v of
G[A ∪B]. By Lemma 8.6, Q has length at most 2 and since uv /∈ E(G), we
get that Q = ubv for some b ∈ A∪B. So H has length 2` and since AS is a
stable set in G[A] we have b ∈ AK ∪B as claimed.

It remains to consider the case where all principal paths contained in H
have length `−2. Assume that H contains t ≥ 3 principal paths P1, P2, . . . Pt

associated to some vj1 , vj2 , . . . vjt ∈ AS (note that since t is even, then t ≥
4). By the definition of an even template partition, there exists no edge
connecting these paths. Since by Lemma 8.6 there is no P4 in G[A ∪ B]
and in G[A′ ∪ B′], without loss of generality we may assume that H =
vj1P1v

′
j1
b1v
′
j2
P2vj2b2vj3 , . . . v

′
jt
Ptvjtbtvj1 where bi’s with odd index belong to

A′K ∪B′ and those with even index belong to AK ∪B. Hence, to each bi we
may associate the hyperedge ei of HG corresponding to Hbi ∈ HA∪HA′ . We
claim that C = (j1, e1, j2, ..., jt, et, j1) is a hyper cycle of HG. Assume there
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exists in C an hyperedge el 6= ei−1, ei such that ji ∈ el. So, up to symmetry,
vji ∈ Hbl and then by the definition of an even template, H would contain
a chord vjibl, a contradiction. So the first condition for being a hyper cycle
is satisfied by C. Assume now, up to symmetry, that there exist ei, el ∈ HA

that are not disjoint. Then by the definition of an even template partition,
H would contain a chord bibl, a contradiction again. Hence the second
condition should be satisfied and C is a hyper cycle of HG, a contradiction
to the fact that (A,A′, B,B′, I) is a strong even `-template partition of a
graph G. So, we may now conclude that H contains exactly two principal
paths of length `−2 and two more vertices b1 ∈ AK ∪B and b2 ∈ A′K ∪B′.2

8.3 Even `-pretemplates

For every integer ` ≥ 4, an even `-pretemplate partition of a graph G is a
partition of the vertex-set of G into five sets A = AK∪AS , B, A′ = A′K∪A′S ,
B′ and I that satisfy the following conditions.

1. N(B) ⊆ A and N(A ∪B) ⊆ I.

2. N(B′) ⊆ A′ and N(A′ ∪B′) ⊆ I.

3. |AK | = |A′K | = k, AK = {v1, . . . , vk} and A′K = {v′1, . . . , v′k}.

4. |AS | = |A′S | = s, AS = {vk+1, . . . , vk+s} and A′S = {v′k+1, . . . , v
′
k+s}

are stable sets of G where k + s ≥ 3.

5. For every i ∈ {1, . . . , k + s}, there exists a unique path Pi from vi to
v′i whose interior is in I.

6. Every vertex in I has degree 2 and lies on a path from vi to v′i for
some i ∈ {1, . . . , k}.

7. All paths P1, . . . , Pk have length `− 1, all paths Pk+1, . . . , Pk+s have
length `− 2.

8. G[A ∪B] and G[A′ ∪B′] are both connected graphs.

9. Every vertex of B is in the interior of a path of G[A ∪ B] with both
ends in A.

10. Every vertex of B′ is in the interior of a path of G[A′ ∪B′] with both
ends in A′.
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We then say that (A,A′, B,B′, I) is an even `-pretemplate partition of G.

Lemma 8.8 Let ` ≥ 4 be an integer and G be a graph of C2`. Any even
`-pretemplate partition (A,B,A′, B′, I) of G is a strong even `-template par-
tition of G.

Proof.

(1) For all distinct i, j ∈ {1, . . . , k}, vivj ∈ E(G) and v′iv
′
j ∈ E(G). In

particular, AK and A′K are cliques of G.

Assume that at least one of vivj , v
′
iv
′
j /∈ E(G). By condition 8. in the

definition of an even pretemplate partition there exist a path between vi and
vj in G[A∪B] and a path between v′i and v′j in G[A′∪B′]. Together with Pi

and Pj , these paths form a hole of length at least 2`+1, a contradiction.This
proves (1).

(2) For all distinct i ∈ {1, . . . , k} and j ∈ {k + 1, . . . , k + s}, exactly one of
vivj and v′iv

′
j is an edge of G.

By condition 8. in the definition of an even pretemplate partition there
exist a path between vi and vj in G[A ∪ B] and a path between v′i and v′j
in G[A′ ∪B′]. Together with the principal paths Pi (of length `− 1) and Pj

(of length ` − 2), these paths form a hole which will be of length 2` if and
only if one of the paths is of length 1 and the other path is of length 2. This
proves (2).

(3) Every path of G[A ∪B] with both ends in A is of length at most 2. The
same holds for a path of G[A′ ∪B′] with both ends in A′.

Assume on the contrary that there exists a path P of length at least 3 in
G[A∪B] with both ends vi, vj in A. Then by (1) and condition 7. of an even
pretemplate partition, at least one of Pi, Pj is of length `−2, say Pj . If Pi is
of length `−1 then by (2) v′iv

′
j ∈ E(G) and P , Pi, Pj would induce a hole of

length at least 2` + 1, a contradiction. Hence Pi and Pj are both of length
` − 2 and by conditions 4. and 8. of an even pretemplate partition, P , Pi,
Pj and any path between v′i and v′j form a hole of length at least 2` + 1, a
contradiction again. The proof for G[A′ ∪B′] is similar. This proves (3).

(4) G[A] is a threshold graph. The same holds for G[A′].

G[A] is obviously C4-free. By (1) and condition 4. of an even pretemplate
partition, A is partitioned into a clique and a stable set of G, so by Theorem
3.3 G[A] is 2K2-free. By (3), G[A] is P4-free. So G[A] is (P4, C4, 2K2)-free
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and is therefore a threshold graph. The proof for G[A′] is similar. This
proves (4).

We now study the structure of G[B] (respectively G[B′]) and its relation
with G[A] (respectively G[A′]).

(5) For every vertex x ∈ B, G[NA(x)] has a unique anticonnected component
of size at least 2. The same holds for G[NA′(x)] when x is any vertex in B′.

By condition 9. of an even pretemplate partition, x is in the interior of a
path P = vi . . . vj of G[A∪B] with both ends in A. By (3), P has length 2, so
x is adjacent to vi and vj . Hence G[NA(x)] has an anticonnected component
of size at least 2. It is unique, for otherwise G[A] would contain a C4. This
proves (5).

For all x ∈ B (respectively B′), we define Hx to be the anticonnected
component of G[NA(x)] (respectively G[N ′A(x)]) of size at least 2 whose
existence follows from (5).

(6) For every x in B (respectively B′), Hx is a module of G[A] (respectively
G[A′]).

Let x ∈ B. If the claim does not hold, since Hx is by definition anticon-
nected, there exist vh ∈ A \ Hx and non-adjacent vi, vj ∈ Hx such that
vhvi ∈ E(G) and vhvj /∈ E(G). Note that xvh /∈ E(G) because otherwise,
vh would be in Hx. Then vhvixvj is a path of length 3, a contradiction to
(3). The similar proof holds for x in B′. This proves (6).

(7) If xy is an edge of G[B] or G[B′], then Hx ⊆ Hy or Hy ⊆ Hx.

Let xy be an edge of G[B]. Up to symmetry, we may assume that NA(x) ⊆
NA(y), for otherwise vertices vi ∈ NA(x) \ NA(y) and vj ∈ NA(y) \ NA(x)
either form a C4 with x and y or a contradiction to (3).

By (5), G[NA(y)] has only one anticonnected component of size at least 2,
namely Hy. Since Hx is anticonnected, has size at least 2 and is included in
NA(y), it must be included in Hy. The similar proof holds for an edge xy
of G[B′]. This proves (7).

(8) If x and y are non-adjacent vertices of B or B′ then Hx and Hy are
disjoint.

On the contrary, suppose that x and y are nonadjacent vertices of B but
there exists a vertex v ∈ Hx ∩Hy. Since Hx is anticonnected and of size at
least 2, there exists vi ∈ Hx non-adjacent to v. Note that viy /∈ E(G), for
otherwise x, y, vi and v form a C4. Similarly, there exists a vertex vj ∈ Hy
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that is non-adjacent to v and to x. If vivj ∈ E(G), then {x, y, v, vi, vj}
induces a C5, a contradiction. Otherwise, {x, y, v, vi, vj} induces a P5, a
contradiction to (3). The proof for x, y ∈ B′ is similar. This proves (8).

We are now ready to define the hypergraphs H and H′. For every x ∈ B
(respectively B′), we defined a set Hx ⊆ A (respectively Hx ⊆ A′). From (7)
and (8), the sets Hx for x ∈ B form a laminar hypergraph H (with vertex
set A). Symetrically, the sets Hx for x ∈ B′ form a laminar hypergraph H′
(with vertex set A′).

(9) If G[A] is not connected then at least one hyperedge of H contains all
vertices of A.

Assume G[A] is not connected. By (4), G[A] is a threshold graph, and then
by Theorem 3.7 it contains an isolated vertex vi. By the definition of an
even pretemplate partition, G[A ∪ B] is connected and |A| ≥ 3, so there
exists a path P in G[A ∪ B] from vi to a vertex u ∈ A \ {vi}. By (3) and
since vi has no neighbor in A, we have that P = uyvi where y ∈ B. So, Hy

contains vi. We may therefore consider the hyperedge W of H that contains
vi and that is inclusion-wise maximal w.r.t. this property. If there exists
vj ∈ A \W , since vjvi /∈ E(G), we deduce as above that H has a hyperedge
Z that contains i and j. Because of vj , Z ⊆W is impossible; because of vi,
W ∩ Z = ∅ is impossible; and because of the maximality of W , W ( Z is
impossible. Hence, W and Z contradict H being laminar. So W = A.

This proves (9).

At this point we can easily verify that (A,B,A′, B′, I) is an even `-
template partition of G:

- conditions (a) (b) (c) and (d) of an even template partition are satisfied
because of conditions 3. 4. 5. 6. and 7. in the definition of an even
pretemplate partition,

- (e) of an even template partition is a consequence of condition 4. of an
even pretemplate partition and (1), (2), (4),

- (f), (g) and (h) of even template partition is a consequence of (5), (6),
(7), (8),

- (i) and (j) of an even template partition comes from (7) and (8),
- (k) and (l) of an even template partition follows easily from our previous

results : By definition of Hx, for every x in B, NA(x) ⊆ NA[Hx]. Suppose
that there exists u ∈ NA[Hx] \ NA(x). Since by (6) Hx is a module, it
follows from Lemma 4.2 that u is complete to Hx, so x and u together with
two non-adjacent vertices from Hx induce a C4, a contradiction. Hence,
NA(x) = NA[Hx] and condition (k) of an even template partition is satisfied.
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The proof for (l) is similar.
It remains to prove the following.

(10) HG contains no hyper cycle of length greater than 2.

Suppose on the contrary that C = (j1, e1, j2, ..., jt, et, j1) is a hyper cycle
of HG of length t > 2. Without loss of generality, each ei with odd index
belongs to EA, and since it contains ji and ji+1 such that vji , vji+1 ∈ AS we
have that ei is the set of indices of the vertices of Hbi for some bi ∈ AK ∪B.
Similarly each ei with even index belongs to EA′ , contains ji and ji+1 such
that v′ji and v′ji+1

∈ A′S and corresponds to Hb′i
for some b′i ∈ A′K ∪ B′.

Hence C = vj1b1vj2Pvj2
v′j2b

′
2v
′
j3
Pvj3

vj3 . . . v
′
jt
b′tv
′
j1
Pvj1

vj1 is a cycle in G of
length t` > 2`.

By definition of an even template partition, there are no edges between
two distinct Pi’s contained in C, and no edges between vertices in AK ∪ B
and vertices in A′K ∪B′. So the only chords C could contain are:

- bibj for some distinct i, j ∈ {1, 2, . . . , t} of same parity, or
- vjlbi for some odd i ∈ {1, 2, . . . , t} and l 6= i, i+ 1 (where t+ 1 = 1), or
- v′jlbi for some even i ∈ {1, 2, . . . , t} and l 6= i, i + 1 (where t + 1 = 1).

The first case is impossible since, by definition of a hyper cycle, the hy-
peredges Hbi are all disjoint. The two other cases cannot occur because else
jl would be contained in the hyperedge ei where i 6= jl−1, jl, a contradiction
to the definition of a hyper cycle.

So C is a hole which has length more than 2`, a contradiction to G ∈ C2`.
This proves (10).

This ends the proof of Lemma 8.8. 2

Notice that as a corollary of Lemma 8.8 we get that if a graph G in C2`

has an even `-pretemplate partition then it is an even `-template and any
of its even `-pretemplate partition is a strong even `-template partition.

We will need the following analog of Lemma 4.15.

Lemma 8.9 Let G = (A,B,A′, B′, I, w,w′) be an even `-template. Two
vertices x and y of G are twins if and only if x, y ∈ B and Hx = Hy, or
x, y ∈ B′ and H ′x = H ′y.

Proof. If x, y ∈ B and Hx = Hy, or x, y ∈ B′ and H ′x = H ′y, then x and y
are obviously twins.

We claim that for all x ∈ A∪I∪A′, there exist two vertices a, b ∈ NG(x)
such that N [a] ∩ N [b] = {x}. If x ∈ I, choose a and b to be the only two
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neighbors of x. If x ∈ A, then let a be the neighbor of x in I and let b = w if
x 6= w, else let b be any vertex of A\{x} (we remind that w is by definition a
vertex universal in G[A∪B]). In all cases, by definition of an even template
partition, NG[a]∩NG[b] = {x}. The proof is similar when x ∈ A′. So, x has
no twin in G. 2

An even `-partition (A,B,A′, B′, I) of an even `-template G is proper if
all universal vertices of G[A∪B] (respectively G[A′ ∪B′]) are in B (respec-
tively B′).

Lemma 8.10 Every twinless even `-template G = (A,B,A′, B′, I, w,w′)
with a proper even `-partition satisfies the following:

• w ∈ B, w is the unique universal vertex of G[A∪B] and G[A] contains
at least one isolated vertex u ∈ AS,

• w′ ∈ B′, w′ is the unique universal vertex of G[A′ ∪ B′] and G[A′]
contains at least one isolated vertex v′ ∈ A′S,

• |AS | ≥ 2.

Proof. Since the partition is proper, all universal vertices of G[A∪B] belong
to B and since G is twinless, B contains a unique vertex which is universal
in G[A ∪ B]. Hence w, which is by definition of G a universal vertex of
G[A ∪ B], belongs to B and G[A] contains no universal vertex since else,
by the definition of an even template, this vertex would be universal in
G[A∪B]. Then, by Theorem 3.4, G[A] contains at least one isolated vertex
say u. The proof for w′ is similar and there exists a vertex v′ isolated in
G[A′]. It remains to prove the third assertion. Assume that |AS | ≤ 1.
Then, since A contains at least three vertices, it should be that AS = {u}.
Similarly we obtain that A′S = {v′}, so u′ = v′. Then by the definition of an
even template v′ is not isolated in G[A′], a contradiction. 2

Lemma 8.11 For every integer ` ≥ 4, every even `-template G admits an
even `-partition which is proper.

Proof. Let G = (A,B,A′, B′, I) be a strong even `-partition of G. By
Lemma 8.1 we know that each of G[A∪B] and G[A′ ∪B′] contains at least
one universal vertex. If the lemma does not hold, we may assume up to
symmetry, that there exists at least one vertex w universal in G[A ∪ B]
which is in A. Then from the definition of an even template it is clear that
we may choose w in AK .
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We denote by w+ the neighbor of w on the principal path Pw of G in
the partition (A,B,A′, B′, I). Since ` ≥ 4, we have w+ ∈ I. Consider
now the partition (AK ,AS ,B,A′K ,A′S ,B′, I) of V (G) where AK = AK \ {w},
AS = AS ∪{w+}, B = B ∪{w}, A′K = A′K \ {w′}, A′S = A′S ∪{w′}, B′ = B′,
I = I \ {w+}. We set A = AK ∪ AS and A′ = A′K ∪ A′S .

Since (A,B,A′, B′, I) is an even `-partition of G, it is clear that AK and
A′K are cliques of the same cardinality. Since the only edge in G between w+

and A is ww+ we have that AS = AS∪{w+} is a stable set and since w+ has
no neighbor in A, any universal vertex of G[A∪B] is in B. As w is complete
to AS we get from the definition of an even template that A′S = A′S∪{w′} is a
stable set of the same cardinality as AS ∪{w+}. Remark that |A| = |A| ≥ 3.
Furthermore there exists a unique path Pw+ = w+Pww

′ between w+ and w′

whose interior is in I. This path has length ` − 2. It is also important to
notice that w is in the interior of a path vww+ for any v ∈ A \ {w}. Every
other vertex of B is in the interior of a path of G[A∪B] with both ends in A,
path which is the same as in the initial partition since obviously this path
did not contain w. With all these observations it is easy to conclude that
P = (A,B,A′,B′, I) fulfills all conditions to be a pretemplate partition of G.
By Lemma 8.7 we know that G ∈ C2`. So by Lemma 8.8 and the fact that
w+ is isolated in G[A], P is an even `-partition of G such that no vertex of
A is universal in G[A ∪ B].

If A′ contains no universal vertex of G[A′ ∪ B′] then P is a proper even
`-partition of G, else a proof similar to the one above allows to obtain from
P a proper even `-partition of G. 2

Lemma 8.12 For every integer ` ≥ 4, every even `-template G contains a
prism or a theta.

Proof. By Lemma 8.11, G admits a proper even `-partition (A,B,A′, B′) of
G and by definition of an even template, G contains three vertices v1, v2 and
v3 in A and the corresponding vertices v′1, v

′
2 and v′3 in A′. Considering all

kinds of repartition of v1, v2 and v3 in AK and AS , all kinds of attachment
between them respecting the rules of the partition and the fact that B
(respectively B′) contains a vertex universal in G[AK∪AS∪B] (respectively
G[A′K ∪ A′S ∪ B′]) it is easy to verify that in each case we obtain either a
prism or a theta. 2
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8.4 Blowups and holes

We may define flat, solid and optional edges in even `-template partitions
exactly as in the case of odd `-template partitions (see subsection 5.1). In
the following we will also use the notion of blowup and preblowup of an
even template `-partition with the same definition as for an odd `-template
partition (see subsections 5.2 and 5.3).

The following lemma can be proved similarly as Lemma 5.4.

Lemma 8.13 A hole C in a blowup of a twinless even `-template contains
at most one vertex in each blown up clique.

We remark that Lemmas 5.1, 5.2 and 5.3 are valid for any odd or even
template as they rely only on the definition of solid and optional edges.
Hence, the following lemma has the same proof as Lemma 5.5 of the odd
case, except that we use Lemma 8.7 instead of Lemma 4.11, and Lemma
8.13 instead of Lemma 5.4.

Lemma 8.14 In a blowup G∗ of a twinless even `-template G, every hole
has length 2`.

Recall that to blowup (resp. preblowup) a template, one needs to first
fix an `-partition. If this partition is proper, the blowup (resp. preblowup) is
proper. Recall also that when G∗ is a preblowup of a template G, the domi-
nation score of G w.r.t. G∗ is defined as (where N refers to the neighborhood
in G∗):

s(G,G∗) =
∑

x∈A∪A′∪I
|{x∗ ∈ Kx : N [x∗] ⊆ N [x]}|

Lemma 8.15 Let ` ≥ 3 and let G∗ be a proper preblowup of an even `-
template with k ≥ 3 principal paths. If G∗ ∈ C2`, then G∗ is a proper blowup
of a twinless even `-template G with k principal paths (in particular, G is
an induced subgraph of G∗).

Proof. Among all the induced subgraphs of G∗ that are even `-templates and
for which G∗ is a proper preblowup, we suppose that G is one that maximizes
s(G,G∗). We denote by (A,B,A′, B′, I, w,w′) the proper `-partition of G
that is used for its preblowup and by (A∗, B∗, A′∗, B′∗, I∗) the corresponding
partition of the vertices of G∗.

(1) There exist vertices w∗ ∈ B∗ and w′∗ ∈ B′∗ that are complete to respec-
tively A∗ and A′∗.
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Since the partition is proper, w ∈ B and then by condition (b1) of a pre-
blowup, there exists w∗ ∈ B∗ that is complete to A∗.

The proof of the statement about w′∗ is similar. This proves (1).

(2) For every principal path Pu = u . . . u′ of G and u∗ ∈ Ku, there exists in
G∗ a path Pu∗ from u∗ to some u′∗ ∈ Ku′ whose interior is in

⋃
x∈I∩V (Pu) Kx

and whose length is equal to the length of Pu. Moreover, the interior of Pu∗

is anticomplete to V (G∗) \
⋃

v∈V (Pu) Kv.

The existence of a path of same length as Pu from u∗ to some u′∗ ∈ Ku′

whose interior is in
⋃

x∈I∩V (P ) Kx follows from conditions (a2), (i) and (i1),
of preblowup. The statement about its interior follows from conditions (a),
(b) and (i) of preblowup. This proves (2).

(3) For all u, v ∈ A such that uv /∈ E(G), Ku is anticomplete to Kv. A
similar statement holds for A′.

Suppose that there exist u∗ ∈ Ku and v∗ ∈ Kv such that u∗v∗ ∈ E(G∗). By
condition (a1) of preblowup, u 6= u∗ and v 6= v∗.

Since uv /∈ E(G) then at least one of u, v is in AS , say v ∈ AS .
Consider first the case where u ∈ AK . The principal paths Pu = u . . . u′

and Pv = v . . . v′ have length respectively `− 1 and `− 2. Denote by u+ the
neighbor of u in Pu and by v+ the neighbor of v in Pv. By property (e) of an
even template, u′v′ ∈ E(G). Hence uPuu

′v′Pvvv
∗u∗u is a cycle C of length

2` + 1. By conditions (a) and (a1) of preblowup, the only possible chords
in C are u∗u+ and v∗v+. Assume that u∗u+ ∈ E(G∗). Let Pv∗ be a path
of length `− 2 from v∗ to v′∗ as defined in (2). Since v′∗ ∈ Kv′ and by (a1)
of the preblowup applied to A′, v′∗u′ ∈ E(G∗). So v∗Pv∗v

′∗u′Puu
+u∗v∗ is

a hole of length 2` − 1, a contradiction. Hence v+v∗ should be a chord of
C. Let then Pu∗ be a path of length ` − 1 from u∗ to u′∗ as defined in (2).
Since u′∗ ∈ Ku′ and by (a1) of the preblowup applied to A′, u′∗v′ ∈ E(G∗).
So u∗Pu∗u

′∗v′Pvv
+v∗u∗ is a hole of length 2`− 1, a contradiction again.

It remains to consider the case where both u and v are in AS . Let
Pu = u . . . u′ and Pv = v . . . v′ be principal paths of length ` − 2. Denote
by u+ the neighbor of u in Pu and by v+ the neighbor of v in Pv. By
property (e) of an even template, u′v′ /∈ E(G), hence uPuu

′w′∗v′Pvvv
∗u∗u

is a cycle C of length 2` + 1. By conditions (a) and (a1) of preblowup, the
only possible chords in C are u+u∗ and v+v∗.

Assume without loss of generality that u+u∗ ∈ E(G∗). Let Pv∗ be a path
of length `− 2 from v∗ to v′∗ as defined in (2). Since v′∗ ∈ Kv′ and by (a1)
applied to A′, v′∗u′ ∈ E(G∗). So v∗Pv∗v

′∗w′∗u′Puu
+u∗v∗ is a hole of length
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2`− 1, a contradiction.
The result for A′ holds symmetrically. This proves (3).

(4) For all u, v ∈ A such that uv ∈ E(G), Ku is complete to Kv. A similar
statement holds for A′.

Suppose that there exist u∗ ∈ Ku and v∗ ∈ Kv such that u∗v∗ /∈ E(G∗).
Let Pu∗ = u∗ . . . u′∗ and Pv∗ = v∗ . . . v′∗ be defined as in (2). Observe that
u′∗ ∈ Ku′ and v′∗ ∈ Kv′ .

Since uv ∈ E(G) then at least one of u, v is in AK , say u ∈ AK .
Consider first the case where v ∈ AK too. Then both Pu∗ and Pv∗ have

length `−1. If u′∗v′∗ ∈ E(G∗) then u∗Pu∗u
′∗v′∗Pv∗v

∗w∗u∗ is a hole of length
2` + 1 and else u∗Pu∗u

′∗w′∗v′∗Pv∗v
∗w∗u∗ is a hole of length 2` + 2, so it

should be that v ∈ AS . Then Pu∗ and Pv∗ have length respectively `−1 and
` − 2. Moreover by property (e) of an even template, u′v′ /∈ E(G∗), so by
(3) u′∗v′∗ /∈ E(G∗). Now u∗Pu∗u

′∗w′∗v′∗Pv∗v
∗w∗u∗ is a hole of length 2`+ 1,

a contradiction again.
This proves (4).

(5) For all u ∈ I and u1, u2 ∈ Ku, either N [u1] ⊆ N [u2] or N [u2] ⊆ N [u1].

Otherwise, there exist x∗1 ∈ N [u1]\N [u2] and x∗2 ∈ N [u2]\N [u1]. Note that
x∗1x

∗
2 /∈ E(G∗) for otherwise, {x∗1, x∗2, u1, u2} induces a C4. It follows that x∗1

and x∗2 belong respectively to distinct cliques Kx1 and Kx2 , where x1 and
x2 are the two neighbors of u along some principal path Pv = v . . . v′ of G.
Because of x∗1, x∗2 and condition (i1) of preblowup, there exists a path P ∗

from some v∗ ∈ Kv to some v′∗ ∈ Kv′ whose interior is in
⋃

x∈I∩V (Pv) Kx

which contains u1 and u2 and has a length equal to the length of Pv plus
one.

Assume first that v ∈ AK . Then P ∗ has length `. By Lemma 8.10, since
(A,B,A′, B′, I, w,w′) is a proper `-partition of G, AS is not empty. Let
q 6= v be a vertex in AS and Pq = q . . . q′ be the principal path of length
`−2 joining q and q′ in G. Up to symmetry we may assume that qv /∈ E(G)
and q′v′ ∈ E(G). Now, by condition (i) of preblowup and (1), P ∗, Pq and
w∗ form a hole of length 2` + 1, a contradiction.

So v should be in AS and P ∗ has length ` − 1. Since the `-partition
of G is proper, there exists a vertex q ∈ AS distinct from v, Pq has length
`− 2 and there exists no edge between P ∗ and Pq. Then P ∗, Pq, w

∗ and w′∗

induce a hole of length 2` + 1, a contradiction again. This proves (5).

(6) For all u ∈ I and u∗ ∈ Ku, N [u∗] ⊆ N [u].
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Otherwise, by (5), there exists a vertex u∗ ∈ Ku such that N [u] ( N [u∗].
Hence (V (G) \ {u}) ∪ {u∗} induces a subgraph G0 of G∗ and it is easy to
verify that G∗ is a preblowup of G0. This contradicts the maximality of
s(G,G∗). This proves (6).

By (5), for every u ∈ I, the clique Ku can be linearly ordered by the
inclusion of the neighborhoods as u1, . . . , uku with u = uku by (6) (so, for
1 ≤ i ≤ j ≤ ku, N [ui] ⊆ N [uj ]). From condition (i) of the preblowup it
also follows that, in G∗, u is complete to the cliques associated to its two
neighbors in G.

(7) For every u ∈ A and u1, u2 ∈ Ku, either N [u1] ⊆ N [u2] or N [u2] ⊆
N [u1]. A similar statement holds for A′.

Otherwise, there exist x1 ∈ N [u1]\N [u2] and x2 ∈ N [u2]\N [u1]. Note that
x1x2 /∈ E(G∗) for otherwise, {x1, x2, u1, u2} induces a C4.

Observe first that by (3) and (4), NA∗ [u1] = NA∗ [u2]. Hence by con-
dition (a) of preblowup, x1, x2 ∈ B∗ ∪ Ku+ where u+ is the neighbor of u
in the principal path that contains u. Without loss of generality and since
Ku+ is a clique, x1 ∈ B∗.

By condition (b2) of preblowup, there exist non-adjacent a, b ∈ A such
that x1 has neighbors a∗ ∈ Ka and b∗ ∈ Kb, and by (3) a∗b∗ /∈ E(G∗).
Note that a∗, b∗ 6= u2 because u2x1 /∈ E(G∗). If u2 is complete to {a∗, b∗},
then {u2, a

∗, x1, b
∗} induces a C4, a contradiction. So, up to symmetry

u2a
∗ /∈ E(G). So, a∗ /∈ Ku and by (4) and (3), a∗u1 /∈ E(G∗). Observe that

x2a
∗ /∈ E(G∗) for otherwise {a∗, x1, u1, u2, x2} induces a C5.
Suppose that x2 ∈ B∗. As above, we can show that x2 has a neigh-

bor c∗ ∈ A∗ that is anticomplete to {u1, u2, x1}. Let Pa∗ = a∗ . . . a′∗ and
Pc∗ = c∗ . . . c′∗ be defined as in (2). To avoid a hole c∗x2u2u1x1a

∗c∗ of
length 6, we have a∗c∗ /∈ E(G∗). Since the lengths of Pa∗ and Pc∗ are at
least ` − 2, depending whether a′∗c′∗ ∈ E(G∗), u1x1a

∗Pa∗a
′∗c′∗Pc∗c

∗x2u2u1

or u1x1a
∗Pa∗a

′∗w′∗c′∗Pc∗c
∗x2u2u1 is a hole of length at least 2` + 2, a con-

tradiction. So x2 ∈ Ku+ . Using condition (i1) of preblowup, it is easy
to verify that there exists a path Pu2 from u2 to some u′∗ ∈ Ku′ defined
similarly than in (2), which contains x2. Now u2Pu2u

′∗a′∗Pa∗a
∗x1u1u2 or

u2Pu2u
′∗w′∗a′∗Pa∗a

∗x1u1u2 is a hole of length 2` + 1, a contradiction.
The result for A′ holds symmetrically. This proves (7).

(8) For all u ∈ A and u∗ ∈ Ku, N [u∗] ⊆ N [u]. A similar statement holds
for A′.

Otherwise, by (7) there exists a vertex u∗ ∈ Ku such that N [u] ( N [u∗].
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Hence, (V (G)\{u})∪{u∗} induces a subgraph G0 of G∗ which is a template
(by Lemma 8.8) with a proper partition (by (3) and (4)). Iit is easy to verify
that G∗ is a preblowup of G0. This contradicts the maximality of s(G,G∗).
The result for A′ holds symmetrically. This proves (8).

By (7), for every u ∈ A ∪ A′, the clique Ku can be linearly ordered by
the inclusion of the neighborhoods as u1, . . . , uku , and by (8) uku = u (so,
for 1 ≤ i ≤ j ≤ ku, N [ui] ⊆ N [uj ]).

(9) If xy is an edge of G[B∗], then either NA∗(x) ⊆ NA∗(y) or NA∗(y) ⊆
NA∗(x).

Otherwise, there exist u∗ ∈ NA∗(x) \ NA∗(y) and v∗ ∈ NA∗(y) \ NA∗(x).
Note that u∗v∗ /∈ E for otherwise {u∗, x, y, v∗} induces a C4. So, for some
distinct u, v ∈ A, we have u∗ ∈ Ku and v∗ ∈ Kv. Hence, by (4), uv /∈
E(G). Let Pu∗ = u∗ . . . u′∗ and Pv∗ = v∗ . . . v′∗ be defined as in (2). So,
xu∗Pu∗u

′∗v′∗Pv∗v
∗yx or xu∗Pu∗u

′∗w′∗v′∗Pv∗v
∗yx forms a hole of length 2`+1,

a contradiction. This proves (9).

(10) For every x ∈ B∗, there exist non-adjacent u, v ∈ A such that xu, xv ∈
E(G∗).

This follows from condition (b2) of preblowup and from (8). This
proves (10).

Two vertices x, y in B∗ are equivalent if NA(x) = NA(y).

(11) If x and y are equivalent vertices of B∗, then xy ∈ E(G∗).

If xy /∈ E(G∗), then x, y and two of their neighbors provided by (10) induce
a C4. This proves (11).

Vertices of B∗ are partitioned into equivalence classes. By (11), each
equivalence class is a clique X, and by (9), vertices of X can be linearly
ordered according to the inclusion of neighborhoods in A∗. In each such a
clique X we choose a vertex x maximal for the order and call B1 the set of
these maximal vertices. For every x ∈ B1, we denote by Kx the clique of
B∗ of all vertices equivalent to x. Remind that w∗ ∈ B∗ : w∗ is a maximal
vertex of its clique. Hence, we can set w∗ ∈ B1.

So, for every u ∈ B1, the clique Ku can be linearly ordered by the
inclusion of the neighborhod in A∗ as u1, . . . , uku with u = uku (so, for
1 ≤ i ≤ j ≤ ku, NA∗(ui) ⊆ NA∗(uj)).

Statements similar to (9), (10), (11) hold for B′∗ and we define B′1 as
well.

We set G1 = G∗[A ∪ B1 ∪ A′ ∪ B′1 ∪ I] and claim that (A,B1, A
′, B′1, I)
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is an even `-pretemplate partition of G1. Since G1[A ∪ I ∪ A′] is exactly
G[A∪I∪A′], conditions (3.), (4.) (5.), (6.) and (7.) hold. Adding the fact that
NG1(B1) ⊆ A∗∩V (G1) = A by condition (b) of preblowup, condition (1.) for
a pretemplate holds and symmetrically also condition (2.). Now condition
(8.) holds because w∗ and w′∗ are universal in respectively G∗[A ∪ B1] and
G∗[A′ ∪B′1]. By (10), the last two conditions for a pretemplate are fulfilled
by (A,B1, A

′, B′1, I). Hence, by Lemma 8.8, G1 is a an even `-template. It is
twinless by Lemma 8.9. We also notice that by construction w∗ (respectively
w′∗) belongs to G1 and is universal in G1[A∪B1] (respectively G1[A′∪B′1]).
Since (A,B,A′, B′, I, w,w′) is a proper `-partition of G, there exist isolated
vertices in G∗[A] and G∗[A′]. Hence (A,B1, A

′, B′1, I, w
∗, w′∗) is a proper

even `-partition of G1.
We now prove that G∗ is a proper blowup of G1.
By the definition of a preblowup and by (11), for all u ∈ V (G1), Ku is a

clique and V (G∗) =
⋃

u∈V (G1) Ku

(12) If u, v ∈ V (G1) and uv /∈ E(G1), then Ku is anticomplete to Kv.

If u ∈ I or v ∈ I, the conclusion follows directly from condition (i) of
preblowup. So we may assume up to symmetry that u ∈ A ∪ B1. By
conditions (a) and (b) of preblowup, we may assume v ∈ A∪B1. If u, v ∈ A,
then the result follows from (3), so we may assume that v ∈ B1.

Now suppose for a contradiction that there exist u∗ ∈ Ku and v∗ ∈ Kv

such that u∗v∗ ∈ E(G1). By the choice of vertices in B1, for all v∗ ∈ Kv,
N [v∗] ⊆ N [v]. So u∗v ∈ E(G1). For the same reason or by (8), for all u∗ ∈
Ku, N [u∗] ⊆ N [u]. Hence uv ∈ E(G1), a contradiction. This proves (12).

(13) If uv is a solid edge of G1 then Ku is complete to Kv.

Otherwise, let u∗ ∈ Ku and v∗ ∈ Kv such that u∗v∗ /∈ E(G). Since uv is a
solid edge, up to symmetry, u, v ∈ A or u, v ∈ B1 or u ∈ A, v ∈ B1 and in
this last case u is not an isolated vertex of G[Hv].

By (4) the case where u and v are in A cannot happen. Assume then
that v ∈ B1. By Lemma 8.3, there exist a, b ∈ Hv (and hence in A) that
are not adjacent. Assume that u is also in B1. Since u and v are adjacent,
by (9) we may assume without loss of generality that Hv ⊆ Hu and so a
and b belong to Hu too. Then, by the definition of Ku and Kv, we get a C4

induced by {u∗, v∗, a, b}, a contradiction.
So u should be in A, and to avoid a C4 induced by {u∗, v∗, a, b}, u∗

should be non-adjacent to at least one of a and b, say a. In particular,
a 6= u. Then, by (4), ua /∈ E(G1). So u does not belong to N(Hv) and
since uv is an edge of G1, we get that u ∈ Hv. Since uv is solid, u has at
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least one neighbor in Hv, and we know that u is not adjacent to at least
one vertex in Hv (namely a). Hence, as Hv is anticonnected, there exist
non-adjacent vertices c, d ∈ Hv such that uc /∈ E(G1) and ud ∈ E(G1).
Now u∗Pu∗u

′∗c′Pccv
∗du∗ or u∗Pu∗u

′∗w′∗c′Pccv
∗du∗ is a hole of length 2`+ 1,

a contradiction again.
This proves (13).

(14) For all u ∈ V (G1) and 1 ≤ i ≤ j ≤ ku, N [ui] ⊆ N [uj ].

The result follows from how vertices are ordered after the proof of (6) (ver-
tices in I), (8) (vertices in A or A′) and (11) (vertices in B1 or B′1) and from
(13). This proves (14).

(15) If uv is a flat edge of G1, then u is complete to Kv and v is complete
to Ku.

By definition of a flat edge, either u and v are in I or one is in I and the
other is in A or in A′. The result follows from (6), (8), and conditions (a2)
(applied to A or A′) and (i1) of the preblowup. This proves (15).

(16) If ux is an optional edge of G1 with u ∈ A and x ∈ B1 (resp. u ∈ A′

and x ∈ B′1), then u is complete to Kx.

The result follows from the definition of Kx when x ∈ B1. This proves (16).

(17) If ux and uy are optional edges with u ∈ A, x, y ∈ B1 and Hy ( Hx

(resp. u ∈ A′, x, y ∈ B′1 and H ′y ( H ′x), then every vertex of Ku with a
neighbor in Ky is complete to Kx.

Otherwise, let u∗ be a vertex in Ku that has a neighbor y∗ in Ky and a
non-neighbor x∗ in Kx. Since Hx and Hy are not disjoint, xy is a solid edge
of G1 and by (13), x∗y∗ ∈ E(G1).

Since x and y are not equivalent, there exists a vertex a such that a ∈
NA(y) \ NA(x) or a ∈ NA(x) \ NA(y). In the first case, by definition of a
template, a ∈ A \ NA[Hx]. Then since Hy ( Hx and Hx is a module of
A we get that a is anticomplete to Hx and hence to Hy. So a /∈ NA(y), a
contradiction; we may then conclude that a ∈ NA(x) \NA(y)

By definition of the cliques in B, x∗a ∈ E(G∗) and y∗a /∈ E(G∗). There-
fore, to avoid a C4 induced by {x∗, y∗, u∗, a}, it should be that u∗a /∈ E(G∗).

Now aPaa
′u′∗Pu∗u

∗y∗x∗a or aPaa
′w′∗u′∗Pu∗u

∗y∗x∗a is a hole of length
2` + 1 a contradiction. This proves (17).

(18) w∗ (resp. w′∗) is a universal vertex of G∗[
⋃

u∈A∪B1
Ku] (resp.

G∗[
⋃

u∈A′∪B′1
Ku]).
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By (1), w∗ is complete to A∗ and so to
⋃

u∈AKu. Furthermore, from the
definition of G1 we know that w∗ is complete to B1 \ {w∗}. Since all edges
between vertices in B1 are solid, by (13), w∗ is complete to B∗\{w∗}. Hence
w∗ is a universal vertex of G∗[

⋃
u∈A∪B Ku]. The proof for w′∗ is symmetric.

This proves (18).

From all the claims above, G∗ satisfies all conditions to be a proper
blowup of G1. 2

9 Graphs in C2` that contain a theta or a prism

The goal of this section is to prove the following.

Lemma 9.1 Let ` ≥ 4 be an integer. If G is a graph in C2` and G contains
a theta or a prism, then one of the following holds:

(a) G is a proper blowup of a twinless even `-template;

(b) G has a universal vertex;

(c) G has a clique cutset.

The rest of this section is devoted to the proof of Lemma 9.1. So from
here on, ` ≥ 4 is an integer and G is graph in C2` that contains a theta Θ or
a prism Σ. By Lemma 3.10, the three paths of Θ have length ` and those of
Σ have length `− 1. By Lemma 8.2, Θ and Σ are even `-templates. Hence,
we may define an integer k and a sequence F0, F1, F2 of induced subgraphs
of G as follows.

• k is the maximum integer such that G contains an even `-template with
k principal paths. Observe that by Lemma 8.9, G in fact contains a
twinless even `-template with k principal paths, because twins can be
eliminated from templates by deleting hyperedges with equal vertex-
set while there are some.

• In G, pick a proper blowup F1 of a twinless even `-template F0 with k
principal paths. Note that F0 exists and the proper `-partition needed
for the proper blowup exists by Lemma 8.11.

• Suppose that F0 and F1 are chosen subject to the maximality of the
vertex-set of F1 (in the sense of inclusion). Note that possibly F0 is not
a maximal template in the sense of inclusion, it can be that a smaller
template leads to a bigger blowup (but F0 has k principal paths).
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• F2 is obtained from F1 by adding all vertices of G\F1 that are complete
to F1.

Lemma 9.2 V (F2) \ V (F1) is a (possibly empty) clique that is complete to
F1.

Proof. Otherwise, G contains a C4. 2

We now introduce some notation. We denote by (A,B,A′, B′, I, w,w′)
the twinless proper even `-partition that is used to blow up F0. We have
A = AK ∪ AS and A′ = A′K ∪ A′S . When u is a vertex of F0, we denote by
Ku the clique of F1 that is blown up from u. We set A∗K =

⋃
u∈AK

Ku. We
use a similar notation A∗S , A′K

∗, A′S
∗, B∗, B′∗, I∗, A∗ and A′∗.

9.1 Technical lemmas

We now prove lemmas that sum up several structural properties of G.

Lemma 9.3 If u ∈ A ∪ A′ ∪ I ∪ {w,w′} and v ∈ NV (F0)(u), then u is
complete to Kv.

Proof. We prove this lemma using the conditions from the definition of
blowups. If u ∈ {w,w′}, then the result follows from condition (h). If
u ∈ A ∪ A′, then the conclusion follows from conditions (d), (e) and (f). If
u ∈ I, then the conclusion follows from condition (e). 2

Very often, Lemma 9.3 will be used in the following way. Suppose there
exists a principal path P = u . . . u′ of F0. Suppose there exists a vertex
x of P and x∗ ∈ Kx. Then by Lemma 9.3 and condition (c) of blowups,
{x∗}∪ (V (P ) \ {x}) induces a path of F1. If y 6= x is a vertex of P and y∗ ∈
Ky, then {x∗, y∗}∪(V (P )\{x, y}) might fail to induce a path of F1, because
it is possible that xy ∈ E(G) while x∗y∗ /∈ E(G). But under the assumption
that x∗y∗ ∈ E(G) or xy /∈ E(G), we do have that {x∗, y∗} ∪ (V (P ) \ {x, y})
induces a path of F1. Several variant of this situation will appear soon and
we will simply justify them by refering to Lemma 9.3.

When u is a vertex in A, we denote by Pu the unique principal path of
F0 that contains u. Its end in A′ is then denoted by u′. We denote by u+

the neighbor of u in Pu. We denote by u++ the neighbor of u+ in Pu \ u.
Note that u+ ∈ I and u++ ∈ I ∪ A′ (u++ ∈ A′ if and only if ` = 4 and
u ∈ AS).

For any distinct u, v ∈ A, from the definition of even templates, exactly
one of V (Pu) ∪ V (Pv) or V (Pu) ∪ V (Pv) ∪ {w} or V (Pu) ∪ V (Pv) ∪ {w′} or
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V (Pu)∪V (Pv)∪{w,w′} induces a hole that is denoted by Cu,v. Such a hole
is called a principal hole.

So, there are three kinds of principal holes: those that contain exactly
one of w and w′, those that contain none of w and w′ and those that contain
both w and w′. Recall that by Lemma 8.7, some holes of a template contain
two principal paths plus one or two extra vertices, but it may fail to be a
principal hole (because the extra vertices may fail to be w or w′). Though we
do not use this information formally, it is worth noting that by Lemma 9.3,
when C is a principal hole,

⋃
v∈V (C) Kv induces a ring. But when C is a

non-principal hole, it may happen that
⋃

v∈V (C) Kv does not induce a ring
(because there might be in C an optional edge uv with u ∈ A and v ∈ B, and
after the blowup process, there might be that no vertex in Kv is complete
to Ku).

Lemma 9.4 If u ∈ V (F0) and u∗ ∈ Ku, then u∗ has two neighbors in
V (F0) \Ku that are not adjacent.

Proof. If u ∈ I, then let P be the principal path that contains u. By
Lemma 9.3, u∗ is adjacent to the two neighbors of u in P .

If u ∈ A ∪ A′, say u ∈ A up to symmetry, then we claim that u has a
neighbor z in A∪B. This is clear if u is not isolated in A and otherwise we
set z = w. By Lemma 9.3, z and u+ are non-adjacent neighbors of u∗.

If u ∈ B, then by the definition of a template, Hu contains two non
adjacent vertices a and b that are neighbors of u. By Lemma 9.3, a and b
are both adjacent to u∗. 2

Lemma 9.5 If K is a clique of F0, K∗ =
⋃

v∈K Kv and D is a connected
induced subgraph of G \ F2 such that NV (F1)(D) ⊆ K∗, then NV (F1)(D) is a
clique.

Proof. For suppose not. This means that there exists u∗, v∗ ∈ K∗ and
xu, xv ∈ D such that u∗v∗ /∈ E(G) and xuu

∗, xvv
∗ ∈ E(G) (possibly xu =

xv). Since D is connected, there exists a path P in D from xu to xv.
Suppose that u∗, xu, v∗, xv and P are chosen subject to the minimality of
P . It follows that u∗xuPxvv

∗ is a path, and recall that by assumption its
interior is anticomplete to F1 \K∗.

Since u∗v∗ /∈ E(G), u∗ and v∗ are in different blown-up cliques. Denote
by Ku and Kv the blown-up cliques such that u∗ ∈ Ku and v∗ ∈ Kv. By
hypothesis, u, v ∈ K and so uv ∈ E(G). Since u∗v∗ /∈ E(G), by condition (d)
of blowups, uv is not a solid edge of G.
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If uv is a flat edge of F0, then uv is an edge of a principal path and we
know that this principal path belongs to a principal hole C. Note that apart
from u and v, no vertex of C is in K since K is a clique. By Lemma 9.3, in
G, ({u∗, v∗}) ∪ V (C)) \ {u, v} induces a path Q of length 2`− 1. So P and
Q form a hole of length at least 2` + 1, a contradiction.

If uv is an optional edge of F0, say with u ∈ A and v ∈ B, then u ∈ Hv,
and there exists a in Hv such that au /∈ E(F0). Therefore, Pu, Pa, v and
possibly w′ form a hole C∗. By condition (f) of blowups (if va is optional),
or by condition (d) (if va is solid), a is complete to Kv. By Lemma 9.3 it
follows that ({u∗, v∗}) ∪ V (C∗)) \ {u, v} induces a path Q of length 2`− 1.
So P and Q form a hole of length at least 2` + 1, a contradiction again. 2

Lemma 9.6 If x ∈ V (G) \V (F2) and C is a principal hole of F0, then x is
minor w.r.t. C.

(We remind that x is minor w.r.t. C if the neighborhood of x in C is
included in a 3-vertex path of C.)

Proof. Otherwise let C = Cu,v for some u, v ∈ A such that x is major w.r.t.
C. By Lemma 3.10, x and C form a universal wheel.

(1) x is complete to all principal paths.

We know already that x is complete to Pu and Pv. Let Pt = t . . . t′ be a
principal path where t 6= u, v. If one of u, v, say u, is in AK then Pu contains
at least 4 vertices, so x is major w.r.t. Cu,t and as above we may conclude
that x and Cu,t form a universal wheel. Consider now the case where both
u and v are in AS . Then C contains w and w′ and Cu,t contains at least one
of w,w′. So x is is adjacent to at least 4 vertices of Cu,t and we may again
conclude that x is complete to Pt. This proves (1).

(2) x is complete to B ∪B′.

Let y ∈ B ∪ B′. By definition of a template, y has two neighbors a and b,
both in A or both in A′, that are non-adjacent. Therefore a, b, y and x form
a C4, unless x is adjacent to y. This proves (2).

By (1) and (2), x is complete to I ∪A ∪A′ ∪B ∪B′ = V (F0).
Let z be a vertex of F0 and z∗ ∈ Kz. By Lemma 9.4, there exists

a, b ∈ V (F0) such that z∗a, z∗b ∈ E(G) and ab /∈ E(G). Since there is no C4

in G it should be that xz∗ ∈ E(G). This proves that x is complete to F1.
Hence, x ∈ V (F2), a contradiction. 2
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Lemma 9.7 Let a and b be two non-adjacent vertices of some principal hole
C of F0. If some vertex x of V (G) \ V (F2) has neighbors in both Ka and
Kb, then a and b have a common neighbor c in C, x is adjacent to c, and x
is anticomplete to every Kd such that d ∈ V (C) \ {a, b, c}.

Proof. Let a∗ ∈ Ka and b∗ ∈ Kb be two neighbors of x. Since ab /∈ E(G), by
Lemma 9.3, {a∗, b∗} ∪ V (C) \ {a, b} induces a hole C∗. Since x is adjacent
to a∗ and b∗, by Lemma 3.10, x has another neighbor c in C∗ (and in fact
in C since c 6= a∗, b∗). If c is not adjacent to a∗ or b∗, then x is major w.r.t.
C∗, so by Lemma 3.10, C∗ and x form a universal wheel. It follows that x
is major w.r.t. C, a contradiction to Lemma 9.6.

We proved that a and b have a common neighbor c in C and that x is
adjacent to c. Suppose for a contradiction that x has a neighbor d∗ ∈ Kd

where d ∈ V (C) \ {a, b, c}. By the same argument as above, since x has
neighbors in Kd and Kc, c and d must have a common neighbor in C, and
this common neighbor must be a or b, say a up to symmetry. So, x has
neighbors in Kd and Kb while b and d have no common neighbors in C, so
we may reach a contradiction as above. 2

9.2 Connecting vertices of a template

Lemma 9.8 If x ∈ A∪B and y ∈ A′ ∪B′, then there exists in G a path P
of length `− 2, `− 1, ` or ` + 1 from x to y that contains a principal path.

More specifically:

• If x ∈ A and y ∈ A′, then P has length `− 2, `− 1, ` or ` + 1.

• If x ∈ A and y ∈ B′, or if x ∈ B and y ∈ A′, then P has length `− 1,
` or ` + 1.

• If x ∈ B and y ∈ B′, then P has length ` or ` + 1. Furthermore in
that case, there exists another path Q from x to y of length ` or ` + 1
containing a principal path and Q contains no interior vertex of P .

Proof. Suppose first that x ∈ A, say x = vi. If y ∈ A′, then set y = v′j . If
i = j, then Pi has length ` − 2 or ` − 1. Assume i 6= j. If vivj or v′iv

′
j , say

vivj is an edge then vivjPvjv
′
j is a path of length `−1 or `. If none of vivj or

v′iv
′
j is an edge then vi and vj are in AS and viPviv

′
iw
′v′j is a path of length

`. If y ∈ B′, then one of viPiv
′
iy or viPiv

′
iw
′y is the path of length at most

` + 1 we are looking for. The proof is similar when y ∈ A′.
We may therefore assume that x ∈ B and y ∈ B′. Assume first that there

exist vi and vj in A such that x is adjacent to vi and vj and y is adjacent
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to v′i and v′j . Then xviPviv
′
iy and xvjPvjv

′
jy are two paths of length ` or

` + 1. Consider now the case when there exists one vertex vi in Hx such
that v′i belongs to Hy. Since both G[Hx] and G[Hy] are anticonnected and
contain at least two vertices, there exists u ∈ Hx non adjacent to vi and
v′ ∈ Hy non adjacent to v′i. We may assume that u′ is not adjacent to y
and that v is not adjacent to x since else we are in the previous case. So
now v should be anticomplete to Hx and u′ should be anticomplete to Hy.
So {vi, u, v} and {v′i, u′, v′} are both stable sets of G, this is possible if and
only if {vi, u, v} ⊆ AS . We have then two paths xuPuu

′w′y and xwvPvv
′y

of length ` + 1. It remains to consider the case where each vi ∈ Hx is such
that v′i /∈ Hy. By definition each of Hx and Hy contains a pair of non
adjacent vertices and hence there exist two distinct vertices u, v′ such that
u ∈ Hx ∩ AS and v′ ∈ Hy ∩ A′S . We have then again two paths xuPuu

′w′y
and xwvPvv

′y of length ` + 1. 2

9.3 Connecting vertices of F1

We here explain how lemmas of Subsection 9.2 are extended from F0 to F1.

Lemma 9.9 If u∗ ∈ A∗ ∪ B∗ and v∗ ∈ A′∗ ∪ B′∗, then there exists in F1

a path P ∗ of length ` − 2, ` − 1, ` or ` + 1 from u∗ to v∗ that contains the
interior of a principal path P . More specifically:

• If u∗ ∈ A∗ and v∗ ∈ A′∗, then P ∗ has length `− 2, `− 1, ` or ` + 1.

• If u∗ ∈ A∗ and v∗ ∈ B′∗, or if u∗ ∈ B∗ and v∗ ∈ A′∗, then P ∗ has
length `− 1, ` or ` + 1.

• If u∗ ∈ B∗ and v∗ ∈ B′∗, then P ∗ has length ` or ` + 1. Furthermore
in that case there exists another path Q∗ from u∗ to v∗ of length ` or
` + 1 which contains the interior of a principal path Q 6= P .

Proof. Let u and v be such that u∗ ∈ Ku and v∗ ∈ Kv. Let P be a path
in F0 like in Lemma 9.8 from u to v (so P contains the interior of some
principal path Q). By Lemma 9.3, {u∗, v∗} ∪ V (P ) \ {u, v} induces a path
of the same length as P that contains the interior of Q. 2

Lemma 9.10 If in G some vertex x is adjacent to the ends of a path P of
length at most ` + 1 not containing x, then x is complete to V (P ).
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Proof. Otherwise, a shortest cycle in G[V (P ) ∪ {x}] has length at least 4
and at most ` + 3. Since ` ≥ 4 implies ` + 3 < 2`, this is a contradiction. 2

9.4 Attaching a vertex to F1

In this subsection, we show that for all vertices x of V (G)\V (F2), NV (F1)(x)
is a clique (see Lemma 9.14).

Lemma 9.11 If x ∈ V (G) \ V (F2) has no neighbor in I∗, then NV (F1)(x)
is a clique.

Proof. Suppose for a contradiction that NV (F1)(x) is not a clique.

(1) We may assume that NV (F1)(x) ⊆ A∗ ∪B∗.

If x has neighbors in both A∗ ∪B∗ and A′∗ ∪B′∗, then consider a path P as
in Lemma 9.9 from a neighbor of x in A∗∪B∗ to a neighbor of x in A′∗∪B′∗.
By Lemma 9.10, x is complete to V (P ). This is a contradiction since x has
no neighbor in I∗. Hence x does not have neighbors in both A∗ ∪ B∗ and
A′∗ ∪B′∗, and our claim follows up to symmetry. This proves (1).

(2) There exist non-adjacent a, b ∈ A such that x has neighbors in both Ka

and Kb.

By Lemma 9.5, since NV (F1)(x) is not a clique, there should exist two
non-adjacent vertices a, b ∈ V (F0) such that x has a neighbor a∗ ∈ Ka and
a neighbor b∗ ∈ Kb. By (1), a, b ∈ A ∪B.

If a, b ∈ A, then our conclusion holds, so we may assume that b ∈ B.
If a ∈ A, then since ab /∈ E(G), Hb is anticomplete to a. Let P ∗a be the

path induced by {a∗} ∪ (V (Pa) \ {a}). Let v ∈ Hb. We may assume that
xv /∈ E(G) for otherwise our claim holds (with a and v). Note that since
ab, av /∈ E(G), by (c) of blowup, a∗b∗, a∗v /∈ E(G). Now, a∗xb∗vPvv

′a′P ∗a a
∗

(in case one of a, v belongs to AK) or a∗xb∗vPvv
′w′a′P ∗a a

∗ (in case both a, v
belong to AS ) form a hole of length 2`+ 1, a contradiction. Hence, we may
assume a ∈ B.

Since ab /∈ E(G), by Lemma 8.4, {a} ∪Ha is anticomplete to {b} ∪Hb.
We may assume that x is anticomplete to Ha ∪ Hb for otherwise we may
apply the proofs above. Hence, for u ∈ Ha and v ∈ Hb, ua

∗xb∗vPvv
′u′Puu

or ua∗xb∗vPvv
′w′u′Puu is a hole of length 2` + 2. This proves (2).

Now the sets Ku for all u ∈ A ∪ A′ ∪ I, B∗ ∪ {x} and B′∗ form a
preblowup of F0. All conditions are easily checked. In particular x satisfies
condition (b) by (1) and (b2) by (2)). So, by Lemma 8.15, G[V (F1)∪{x}] is
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a proper blowup of some `-template with k principal paths. This contradicts
the maximality of F1. 2

Lemma 9.12 If there exist x ∈ V (G) \ V (F2) and u ∈ A such that x has
neighbors in both Ku and Ku+ and is anticomplete to Ku++, then NV (F1)(x)
is a clique.

Proof. Suppose for a contradiction that NV (F1)(x) is not a clique.

(1) x is anticomplete to A′∗ ∪B′∗ ∪ (I∗ \Ku+).

If x has a neighbor t∗ in some Kt such that t ∈ (A′∪I)\{u+}, then note that
t 6= u++ by assumption. Let C be a principal hole that contains t and u.
By Lemma 9.7 applied to t and u (that are by definition non adjacent in
C) we should have that u+ is a common neighbor of u and t in C. This
is not possible since the neighbors of u+ in C are u and u++ 6= t. So x is
anticomplete to A′∗ ∪ (I∗ \Ku+).

It remains to prove that x is anticomplete to B′∗. Otherwise, x has a
neighbor t ∈ B′∗. Consider a path P from t to a neighbor of x in Ku as in
Lemma 9.9 and let Q be the principal path whose interior is contained in P .
By Lemma 9.10, x is complete to V (P ) and hence to V (Q). This is impos-
sible since we have shown that x is anticomplete to A′∗. This proves (1).

From here on, u∗ and u+∗ are neighbors of x in respectively Ku and Ku+ .

(2) x has a neighbor y∗ ∈ B∗ that is complete to A∗.

Note that x has a neighbor y∗ ∈ Ky for some y ∈ A∪B \ {u}, for otherwise,
by (1), NV (F1)(x) ⊆ Ku ∪Ku+ and by Lemma 9.5, NV (F1)(x) is a clique, a
contradiction. In case y∗ = w we are done, so from now on we will assume
that w is not adjacent to x and y∗ 6= w.

Let v ∈ A\{u} and assume that there exists v∗ ∈ Kv which not adjacent
to y∗. Then xv∗ /∈ E(G) for otherwise {x, y∗, w, v∗} induces a C4. Let P ∗v be
the path induced by {v∗}∪(V (Pv)\{v}). Either xy∗wv∗P ∗v v

′w′u′Puu
++u+∗x

(in case v′u′ /∈ E(G)) or xy∗wv∗P ∗v v
′u′Puu

++u+∗x (in case v′u′ ∈ E(G)) is
a hole of length at least 2`+ 1. In both cases we get a contradiction. So we
have shown that for every v ∈ A \ {u}, y∗ is complete to Kv and hence y is
complete to A \ {u, y}.

We also have that u∗y∗ ∈ E(G) for otherwise, {x, y∗, w, u∗} induces a
C4. So, if y∗ ∈ A∗ then A contains no isolated vertex, a contradiction to
Lemma 8.10. So y∗ ∈ B∗. If y∗ has a non-neighbor v∗ ∈ A∗ then from
what precedes we have v∗ ∈ Ku. Now there exists a path Q of length 1, 2
or 3 from x to v∗ with interior in Ku+ (either xv∗ or xu+∗v∗, or xu+v∗ or
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xu+∗u+v∗). Hence, xQv∗wy∗x is a hole of length 4, 5 or 6, a contradiction.
This proves (2).

(3) NA(x) \ {u} = NA(u).

If there exists v ∈ NA(x) \NA[u], then vPvv
′u′Puu

++u+∗xv (in case exactly
one of u, v is in AK) or vPvv

′w′u′Puu
++u+∗xv (in case u, v are both in AS)

is a hole of length 2`− 1, a contradiction.
Conversely, suppose there exists v ∈ NA(u) \NA(x).
Then v′Pvvy

∗xu+∗u++Puu
′w′v′ (in case exactly one of u, v is in AK)

or v′Pvvy
∗xu+∗u++Puu

′v′ (in case u, v are both in AK) is a hole of length
2` + 1, a contradiction. This proves (3).

(4) x is complete to Ku.

Suppose there exists r ∈ Ku such that rx /∈ E(G).
If xu+ ∈ E(G) then {r, y∗, u+, x} induces a C4, a contradiction. Hence

xu+ /∈ E(G). Now by condition (e) of blowups, either {x, y∗, r, u+∗} induces
a C4 or {x, y∗, r, u+, u+∗} induces a C5. This proves (4).

Now, the sets Kv for all v ∈ (A \ u)∪ I ∪A′, Ku ∪ {x}, B∗ and B′∗ form
a preblowup of F0. All conditions are easy to check. In particular, Ku∪{x}
is a clique by (4), conditions (a), (b) and (i) follows from (1), condition (a1)
from (3), condition (b1) from (2) and condition (a2) from our assumptions.

Hence by Lemma 8.15, G[V (F1)∪{x}] is a proper blowup of some twinless
odd `-template with k principal paths that is an induced subgraph of G a
contradiction to the maximality of F1. 2

Lemma 9.13 If x ∈ V (G) \ V (F2) has no neighbor in B∗ ∪ B′∗, then
NV (F1)(x) is a clique.

Proof. Suppose for a contradiction that NV (F1)(x) is not a clique. By
Lemma 9.11, x has a neighbor in I∗. So x has a neighbor in a clique blown
up from an internal vertex of some principal path Pv = v . . . v′. Let a (resp.
b) be the vertex of Pv closest to v (resp. to v′) along Pv and such that x has
a neighbor in Ka (resp. Kb).

Suppose first that a = b, so a ∈ I and a is the only vertex of Pv whose
clique contains a neighbor of x. Hence, as NV (F1)(x) is not a clique, x has
a neighbour in some Ky with y ∈ V (F0) \ V (Pv), and since by assumption
x has no neighbor in B∗ ∪ B′∗, y ∈ A ∪ A′ ∪ I. So, y and a are non-
adjacent members of some principal hole. By Lemma 9.7, x has a neighbor
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in some clique Kc where c is adjacent to both a and y, a contradiction to
the properties implied by the supposition that a = b.

Suppose now that ab ∈ E(G). Then a and b are the only vertices of Pv

whose cliques contain a neighbor of x. If both a and b are internal vertices
of Pv, then as in the previous paragraph, we can show that no neighbour of
x is in some Ky with y ∈ V (F0) \ V (Pv) and hence NV (F1)(x) ⊆ Ka ∪Kb.
So, by Lemma 9.5, NV (F1)(x) is a clique, a contradiction. It follows that at
least one of a or b is an end of Pv. Up to symmetry, we may assume that
a = v and b = v+. Note that, by the definition of b, x is then anticomplete
to Kv++ . Hence, by Lemma 9.12, NV (F1)(x) is a clique, a contradiction.

Hence, a 6= b and ab /∈ E(G). So, by Lemma 9.7, a and b have a common
neighbor u in Pv. So, a, u and b are consecutive along Pv (in particular,
u ∈ I).

(1) x is complete to Ku.

Otherwise, let u∗ ∈ Ku be non-adjacent to x. There exists a path Qa of
length 2 or 3 from u∗ to x with interior in Ka (either xa∗u∗, or xa∗au∗ for
some a∗ in Ka). There exists a similar path Qb. So, Qa and Qb form a hole
of length 4, 5 or 6, a contradiction. This proves (1).

(2) x is anticomplete to V (F1) \ (Ka ∪Ku ∪Kb).

This follows from Lemma 9.7 and from the assumption that x is anticomplete
to B∗ ∪B′∗. This proves (2).

(3) x has neighbors in each of Ka, Kb.

This follows from the definition of a and b. This proves (3).

Now the sets Kv for all v ∈ (A∪A′∪I)\{u}, Ku∪{x}, B∗ and B′∗ form
a preblowup of F0. All conditions are easily checked, in particular Ku ∪{x}
is a clique by (1), it satisfies condition (i) by (2) and condition (i1) by (3).

Hence, by Lemma 8.15 G[V (F1)∪{x}] is a proper blowup of some twinless
odd `-template with k principal paths that is an induced subgraph of G. This
contradicts the maximality of F1. 2

Lemma 9.14 For all vertices x of V (G) \ V (F2), NV (F1)(x) is a clique.

Proof. Suppose for a contradiction that NV (F1)(x) is not a clique.

(1) There exists a principal path Pu = u . . . u′ of F0 such that x is anticom-
plete to I∗ \

⋃
v∈V (Pu) Kv.
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Otherwise, there exist two distinct principal paths P and Q of F0 such that
a in the interior of P , b in the interior of Q and x has neighbors in both
Ka and Kb. Note that then a and b are non adjacent and do not share any
neighbour. This contradicts Lemma 9.7, applied to the principal hole C of
F0 containing P and Q. This proves (1).

(2) We may assume that x has no neighbor in B′∗ and has a neighbor y∗ ∈
Ky where y ∈ B.

Suppose that x has a neighbor u∗ ∈ B∗ and a neighbor v∗ ∈ B′∗. Let P and
Q be as in Lemma 9.9. By Lemma 9.10, x is complete to both V (P ) and
V (Q). In particular, x has neighbors in the interior of two distinct principal
paths, a contradiction to (1). So, up to symmetry, we may assume that x
has no neighbor in B′∗. Hence, by Lemma 9.13, x has neighbors in B∗. This
proves (2).

(3) x is adjacent to u and u+ and has a neighbor in Ku++. Moreover, x is
anticomplete to (A∗ ∪ I∗ ∪A′∗ ∪B′∗) \ (Ku ∪Ku+ ∪Ku++).

By Lemma 9.11, x has at least one neighbor in I∗ and by (1), such a neighbor
is in a clique blown up from an internal vertex of Pu. So, let v be the vertex
of Pu closest to u′ along Pu such that x has a neighbor v∗ ∈ Kv. So v 6= u
and v ∈ A′ ∪ I. We set Q = y∗uPuv if y∗u ∈ E(G) and Q = y∗wuPuv
otherwise. Let Q∗ be the path induced by {v∗} ∪ (V (Q) \ {v}) and observe
that Q∗ has length at most ` + 1. By Lemma 9.10, x is complete to Q∗.
If v /∈ {u+, u++}, then x has neighbors in at least 4 cliques blown up from
vertices of Pu and this contradicts Lemma 9.7. If v = u+, x is adjacent to u
(since x is complete to Q∗) and anticomplete to Ku++ , so by Lemma 9.12,
NV (F1)(x) is a clique, a contradiction. So, v = u++, meaning that x is
adjacent to u and u+, and is anticomplete to I∗ \ (Ku+ ∪Ku++) by (1).

If x has neighbors in some Ka for a ∈ A\{u} then x and Cu,a contradict
Lemma 9.7. Hence x is anticomplete to A∗ \ {Ku}.

By (2), x is anticomplete to B′∗. It remains to check that x is anticom-
plete to A′∗ \ Ku++ . So, suppose x has a neighbor z∗ in some Kz where
z ∈ A′ \ {u++}. Then a principal hole that contains z and u contradicts
Lemma 9.7. This proves (3).

Let u++∗ be a neighbor of x in Ku++ and P ∗u be the path induced by
(V (Pu) \ {u++}) ∪ {u++∗}.
(4) For every z ∈ B such that x is adjacent to some z∗ in Kz we have
NA(z) = NA[u] (in particular NA(y) = NA[u]).
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Suppose there exists v ∈ NA(z) \NA[u]. By condition (d) or (f) of blowups,
vz∗ ∈ E(G). So, by (3), xz∗vPvv

′u′P ∗uu
++∗x (if one of u, v ∈ AK) or

xz∗vPvv
′w′u′P ∗uu

++∗x (if both u and v are in AS) is a hole of length 2`− 1,
a contradiction. This proves that NA(z) ⊆ NA[u]. In particular, u has at
least one neighbor in Hz, so by condition (k) of templates, uz ∈ E(G).

Suppose there exists v ∈ NA(u) \ NA(z) (so z 6= w). By condition (c)
of blowups, vz∗ /∈ E(G). By (3), xv /∈ E(G). Hence xw ∈ E(G), for oth-
erwise xz∗wvPvv

′u′P ∗uu
++∗x or xz∗wvPvv

′w′u′P ∗uu
++∗x is a hole of length

2` + 1. Since the partition is proper there exists a vertex c ∈ AS which
is isolated in G[A] and, since v ∈ N(u), c 6= u. Again by (3), xc /∈ E(G)
and xwcPcc

′u′P ∗uu
++∗x (in case u ∈ AK) or xwcPcc

′w′u′P ∗uu
++∗x (in case

u ∈ AS) is a hole of length 2`− 1, a contradiction. This proves (4).

(5) NF1(x) ⊆ Ku++ ∪Ku+ ∪Ku ∪Ky

By (3) NF1(x) ⊆ Ku++ ∪ Ku+ ∪ Ku ∪ B∗. Suppose there exists z∗ ∈ Kz

such that xz∗ ∈ E(G) and z ∈ B \ {y}. By (4), NA(z) = NA[u] and
NA(y) = NA[u]. So, by Lemma 8.9, y and z are twins of F0, a contradiction.
This proves (5).

(6) y 6= w.

If y = w, then by (4), NA(w) = NA[u] = A and so u is a universal vertex of
G[A]. By Lemma 8.10, there exists also at least one isolated vertex in G[A],
a contradiction to |A| ≥ 3. This proves (6).

(7) NKy(x) is complete to NA[u].

By (4), NA(y) = NA[u]. The result follows from conditions (d) and (f) of
blowups. This proves (7).

(8) x is complete to Ku+.

By (3), ux ∈ E(G). Suppose for a contradiction that there exists u+∗ ∈
Ku+ non-adjacent to x. By condition (e) of blowups, u+∗u, u+∗u++ ∈
E(G). Hence xu++ /∈ E(G) for otherwise {x, u++, u+∗, u} induces a C4.
But now, either {x, u++∗, u+∗, u} induces a C4 (if u+∗u++∗ ∈ E(G)) or
{x, u++∗, u++, u+∗, u} induces a C5 (if u+∗u++∗ /∈ E(G)), a contradiction.
This proves (8).

(9) Ku ∪Ky is a clique.

Since by (4) NA(y) = NA[u], u cannot be an isolated vertex of Hy. Hence,
uy is a solid edge. So, by condition (d) of blowups, Ku is complete Ky. This
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proves (9).

We define B0 = B∗ \NKy(x).
Now the sets Kv for all v ∈ (A∪I∪A′)\{u, u+}, Ku∪NKy(x), Ku+∪{x},

B0 and B′∗ form a preblowup of F0. All conditions are easy to check. In
particular, Ku ∪ NKy(x) is a clique by (9), Ku+ ∪ {x} is a clique by (8),
conditions (a), (b) and (i) follows from (5), condition (a1) from (7), condition
(a2) holds because x is complete to NKy(x), condition (i1) follows from (3)
and condition (b1) holds because of (6).

Hence, by Lemma 8.15, G[V (F1) ∪ {x}] is a proper blowup of some
twinless odd `-template with k principal paths that is an induced subgraph
of G, a contradiction to the maximality of F1. 2

9.5 Attaching a component

Lemma 9.15 If D is a connected component of G \ F2, then N(D) is a
clique.

Proof. Suppose that N(D) is not a clique. Since D is a connected component
of G \ F2 we have that N(D) = NV (F1)(D). By Lemma 9.2, NV (F1)(D) is
not a clique. So, there exist a and b in D such that NV (F1)(a)∪NV (F1)(b) is
not a clique, and a path P from a to b in D. We choose a and b subject to
the minimality of the length of P . By Lemma 9.14, a 6= b (so P has length
at least 1).

We set S∗a = NV (F1)(a) and S∗b = NV (F1)(b). By Lemma 9.14, S∗a and S∗b
are both cliques. Note that possibly S∗a ∩ S∗b 6= ∅. We denote by int(P ) the
set of the internal vertices of P . We set S∗◦ = NV (F1)(int(P )).

We set Sa = {t ∈ V (F0) : S∗a ∩Kt 6= ∅}. We define Sb and S◦ similarly.
Note that Sa is possibly not included in S∗a, and the same remark holds for
Sb and S◦.

(1) There exist non-adjacent x∗a ∈ S∗a and x∗b ∈ S∗b . Moreover, for all such
x∗a and x∗b , x∗aaPbx∗b is a path.

The existence of x∗a and x∗b follows from the definition of a and b, and
x∗aaPbx∗b is a path because of the minimality of P . This proves (1).

(2) S∗a ∪ S∗◦ and S∗b ∪ S∗◦ are cliques (in particular, S∗◦ is a (possibly empty)
clique of F1 that is complete to both S∗a \ S∗◦ and S∗b \ S∗◦).

If S∗a ∪ S∗◦ is not a clique, then let x∗y∗ be a non-edge in S∗a ∪ S∗◦ . Since S∗a
is a clique by Lemma 9.14, we may assume y∗ ∈ S∗◦ . By definition of S∗◦ , y

∗
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has a neighbor in int(P ), and then x∗, y∗ and some subpath of P contradict
the minimality of P . The proof is similar for S∗b ∪ S∗◦ . This proves (2).

Note that while S∗a ∪ S∗b is not a clique by assumption, it might be that
Sa ∪ Sb is a clique (for instance when Sa = {u}, Sb = {v} and uv is an
optional edge of F0).

(3) If S∗◦ 6= ∅ then any two non adjacent vertices x ∈ S∗a and y ∈ S∗b are at
distance 2 in F1.

Let s∗ ∈ S∗◦ . By (2), s∗ 6= x, y and xs∗y is a path in F1. This proves (3).

(4) Sa ∪ S◦ and Sb ∪ S◦ are cliques of F0 (in particular, Sa and Sb are
(non-empty) cliques of F0 and S◦ is a (possibly empty) clique of F0 that is
complete to both Sa \ S◦ and Sb \ S◦).

If Sa ∪ S◦ is not a clique, then let xy be a non-edge of Sa ∪ S◦. Since
x ∈ Sa ∪ S◦, there exists x∗ ∈ Kx ∩ (S∗a ∪ S∗◦) and y∗ ∈ Ky ∩ (S∗a ∪ S∗◦). By
condition (c) of blowups, since xy /∈ E(G), Kx is anticomplete to Ky. So,
x∗y∗ /∈ E(G), a contradiction to (2).

The proof is similar for Sb ∪ S◦. This proves (4).

For the next claim we use the path P defined at the very beginning of
the proof.

(5) If a hole C of F1 contains two non adjacent vertices x ∈ S∗a and y ∈ S∗b ,
then P and C form either:

• a theta, and S∗a ∩ V (C) = {x}, S∗b ∩ V (C) = {y} and the three paths,
all of length `, are the two paths between x and y in C and the path
between x and y obtained by adding the edges ax and by to P ; or

• a prism, S∗a ∩ V (C) = {x, z}, S∗b ∩ V (C) = {y, t}, the triangles of the
prism are axz and byt and the three disjoint paths all of length `− 1,
are either:

– the path P , the shortest path between x and y in C and the short-
est path between z and t in C ; or

– the path P , the shortest path between x and t in C and the shortest
path between z and y in C.

Note that since S∗a is a clique, S∗a ∩ V (C) contains x and at most one other
vertex which should be adjacent to x. The same holds for S∗b and y.

Let us assume that S∗◦ ∩ V (C) 6= ∅. Then by (3), there exists a unique
vertex t ∈ S∗◦ ∩V (C), and t is such that S∗a∩V (C) ⊆ {x, t} and S∗b ∩V (C) ⊆
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{y, t}. Hence C and P form a proper wheel centered at t, a contradiction
to Lemma 3.10. So, S∗◦ ∩ V (C) = ∅.

If a and b have a common neighbor t in C, then x and y are the two
neighbors of t in C and so, C and P form a proper wheel centered at t, again
a contradiction to Lemma 3.10. So the neighborhoods of a and b in C are
disjoint.

From the remarks above and Lemma 3.10, we obtain that C and P form
a theta whose three paths have length ` or a prism whose three paths have
length ` − 1. This can happen only if we are in one of the three cases
described in (5).

This proves (5).

(6) Sa ∩ I = Sb ∩ I = ∅.

Otherwise, up to symmetry, Sa ∩ I 6= ∅. So, there exists a principal path
Pu = u . . . u′ of F0 whose interior intersects Sa. By (4), Sa is a clique, so
1 ≤ |Sa| ≤ 2 and Sa ⊆ V (Pu). We now break into three cases.

Case 1: Sb ⊆ V (Pu).
By (1) there exist vertices xa and xb of Pu such that there exist non

adjacent vertices x∗a ∈ S∗a ∩Kxa and x∗b ∈ S∗b ∩Kxb
.

We first show that there exist such xa and xb that are not adjacent.
Otherwise, and since Sa ⊆ V (Pu) and Sb ⊆ V (Pu), we have that Sa ∪ Sb =
{xa, xb}. By replacing xa and xb by x∗a and x∗b in any principal hole C
containing Pu we obtain a path PC of length 2`−1, by (3) S∗◦ ∩PC = ∅ and
so V (PC) ∪ V (P ) induces a hole of length at least 2` + 2, a contradiction.
So we may assume that xa and xb are not adjacent.

Let C be any principal hole of F0 that contains Pu. By Lemma 9.3,
{x∗a, x∗b} ∪ (V (C) \ {xa, xb}) induces a hole C∗. Let us apply (5) to C∗, x∗a
and x∗b . We obtain that the shortest path in C∗ between x∗a and x∗b has
length ` or `−1. However the path P ∗ obtained from Pu by replacing xa by
x∗a and xb by x∗b is contained in C∗ and it has length at most `− 1, So wlog,
xa = u and xb = u′. We should then be in the second situation described in
(5) and there should exist z ∈ S∗a ∩ V (C), and t ∈ S∗b ∩ V (C) such that the
shortest path between them on C∗ has length `− 1 and is disjoint from P ∗,
a contradiction to the assumption that Sa and Sb ⊆ V (Pu).

Case 2: Sb contains a vertex of some principal path Pv distinct from Pu. Up
to symmetry, since Sb is a clique (by (4)), we assume that b is anticomplete
to Kv′ .

Let y be the vertex of Pu closest to u′ such that a has a neighbor y∗ ∈ Ky.
Let z be the vertex of Pv closest to v such that b has a neighbor z∗ ∈ Kz.
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Possibly y = u′ and z = v, but z 6= v′ and y 6= u since a has a neighbor in
I∗ by assumption. In particular, yz /∈ E(G). By condition (c) of blowups,
y∗z∗ /∈ E(G).

Let C be the principal hole of F0 that contains Pu and Pv. By Lemma 9.3,
{y∗, z∗} ∪ (V (C) \ {y, z}) induces a hole C∗. Applying (5) to C∗, y∗ and
z∗, we obtain that P has length ` − 2 or ` − 1. We denote by P ∗u the path
obtained from Pu by replacing y by y∗, and by P ∗v the path obtained from Pv

by replacing z by z∗. Let P ∗ be the path vP ∗v z
∗bPay∗P ∗uu

′ (in case z = v one
should replace vP ∗v z

∗ by z∗, and in case y = u′ one should replace y∗P ∗uu
′

by y∗). The length of P ∗ is at least `.
Consider now a vertex r ∈ A \ {u, v}. Depending on the adjacencies

of r with v and of r′ with u′, one of rvP ∗u′w′r′Prr or rwvP ∗u′w′r′Prr or
rwvP ∗u′r′Prr or rvP ∗u′r′Prr (with possibly v replaced by z∗ in case z = v
and u′ replaced by y∗ in case y = u) is a cycle Cr with at most one possible
chord br or bw in case z = v. Hence the length of this cycle should be
at most 2` + 1. Since the length of Pr is at least ` − 2 the case where
Cr = rwvP ∗u′w′r′Prr cannot occur and we get that at least one of vr, u′r′

is an edge of G and so at least one of u, v, r is in AK . We also notice that
if the length of P ∗ is at least ` + 1 then vr and u′r′ should be edges of G,
r ∈ AS , u, v ∈ AK , z = v, y = u′ and br is a chord of the cycle rz∗P ∗y∗r′Prr.
This should be valid for any r ∈ A \ {u, v}. However since the partition is
proper, AS contains at least 2 elements and we get a contradiction to the
fact that Sb is a clique. Hence P ∗ has length `, y = u′, z = v and P has
length `− 2.

So by (5), P and C∗ form a theta. However, since we have assumed
Sa ∩ I 6= ∅, a has a neighbor t∗ ∈ Ku− where u− is the neighbor of u′ in
Pu. By Lemma 9.3, since S∗a is a clique, we have that {t∗}∪ (V (C∗) \ {u−})
induces a hole. This hole and P form a pyramid, a contradiction to (5).

Case 3: We are neither in Case 1 nor in Case 2.
Since we are not in Case 1, Sb contains a vertex of F0 \ Pu, and since

we are not in Case 2, this vertex must be in B ∪ B′. Up to symmetry, we
assume that Sb∩B 6= ∅. Since Sb is a clique (by (4)), Sb∩ (B′∪A′∪I) = ∅.
Hence, Sb ⊆ B ∪ {u} and there exist x ∈ B ∩ Sb and x∗ ∈ Kx ∩ S∗b .

Let ua be the vertex of Sa which is the closest to u in Pu and let u′a be
the vertex of Sa which is the closest to u′ in Pu. Notice that, since Sa is a
clique (by (3)), either ua = u′a or uau

′
a is an edge. So it may be that ua = u

or u′a = u′ but since Sa ∩ I 6= ∅ we know that ua 6= u′ and u′a 6= u. Let
now u∗a ∈ Kua ∩S∗a and u′∗a ∈ Ku′a ∩S

∗
a. We denote by P ∗u the path obtained

from Pu by replacing ua by u∗a and, in case ua 6= u′a, by replacing u′a by u′∗a .
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Notice that if u∗a 6= u′∗a then u∗au
′∗
a ∈ E(G) since S∗a is a clique.

Suppose that u′a = u+, where u+ is the neighbor of u in Pu. Since Hx

contains at least two vertices there exists v ∈ Hx \ {u}. By (3), by the
fact that P contains at least one edge, and because Pu and Pv belong to a
hole of F0 of length 2` in which u+ and v are at distance at most 3, one
of aPbx∗vPvv

′u′P ∗uu
′∗
a a or aPbx∗vPvv

′w′u′P ∗uu
′∗
a a is a hole of length at least

2` + 1, a contradiction. Hence from now on, we may assume that ua 6= u
(hence a is not adjacent to u) and that if ua = u+ then u′a 6= ua. Now by (3)
we get that S◦ = ∅.

Suppose first that u ∈ Hx. Let v ∈ Hx be non-adjacent to u (this is
possible since G[Hx] is anticonnected and contains more than one vertex).
So, Pu, Pv, x and possibly w′ form a hole C (possibly not principal). Let z
be the vertex in I∩Sa which is the closest to u in Pu and let z∗ ∈ Kz∩S∗a. By
Lemma 9.3, {x∗, z∗}∪V (C)\{x, z} induces a hole C∗ of F1 (ux∗, vx∗ ∈ E(G)
by condition (f) of blowups). The distance between x∗ and z∗ in C∗ is at
most `− 1 since Pu has length at most `− 1, a contradiction to (5) applied
to C∗, x∗ and z∗ (we cannot have a theta because x∗ and z∗ are too close
in C∗ and we cannot have a prism because else b would have a neighbor in
Kv, a contradiction to Sb ⊆ B ∪ {u}). Hence, from here on, we may assume
that no vertex x ∈ B ∩ Sb is such that u ∈ Hx.

Suppose now that u ∈ N(Hx). Since Sb ⊆ B∪{u}, we have Sb∩Hx = ∅.
Depending on whether b is adjacent to u or not, one of u∗aaPbuP ∗uu

∗
a or

u∗aaPbx∗uP ∗uu
∗
a (remind that ua 6= u) is a hole, implying that P has length

at least ` − 1. Let v ∈ Hx, then uv is an edge (since u ∈ N(Hx)).
So, x∗bPau′∗a P

∗
uu
′w′v′Pvvx

∗ or x∗bPau′∗a P
∗
uu
′v′Pvvx

∗ (in case u′∗a = u′ one
should replace u′∗a P

∗
uu
′ by u′∗a ) is a hole of length at least 2` + 1, a contra-

diction.
Hence, from here on, we may assume that no vertex in B ∩ Sb is ad-

jacent to u and so w /∈ B ∩ Sb, in particular x 6= w and x∗ is not ad-
jacent to u. Then to avoid a C4 induced by {b, x∗, w, u}, b is not adja-
cent to u and u∗aaPbx∗wuP ∗uu

∗
a is a hole, implying that P has length at

least ` − 2. So, for any v ∈ Hx, the hole x∗bPau′∗a P
∗
uu
′v′Pvvx

∗ or the hole
x∗bPau′∗a P

∗
uu
′w′v′Pvvx

∗ (in case u′a = u′ one should replace u′∗a P
∗u′ by u′∗a )

has length 2` if and only if P has length `− 2, u′a = u′, u′ is adjacent to v′

and Pv has length `−2. This implies that v ∈ AS and u ∈ AK . Furthermore,
since Sa ∩ I 6= ∅ and Sa is a clique we get that ua is the neighbor of u′ on
the path Pu.

Assume there exists r ∈ AS which is adjacent to u. Then r /∈ Hx and
rPrr

′w′u′∗a aPbx∗wr is a hole of length 2` + 2, a contradiction. Hence no
such r exists and by setting AK = (AK \ {u}) ∪ {x∗},AS = AS ∪ {u},B =
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{w},A′K = (A′K \ {u′})∪{a},A′S = A′S ∪{u∗a},B′ = {u′∗a } we obtain an even
pretemplate partition contained in G with k + 1 paths (the new paths are
uPuu

∗
a of length `− 2 and x∗bPa of length `− 1), a contradiction.

This proves (6).

(7) We may assume that Sa ⊆ A ∪B and Sb ⊆ A′ ∪B′.

Otherwise, by (6) and since Sa and Sb are cliques (by (4)), we may assume
that Sa, Sb ⊆ A ∪B.

We will show that there exists a path Q∗ of length at least 2`− 2 whose
union with P induces a hole. This is a contradiction because it implies that
P has length at most 0. So, to conclude the proof, it remains to prove the
existence of Q∗.

By (1), there exist non-adjacent x∗a ∈ S∗a and x∗b ∈ S∗b and for all such
x∗a and x∗b , x∗aaPbx∗b is a path. Let xa and xb be the vertices of F0 such
that x∗a ∈ Kxa and x∗b ∈ Kxb

. Note that possibly xaxb is an edge, but this
happens only if xaxb is an optional edge of F0 (since x∗ax

∗
b is not an edge).

We break into three cases.

Case 1: xa, xb ∈ A.
Then xaxb /∈ E(G) (otherwise x∗a and x∗b would be adjacent) and at least

one of xa, xb belongs to AS . So from the definition of templates, there exists
a path Q of length 2` − 2 from xa to xb consisting in Pxa and Pxb

joined
either by an edge x′ax

′
b or by a path x′aw

′x′b. By Lemma 9.3, {x∗a, x∗b} ∪
(V (Q) \ {xa, xb}) induces the path Q∗ that we are looking for. Note that
Q∗ and P form a hole by (2) and our assumption that Sa, Sb ⊆ A ∪B.

Case 2: xa ∈ A and xb ∈ B.
Whether xaxb is an optional edge or a non-edge, an immediate conse-

quence of the definition of a template is that there exists a vertex z ∈ Hxb

that is non-adjacent to xa. By (4), Sa is a clique so z /∈ Sa. We may fur-
thermore assume that z /∈ Sb since else we are in the same situation as in
Case 1. By definition of a template, there exists a path Q0 of length 2`− 2
between xa and z consisting in Pxa and Pz joined either by an edge x′az

′ or
by a path x′aw

′z′. Then by Lemma 9.3, {x∗a, x∗b} ∪ (V (xbzQ0xa) \ {xa, xb})
induces a path Q∗ of length 2`− 1. Note that Q∗ and P form a hole by (2)
and our assumption that Sa, Sb ⊆ A ∪B, z /∈ Sb and z /∈ Sa.

Case 3: xa, xb ∈ B.
Then xaxb /∈ E(G) (otherwise x∗a and x∗b would be adjacent). Hence, by

Lemma 8.4, Hxa ∪ {xa} is anticomplete to Hxb
∪ {xb}. So, let ua ∈ Hxa

and ub ∈ Hxb
, we may assume that ua, ub /∈ Sa ∪ Sb since else we are in the
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situation of Case 1 or 2. By definition of a template, there exists a path Q0

of length 2` − 2 between ua and ub consisting in Pua and Pub
joined either

by an edge u′au
′
b or by a path u′aw

′u′b. By Lemma 9.3, Q∗ = x∗auaQ0ubx
∗
b is

also a path, it is of length 2`. Now, it is easy to verify that Q∗ and P form
a hole of length more than 2`, a contradiction..

This proves (7).

(8) S◦ = ∅.

By (4) and (7), if S◦ 6= ∅, then ` = 4, and there exists a principal path Pu =
ucu′ of F0 such that Sa = {u}, Sb = {u′} and S◦ = {c}. Let u∗ ∈ Ku ∩ S∗a,
c∗ ∈ S∗◦ and u′∗ ∈ Ku′ ∩ S∗b . Observe that by (2), each of u∗c∗, u′∗c∗ is an
edge and by definition, c∗ has a neighbor in int(P ).

Let Pv = v . . . v′ be any principal path distinct from Pu. Now, Pv, P ,
u∗, u′∗, c∗ and possibly w and/or w′ form a proper wheel centered at c∗, a
contradiction to Lemma 3.10. This proves (8).

(9) (Sa ∪ Sb) ∩ (AS ∪A′S) = ∅.

Notice that each of Sa ∩ AS and Sb ∩ A′S contains at most one vertex since
Sa and Sb are cliques.

Case 1: Sa contains x ∈ AS and Sb contains y′ ∈ A′S .
Let x∗ ∈ Kx ∩ S∗a and y′∗ ∈ Ky′ ∩ S∗b . We denote by P ∗x (resp. P ∗y ) the

path obtained from Px (resp. Py) by replacing x (resp. y′) by x∗ (resp. y′∗).
If x = y then ax∗P ∗xx

′bPa is a hole, so P has length `. Since the partition
is proper there exists an other vertex r ∈ AS and ax∗wrPrr

′w′y′∗bPa is a
cycle of length 2`+ 4 whose possible chords are aw and bw′, in any case the
cycle contains a too long hole. Hence x 6= y.

Assume that aw, bw′ /∈ E(G). Then ax∗P ∗xx
′w′y′∗bPa is a hole and

hence P has length `− 2. We know that the template has at least one more
principal path Pr. In case there exists r ∈ AS then ax∗wrPrr

′w′y′∗bPa is
a hole of length 2` + 2, a contradiction. So any r ∈ A \ {x, y} belongs to
AK . If rx and ry are in E(G) then ax∗rPrr

′w′y′∗bPa is a cycle of length
2` + 2 whose only possible chord is ar, so we get a contradiction. So by
symmetry we get that r is adjacent to exactly one of x and y and r′ is
adjacent to exactly one of x′ and y′. In case r is adjacent to y and not to x
then ax∗wrPrr

′w′y′∗bPa is a hole of length 2` + 3, a contradiction. So we
may assume that r is adjacent to x and not to y (and then r′ is adjacent to
y′ and not to x′), and this is true for any r ∈ AK .

Let x+ be the neighbour of x in Px and y− be the neighbour of y′ in
Py. By setting AK = AK ,AS = {a, x+, w},B = {x∗},A′K = A′K ,A′S =
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{b, w′, y−},B′ = {y′∗} we obtain an even pretemplate partition contained
in G with k + 1 paths (the new paths are aPb, x+Pxx

′w′, wyPyy
− each of

length `− 1), a contradiction. Hence aw or bw′ is an edge of G.

So by symmetry we may set that aw ∈ E(G). Then awyP ∗y y
′∗bPa is a

hole, so P has length ` − 1. If bw′ /∈ E(G) then ax∗P ∗xx
′w′y′∗bPa is a hole

of length 2` + 1, a contradiction. So bw′ ∈ E(G). Suppose AS contains a
vertex r 6= x, y then awrPrr

′w′y′∗bPa is hole of length 2`+1, a contradiction.
Hence AS = {x, y} and ar, br′ ∈ E(G) for every r ∈ AK .

So, by setting AK = AK ∪ {a},AS = {x∗, y},B = {w},A′K = A′K ∪
{b},A′S = {x′, y′∗},B′ = {w′} we obtain an even pretemplate partition con-
tained in G with k + 1 paths (the new paths are aPb of length ` − 1 and
P ∗x , P

∗
y of length `− 2), a contradiction.

Case 2: Sa∩AS = ∅, Sa contains a vertex x ∈ AK and Sb contains a vertex
y′ ∈ A′S (symmetric to the case where Sb ∩ A′S = ∅, Sb contains a vertex
y′ ∈ A′K and Sa contains a vertex x ∈ AS).

Let x∗ ∈ Kx ∩ S∗a and y′∗ ∈ Ky′ ∩ S∗b . Suppose that xy ∈ E(G). Then
ax∗yP ∗y y

′∗bPa is a hole and hence P has length `−1. Then ax∗P ∗xx
′w′y′∗bPa

is a cycle with at most one possible chord (bw′) of length 2` + 2, a contra-
diction. So xy /∈ E(G) and consequently x′y′ ∈ E(G). Since x∗ and y′∗

both belong to the hole x∗Pxx
′y′∗P ∗y ywx

∗, by (5) we get that P and this
hole induce either a theta or a prism.

- Subcase 2.1: x∗P ∗xx
′y′∗P ∗y ywx

∗ and P induce a theta.
Then P has length ` − 2 and aw, bx′ /∈ E(G). Assume that y has a

neighbour v in A. Then since y ∈ AS we have that v ∈ AK and hence v′y′∗ /∈
E(G) and xv, x′v′ ∈ E(G). Hence to avoid a C4 induced by {b, x′, y′∗, v′} it
should be that bv′ /∈ E(G). So aPby′∗x′v′Pvvxa is a cycle of length 2` + 2
whose only possible chord is va, a contradiction to the fact that G belongs
to C2`. We may then conclude that y has no neighbor in A and so by
setting AK = (AK \ {x}) ∪ {x∗, w},AS = (AS \ {y}) ∪ {a},B = ∅,A′K =
A′K ∪ {y′∗},A′S = (A′S \ {y′}) ∪ {b},B′ = B′, we obtain an even pretemplate
partition contained in G with k + 1 paths (the new paths are aPb of length
` − 2 and x∗P ∗xx

′ and wyP ∗y y
′∗ of length ` − 1, AS and A′S are both stable

sets), a contradiction.

- Subcase 2.2: x∗P ∗xx
′y′∗P ∗y ywx

∗ and P induce a prism. Then P has
length `− 1 and aw, bx′ ∈ E(G).

So, by setting AK = (AK \ {x}) ∪ {x∗, a},AS = AS ,B = B,A′K =
A′K ∪ {b},A′S = (A′S \ {y′}) ∪ {y′∗},B′ = B′ we obtain an even pretemplate
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partition contained in G with k + 1 paths (the new paths are aPb, x∗P ∗xx
′

and yP ∗y y
′∗ of lengths respectively `− 1, `− 1, `− 2), a contradiction.

Case 3: Sa ∩ A = ∅, Sa contains a vertex x ∈ B and Sb contains a vertex
y′ ∈ A′S (symmetric to the case where Sb ∩ A′ = ∅, Sb contains a vertex
y′ ∈ B′ and Sa contains a vertex x ∈ AS).

If xy ∈ E(G) then because of the hole ax∗yPyy
′∗bPa the path P has

length ` − 1 and once again it is enough to replace x by x∗, y′ by y′∗ and
add a to AK and b to A′K in order to obtain an `-pretemplate partition
with k + 1 principal paths, hence xy /∈ E(G). So, we may assume that a is
not adjacent to w. Then because of ax∗wyP ∗y y

′∗bPa, the path P has length
`− 2.

So, by setting AK = AK∪{x∗},AS = AS ,B = {w},A′K = A′K∪{b},A′S =
(A′S\{y′})∪{y′∗},B′ = B′ we obtain an even pretemplate partition contained
in G with k + 1 paths (the new paths are x∗aPb of length `− 1 and yP ∗y y

′∗

of length `− 2), a contradiction.
This proves (9).

We may now conclude the proof. By (9) we have that Sa ⊆ AK ∪B and
Sb ⊆ A′K ∪ B′. Notice that if the length of P is ` − 1 (resp. ` − 2) then
we get a contradiction since we can add a to AK and b to A′K (resp. a to
AS and b to A′S) and replace any vertex x ∈ Sa and any vertex y′ ∈ Sb by
respectively x∗ ∈ Kx∩S∗a and y′∗ ∈ Ky∩S∗b in order to get an `-pretemplate
partition with one more principal path. So from now on we may assume
that the length of P is neither `− 1 nor `− 2.

Let us assume that there exist x ∈ Sa ∩ AK and y′ ∈ Sb ∩ A′K and let
x∗ ∈ Kx ∩ S∗a and y′∗ ∈ K ′y ∩ S∗b . If x = y then ax∗P ∗xy

′∗bPa is a hole, and
hence P has length `−1, a contradiction. So we may now assume that x 6= y,
Sa ∩ Ky = ∅ and Sb ∩ Kx′ = ∅. Then because of the hole ax∗yP ∗y y

′∗bPa
the length of P is `− 2, a contradiction again.

So from now on we may assume by symmetry that Sa ∩AK = ∅. Then
there exists x∗ ∈ Kx ∩ S∗a for some x ∈ B. Assume that there exists y′∗ ∈
K ′y∩S∗b for some y′ ∈ AK . In case xy ∈ E(G) then P has length `−2 because
of the hole ax∗yP ∗y y

′∗bPa and we would get a contradiction. Hence xy, aw /∈
E(G). Now the hole ax∗wyP ∗y y

′∗bPa implies that P has length `− 3. Then
any vertex u ∈ A which is adjacent to x, is adjacent to y: if u ∈ AK by
definition of an even template, if u ∈ AS because else ax∗uPuu

′y′∗bPa is
hole of length 2`− 1. However, as any vertex in B, x has two non adjacent
neighbors r, s ∈ A and so G contains a square x∗rysx∗, a contradiction. So
from now on we may assume that Sb ⊆ B′ and there exists y′∗ ∈ Ky′ ∩ S∗b
for some y′ ∈ B′. By definition, x has at least one neighbor r in AS . If
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y′r′ ∈ E(G) then because of the hole ax∗rPrr
′y′∗bPa we get that P has

length `− 2, a contradiction. So r′y′ /∈ E(G) and then y′ 6= w′, bw′ /∈ E(G)
and P should have length `− 3, because of the cycle ax∗rPrr

′w′y′∗bPa. By
symmetry, we also have x 6= w.

So, by setting AK = AK ∪ {x∗},AS = AS ,B = {w},A′K = A′K ∪
{y∗},A′S = A′S ,B′ = {w′} we obtain an even pretemplate partition con-
tained in G with k + 1 paths (the new path is x∗aPby∗ of length ` − 1), a
contradiction.

2

9.6 End of the proof

We may now conclude the proof of Lemma 9.1. If G \ F1 is empty, then
conclusion (a) holds. If G \ F1 is non-empty and G \ F2 is empty, then
conclusion (b) holds. Otherwise, we consider a connected component D of
G \ F2 and apply Lemma 9.15. We then see that G has a clique cutset, so
conclusion (c) holds.

10 Proof of Theorem 10.1

Theorem 10.1 Let ` ≥ 4 be an integer. If G is a graph in C2` then one of
the following holds:

(a) G is a ring of length 2`;

(b) G is a proper blowup of a twinless even `-template;

(c) G has a universal vertex or

(d) G has a clique cutset.

Proof. By Lemma 3.9, G contains no unbalanced prism, no unbalanced
theta, no pyramid and no proper wheel. Also, clearly G contains no C4 and
no C5. Hence, by Theorem 3.13, we may assume that G contains a prism or
a theta for otherwise one of the conclusions (a), (c) or (d) holds. The result
then follows from Lemma 9.1. 2
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