Graphs with polynomially many minimal separators

Tara Abrishami ${ }^{1}$ Maria Chudnovsky ${ }^{1, *}$ Cemil Dibek ${ }^{1, *}$
Stéphan Thomassé ${ }^{2, \dagger}$ Nicolas Trotignon ${ }^{2, \dagger}$ Kristina Vušković ${ }^{3, \ddagger}$
${ }^{1}$ Princeton University, Princeton, NJ 08544
${ }^{2}$ Univ Lyon, EnsL, UCBL, CNRS, LIP, F-69342, LYON Cedex 07, France
${ }^{3}$ School of Computing, University of Leeds, UK

September 22, 2021

Abstract

We show that graphs that do not contain a theta, pyramid, prism, or turtle as an induced subgraph have polynomially many minimal separators. This result is the best possible in the sense that there are graphs with exponentially many minimal separators if only three of the four induced subgraphs are excluded. As a consequence, there is a polynomial time algorithm to solve the maximum weight independent set problem for the class of (theta, pyramid, prism, turtle)-free graphs. Since every prism, theta, and turtle contains an even hole, this also implies a polynomial time algorithm to solve the maximum weight independent set problem for the class of (pyramid, even hole)-free graphs.

1 Introduction

All graphs in this paper are finite and simple. Let $G=(V, E)$ be a graph. A set $C \subseteq V(G)$ is a minimal separator of G if there are two distinct connected components L, R of $G \backslash C$ such that $N(L)=N(R)=C$. A class \mathcal{G} of graphs is said to have the polynomial separator property if there exists a constant c such that every graph $G \in \mathcal{G}$ has at most $|V(G)|^{c}$ minimal separators.

The polynomial separator property has proven to be a desirable property due to its connection with potential maximal cliques and the maximum weight treewidth k induced subgraph problem. Given a graph G, a nonnegative weight function on $V(G)$, and an integer k, the MAXIMUM WEIGHT TREEWIDTH k INDUCED SUBGRAPH problem (MWTkISG) asks for a maximum-weight induced subgraph of G of treewidth less than k. The maximum weight independent set problem (MWIS), which asks for an independent set of G with maximum weight, and the FEEDBACK VERTEX SET problem (FVS), which asks for a minimum-size set $X \subseteq V(G)$ such that $G \backslash X$ is a forest, are special cases of MWTkISG when $k=1$ and $k=2$, respectively. Recently, significant progress

[^0]was made regarding the complexity of MWIS in various graph classes using potential maximal cliques, originally developed by Bouchitté and Todinca [5,6]. A milestone result with this approach was obtained in 2014 by Lokshtanov, Vatshelle, and Villanger [11], who designed a polynomialtime algorithm for MWIS in P_{5}-free graphs. Later, using the same framework, Grzesik et al. [10] provided a polynomial-time algorithm for MWIS in P_{6}-free graphs. More recently, Abrishami et al. [1] extended the framework of potential maximal cliques to MWTkISG, and gave a polynomialtime algorithm for MWIS in graphs with no induced cycle of length five or greater, and for FVS in P_{5}-free graphs.

Given an integer k, it is known that MWTkISg can be solved in polynomial time for graphs that have polynomially many potential maximal cliques. Minimal separators are closely related to potential maximal cliques: it was shown in [6] that a graph has polynomially many potential maximal cliques if and only if it has polynomially many minimal separators. Consequently, MWTkISG is polynomial-time solvable in any class of graphs that has the polynomial separator property. It is therefore interesting to find classes of graphs where the number of minimal separators is bounded by a polynomial. We now define four graphs of interest to us (see also Figure 1):

- A theta is a graph G consisting of two nonadjacent vertices a, b and three paths P_{1}, P_{2}, P_{3}, each from a to b, and otherwise vertex-disjoint, such that for $1 \leq i<j \leq 3, V\left(P_{i}\right) \cup V\left(P_{j}\right)$ induces a hole in G. In particular, each of P_{1}, P_{2}, P_{3} has at least two edges. We say that G is a theta between a and b.
- A pyramid is a graph G consisting of a vertex a and a triangle $\left\{b_{1}, b_{2}, b_{3}\right\}$, and three paths P_{1}, P_{2}, P_{3}, such that: P_{i} is between a and b_{i} for $i=1,2,3$; for $1 \leq i<j \leq 3, P_{i}, P_{j}$ are vertex-disjoint except for a and $V\left(P_{i}\right) \cup V\left(P_{j}\right)$ induces a hole in G; and in particular at most one of P_{1}, P_{2}, P_{3} has only one edge. We say that G is a pyramid from a to $b_{1} b_{2} b_{3}$.
- A prism is a graph G consisting of two vertex-disjoint triangles $\left\{a_{1}, a_{2}, a_{3}\right\},\left\{b_{1}, b_{2}, b_{3}\right\}$, and three paths P_{1}, P_{2}, P_{3}, pairwise vertex-disjoint, where each P_{i} has ends a_{i}, b_{i}, and for $1 \leq i<$ $j \leq 3, V\left(P_{i}\right) \cup V\left(P_{j}\right)$ induces a hole in G. In particular, each of P_{1}, P_{2}, P_{3} has at least one edge. We say G is a prism between $a_{1} a_{2} a_{3}$ and $b_{1} b_{2} b_{3}$.
- A turtle is a graph G consisting of two vertex-disjoint paths P_{1}, P_{2} and two adjacent vertices $x, y \in V(G) \backslash\left(V\left(P_{1}\right) \cup V\left(P_{2}\right)\right)$ such that for $i=1,2, P_{i}$ is from a_{i} to b_{i}, a_{1} is adjacent to a_{2}, b_{1} is adjacent to $b_{2}, V\left(P_{1}\right) \cup V\left(P_{2}\right)$ induces a hole in G, x has at least three neighbors in P_{1} and no neighbors in P_{2}, and y has at least three neighbors in P_{2} and no neighbors in P_{1}. We say that G is an $x y$-turtle where we call x and y the centers of G.

Figure 1: Theta, pyramid, prism, and turtle
Thetas, pyramids, prisms, and turtles are interesting because they provide examples of graphs with exponentially many minimal separators. Specifically, we have the following examples of graphs with exponentially many minimal separators (see also Figure 2).

- A k-theta is a graph G with vertex set $V(G)=\left\{a, a_{1}, \ldots, a_{k}, b, b_{1}, \ldots, b_{k}\right\}$, and its set of edges consists of the pairs of the following form: $a a_{i}, b b_{i}$, and $a_{i} b_{i}$ for $1 \leq i \leq k$.
- A k-pyramid is a graph G with vertex set $V(G)=\left\{a, a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k}\right\}$, and its set of edges consists of the pairs of the following form: $a a_{i}$ and $a_{i} b_{i}$ for $1 \leq i \leq k$, and $b_{i} b_{j}$ for $1 \leq i<j \leq k$.
- A k-prism is a graph G consisting of two cliques of size k and a k-edge matching between them. More precisely, $V(G)=\left\{a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k}\right\}$, each of the sets $\left\{a_{1}, \ldots, a_{k}\right\}$ and $\left\{b_{1}, \ldots, b_{k}\right\}$ is a clique, and $a_{i} b_{i} \in E(G)$ for $1 \leq i \leq k$, and there are no other edges in G.
- A k-turtle is a graph G with two non-adjacent vertices $a, b \in V(G)$, two paths P_{1} and P_{2} from a to b, vertex-disjoint except for a and b, such that $V\left(P_{1}\right) \cup V\left(P_{2}\right)$ induces a hole H in G. Also, for $1 \leq i \leq k, x_{i}, y_{i} \in V(G) \backslash V(H)$ such that $x_{i} y_{i} \in E(G)$, and x_{i} has at least three neighbors in P_{1} and no neighbors in P_{2}, and y_{i} has at least three neighbors in P_{2} and no neighbors in P_{1}. Furthermore, the neighbors of x_{i} 's in P_{1} and the neighbors of y_{i} 's in P_{2} are nested along P_{1} and P_{2} as shown in Figure 2. Specifically, the neighbors of x_{i} in P_{1} are between a and the neighbors of x_{j} in P_{1} for all $1 \leq i<j \leq k$ and the neighbors of y_{i} in P_{2} are between a and the neighbors of y_{j} in P_{2} for all $1 \leq i<j \leq k$.

Figure 2: k-theta, k-pyramid, k-prism, k-turtle, and k-ladder
There are other examples of graphs with exponentially many minimal separators, such as the k-ladder shown in Figure 2. The k-ladder also contains a pyramid. In view of these examples, it is natural to ask whether excluding theta, pyramid, prism, and turtle in a graph is enough to obtain a polynomial number of minimal separators. This was conjectured in [7]:

Conjecture 1.1 ([7]). There is a polynomial P such that every graph G that contains no theta, pyramid, prism, or turtle has at most $P(|V(G)|)$ minimal separators.

Here we prove Conjecture 1.1. Let \mathcal{C} be the class of (theta, pyramid, prism, turtle)-free graphs. We prove that the graphs in \mathcal{C} have polynomially many minimal separators. Note that in view of the results in [3], listing the minimal separators of a graph can be done in polynomial time in the size of the graph and the number of its minimal separators. Our proof that the graphs in \mathcal{C} have polynomially many minimal separators is algorithmic in nature, so we include a polynomial-time algorithm here to construct minimal separators of graphs in \mathcal{C} for completeness.

Theorem 1.2. Let $G \in \mathcal{C}$. One can construct a set \mathcal{S} of size at most $|V(G)|^{18}$ in polynomial time such that \mathcal{S} is the set of all minimal separators of G.

Since the graphs in Figure 2 have exponentially many minimal separators, Theorem 1.2 is in a sense the best possible. Moreover, as explained above, given an integer k, Theorem 1.2 implies that MWT k ISG can be solved in polynomial time for graphs in \mathcal{C}. To be more precise, let n, m, p, s denote, respectively, the number of vertices, the number of edges, the number of potential maximal
cliques, and the number of minimal separators of a graph G. It is proved in [3] that computing the minimal separators of G can be done in time $\mathcal{O}\left(n^{3} s\right)$. In [6], it is proved that $p \leq \mathcal{O}\left(n s^{2}+n s+1\right)$ and that the potential maximal cliques of G can be listed in time $\mathcal{O}\left(n^{2} m s^{2}\right)$. In [1], it is proved that given the list of potential maximal cliques of G and an integer k, if p is polynomial in n, then MWT k ISG can be solved in time $n^{\mathcal{O}(k)}$. By Theorem 1.2, for a graph $G \in \mathcal{C}$, we have $s \leq \mathcal{O}\left(n^{18}\right)$, and so $p \leq \mathcal{O}\left(n^{37}\right)$. Therefore, MWT k ISG can be solved in time $n^{O(k)}$ in \mathcal{C}. Using results from [11], a better complexity for MWIS can be achieved. In [11], based on [9], it is proved that, given the list of potential maximal cliques, MWIS can be solved in time $\mathcal{O}\left(n^{5} \mathrm{mp}\right)$ in any graph. Therefore, MWIS can be solved in time $\mathcal{O}\left(n^{44}\right)$ in \mathcal{C}.

It is easy to observe that every prism, theta, and turtle contains an even hole. Therefore, the following is an immediate corollary of Theorem 1.2.

Corollary 1.3. The class of (pyramid, even hole)-free graphs has the polynomial separator property.
In [7], a better bound than the one given in Theorem 1.2 is achieved for (pyramid, even hole)-free graphs. In particular, Corollary 1.3 implies that MWTkISG and MWIS can be solved in (pyramid, even hole)-free graphs in polynomial time. A cap is a cycle of length at least five with exactly one chord and that chord creates a triangle with the cycle. Since every pyramid contains a cap, Corollary 1.3 generalizes a result of [8] where it is shown that MWIS can be solved in (cap, even hole)-free graphs in polynomial time.

We conjecture a stronger version of Theorem 1.2. For an integer $k \geq 3$, a graph G is called a k-creature if it is given as follows: $V(G)=A \cup B \cup\left\{x_{1}, \ldots, x_{k}\right\} \cup\left\{y_{1}, \ldots, y_{k}\right\}$ such that
(i) $G[A]$ and $G[B]$ are connected, and A is anticomplete to B,
(ii) for $i=1, \ldots, k, x_{i} y_{i} \in E(G), x_{i}$ has a neighbor in A and is anticomplete to B, y_{i} has a neighbor in B and is anticomplete to A, and
(iii) for $1 \leq i, j \leq k$ with $i \neq j, x_{i} y_{j} \notin E(G)$.

We observe that if G is a k-creature, then G contains a theta, pyramid, prism, or turtle; see Lemma 4.1 for details. We conjecture the following:

Conjecture 1.4. There exists $f: \mathbb{N} \rightarrow \mathbb{N}$ such that if no induced subgraph of G is a k-creature, then G has at most $|V(G)|^{f(k)}$ minimal separators.

Observe that even if Conjecture 1.4 is true, it does not provide a full characterization of classes with the polynomial separator property. For example, for every integer $k \geq 1$, let T_{k} be a k-turtle such that the two paths P_{1} and P_{2} both have length $2^{2^{k}}$. Let \mathcal{D} be the class of graphs formed by all induced subgraphs of the graphs $T_{k}, k \geq 1$. Observe that T_{k} has 2^{k} minimal separators, which is polynomial in $\left|V\left(T_{k}\right)\right|$ since $\left|V\left(T_{k}\right)\right| \geq 2^{2^{k}}$, and so \mathcal{D} has the polynomial separator property. However, \mathcal{D} contains k-creatures with k arbitrarily large.

We prove a weaker version of Conjecture 1.4. The proof can also be found in [7]. We say that a graph G is an immature k-creature if $V(G)$ can be partitioned into two sets $X=\left\{x_{1}, \ldots, x_{k}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{k}\right\}$ such that the only edges between X and Y are the edges $x_{i} y_{i}$ for $i=1, \ldots, k$. The edges among vertices of X and vertices of Y are unrestricted.

Theorem 1.5. Let $k \geq 1$ be an integer and let G be a graph on n vertices such that no induced subgraph of G is an immature k-creature. Then, G has at most $\mathcal{O}\left(n^{2 k-2}\right)$ minimal separators that can be enumerated in time $\mathcal{O}\left(n^{2 k}\right)$.

Proof. Let a and b be two non-adjacent vertices in G. Let C be a minimal separator that separates a and b. Let A and B be the components of $G \backslash C$ that contain a and b, respectively. By the minimality
of C, every vertex in C has a neighbor in A. It is therefore well-defined to consider an inclusion-wise minimal subset X_{A} of A such that $C \subseteq N\left(X_{A}\right)$. For every $x \in X_{A}$, there exists a vertex $c \in C$ such that $x c \in E(G)$ and no other vertex of X_{A} is adjacent to c, for otherwise, $X_{A} \backslash\{x\}$ would contradict the minimality of X_{A}. It follows that $G\left[X_{A} \cup C\right]$ contains an immature $\left|X_{A}\right|$-creature, and so $\left|X_{A}\right|<k$. We define a similar set $X_{B} \subseteq B$, and we observe that $C=N\left(X_{A}\right) \cap N\left(X_{B}\right)$.

Now, the following algorithm enumerates all minimal separators of G : for every pair of sets X_{A}, X_{B} with $\left|X_{A}\right|,\left|X_{B}\right|<k$, compute $C=N\left(X_{A}\right) \cap N\left(X_{B}\right)$ and check whether C is a minimal separator. Since $\binom{n}{i} \leq n^{i}$, we have $\binom{n}{0}+\cdots+\binom{n}{k-1} \leq k n^{k-1}$. Therefore, the algorithm enumerates at most $\mathcal{O}\left(n^{2 k-2}\right)$ minimal separators in time $\mathcal{O}\left(n^{2 k}\right)$.

We note that there exist graphs in \mathcal{C} of arbitrarily large cliquewidth. In [2], examples of even-hole-free graphs of arbitrarily large cliquewidth are presented. Those graphs are also diamond-free and they have no clique separators. (A diamond is the graph with vertex set $\{a, b, c, d\}$ with all possible edges except $a b$.) However, they are not in \mathcal{C} because they contain pyramids. In [7], a procedure to obtain graphs in \mathcal{C} with unbounded cliquewidth by modifying graphs defined in [2] is explained in detail. Moreover, those graphs contain arbitrarily large immature k-creatures, and so the main result of the current paper is not a corollary of Theorem 1.5.

The rest of the paper is devoted to the proof of Theorem 1.2. In Section 2, we prove a useful theorem about star cutsets of graphs in \mathcal{C}. In Section 3, we describe the structure of proper separators of graphs in \mathcal{C}. In Section 4, we construct a list of all minimal separators of graphs in \mathcal{C} and prove Theorem 1.2.

Definitions

Let $G=(V, E)$ be a graph. For $X \subseteq V(G), G[X]$ denotes the induced subgraph of G with vertex set X and $G \backslash X$ denotes the induced subgraph of G with vertex set $V(G) \backslash X$. We use induced subgraphs and their vertex sets interchangeably throughout the paper. We say that G contains a graph H if G has an induced subgraph isomorphic to H. A graph G is H-free if it does not contain H. When \mathcal{H} is a set of graphs, we say that G is \mathcal{H}-free if G is H-free for every $H \in \mathcal{H}$. For a graph H, we say that a set $X \subseteq V(G)$ is an H in G if $G[X]$ is isomorphic to H.

Let $X \subseteq V(G)$. The neighborhood of X in G, denoted by $N(X)$, is the set of all vertices in $V(G) \backslash X$ with a neighbor in X. The closed neighborhood of X in G, denoted $N[X]$, is given by $N[X]=N(X) \cup X$. For $u \in V(G), N(u)=N(\{u\})$ and $N[u]=N[\{u\}]$. For $u \in V(G) \backslash X$, $N_{X}(u)=N(u) \cap X$. Let $Y \subseteq V(G)$ be disjoint from X. We say X is complete to Y if every vertex in X is adjacent to every vertex in Y, and X is anticomplete to Y if every vertex in X is non-adjacent to every vertex in Y. Note that the empty set is complete and anticomplete to every $X \subseteq V(G)$. We say that a vertex v is complete (anticomplete) to $X \subseteq V(G)$ if $\{v\}$ is complete (anticomplete) to X, and an edge $e=u v$ is complete (anticomplete) to X if $\{u, v\}$ is complete (anticomplete) to X.

A clique in G is a set of pairwise adjacent vertices, and an independent set is a set of pairwise nonadjacent vertices. A triangle is a clique of size three. A path in G is an induced subgraph isomorphic to a graph P with $k+1$ vertices $p_{0}, p_{1}, \ldots, p_{k}$ and with $E(P)=\left\{p_{i} p_{i+1}: i \in\{0, \ldots, k-1\}\right\}$. We write $P=p_{0}-p_{1}-\ldots-p_{k}$ to denote a path with vertices $p_{0}, p_{1}, \ldots, p_{k}$ in order. We say that P is a path from p_{0} to p_{k}. For a set $Y \subseteq V(G)$, if $P \backslash\left\{p_{0}, p_{k}\right\} \subseteq Y$, we say that P is a path from p_{0} to p_{k} through Y. The length of a path P is the number of edges in P. A path is odd if its length is odd, and even otherwise. If $a, b \in P$, we denote by $a P b$ the subpath of P from a to b. For a path P with ends a, b, the interior of P, denoted P^{*}, is the set $V(P) \backslash\{a, b\}$. For an integer $k \geq 4$, a
hole of length k in G is an induced subgraph isomorphic to the k-vertex cycle C_{k}. A hole is odd if its length is odd, and even if its length is even.

If $X, Y, Z \subseteq V(G)$ are such that $X \cap Z=\emptyset$, we say that the path $P=p_{0}-\ldots-p_{k}$ is a path from X to Z through Y if $p_{0} \in X, V(P) \backslash\left\{p_{0}\right\} \subseteq Y, V(P) \backslash\left\{p_{k}\right\}$ is anticomplete to Z, and p_{k} has a neighbor in Z. When $X=\left\{p_{0}\right\}$, we say that P is a path from p_{0} to Z through Y. Note that P is disjoint from Z, and possibly $P=p_{0}$ (when p_{0} is a vertex from X with neighbors in Z). A path from X to Z through Y, when it exists, can be computed in time $\mathcal{O}\left(|V(G)|^{2}\right)$ as follows. In $G[X \cup Y \cup Z]$, compute a shortest path $q_{0}-\ldots-q_{k}$ from X to Z by a breadth-first search (that also terminates when no such path exists). Then, the path $q_{0}-\ldots-q_{k-1}$ is from X to Z through Y. Observe that this algorithm detects when no path from X to Z through Y exists (when no connected component of $G[X \cup Y \cup Z]$ contains vertices of both X and $Z)$.

2 Star cutsets in (theta, pyramid, prism, turtle)-free graphs

Let G be a graph and H a hole in G. A minor vertex for H is a vertex $u \in G \backslash H$ such that u has neighbors in H and $N_{H}(u)$ is contained in a three-vertex path. A vertex $v \in G \backslash H$ is a major vertex for H if v has neighbors in H and v is not minor. A set $X \subseteq V(G)$ is a star cutset of G if $G \backslash X$ is not connected, and there exists $x \in X$ such that x is complete to $X \backslash x$. We call x the center of the star cutset X. The goal of this section is to prove that major vertices for holes of graphs $G \in \mathcal{C}$ are the centers of star cutsets of G. The following two lemmas describe major and minor vertices.

Lemma 2.1. Let $G \in \mathcal{C}$. Every major vertex u for a hole H of G has at least four neighbors in H or has exactly three neighbors in H that are pairwise non-adjacent.

Proof. Let u be a major vertex for a hole H. Suppose u has exactly two neighbors in H. The neighbors of u are non-adjacent, because they are not contained in a three-vertex path. Thus, $H \cup\{u\}$ forms a theta between the neighbors of u in H, a contradiction. If u has exactly three neighbors in H, they are pairwise non-adjacent, otherwise $H \cup\{u\}$ forms a pyramid.

Lemma 2.2. Let $G \in \mathcal{C}$. Then, every minor vertex u for a hole H of G satisfies one of the following:

- u has a unique neighbor in H (we say that u is a pendant of H)
- u has two adjacent neighbors in H (we say that u is a cap of H)
- u has three neighbors in H which induce a path xyz (we say that u is a clone of y in H)

Proof. Since u is minor, $N_{H}(u)$ is contained in a three-vertex path. Therefore, the only possibility not listed above is that u has two non-adjacent neighbors in H, in which case $H \cup\{u\}$ is a theta.

Suppose H is a hole of a graph G and u is a clone of y in H. We denote by $H_{u \backslash y}$ the hole of G induced by $(V(H) \backslash\{y\}) \cup\{u\}$. Note that y is a clone of u in $H_{u \backslash y}$.

Lemma 2.3. Let H be a hole in a graph $G \in \mathcal{C}$, let v be a major vertex for H, let u be a clone of y in H, and suppose $u v \in E(G)$. If $y v \notin E(G)$, then u and v have a common neighbor in H.

Proof. Let $N_{H}(u)=\{x, y, z\}$. Suppose $u v \in E(G)$ and $y v \notin E(G)$. Because v is major, by Lemma 2.1, v has at least three neighbors in H. If v is anticomplete to $\{x, z\}$, then $H \cup\{u, v\}$ is a $u v$-turtle in G, a contradiction. Therefore, v is adjacent to at least one of x, z, and so u and v have a common neighbor in H.

Let $u \in G \backslash H$ be a vertex with at least two neighbors in H. A u-sector is a path $P=u^{\prime} \ldots u^{\prime \prime}$ such that $P \subseteq H, u^{\prime}$ and $u^{\prime \prime}$ are neighbors of u, and P^{*} is anticomplete to u.

Lemma 2.4. Let u and v be two non-adjacent major vertices for a hole H of a graph $G \in \mathcal{C}$. Let $P=u^{\prime} \ldots u^{\prime \prime}$ be a u-sector of H. Then one of the following holds:
(i) P contains at most one neighbor of v, and if it has one, it is either u^{\prime} or $u^{\prime \prime}$,
(ii) $u^{\prime} u^{\prime \prime} \in E(G)$ and v is adjacent to both u^{\prime} and $u^{\prime \prime}$,
(iii) P contains at least 3 neighbors of v,
(iv) $H \cup\{u, v\}$ is a cube (see Figure 3).

Figure 3: The cube graph
Proof. Let $R=H \backslash P$, let x be the neighbor of u^{\prime} in R, and let y be the neighbor of $u^{\prime \prime}$ in R. First, suppose that P contains exactly two neighbors of v. We may assume that $u^{\prime} u^{\prime \prime} \notin E(G)$, otherwise outcome (ii) holds. Let the neighbors of v in P be given by $v^{\prime}, v^{\prime \prime}$. Then, G contains a theta between v^{\prime} and $v^{\prime \prime}$ in $P \cup\{u, v\}$ unless $v^{\prime} v^{\prime \prime} \in E(G)$, so $v^{\prime} v^{\prime \prime} \in E(G)$. Since either $v^{\prime} \neq u^{\prime}, u^{\prime \prime}$ or $v^{\prime \prime} \neq u^{\prime}, u^{\prime \prime}$, we may assume that $v^{\prime} \neq u^{\prime}, u^{\prime \prime}$ and v^{\prime} is between u^{\prime} and $v^{\prime \prime}$ in P (possibly $v^{\prime \prime}=u^{\prime \prime}$). If both u and v have neighbors in R^{*}, then G contains a pyramid from u to $v v^{\prime} v^{\prime \prime}$ via paths through $u^{\prime}, u^{\prime \prime}$, and R^{*}, so at least one of u, v has no neighbors in R^{*}. By Lemma 2.1, either $N_{H}(u)=\left\{x, u^{\prime}, u^{\prime \prime}, y\right\}$ or $N_{H}(v)=\left\{x, v^{\prime}, v^{\prime \prime}, y\right\}$. Since v is major, v has a neighbor in $R \backslash y$. Let $v^{\prime \prime \prime}$ be the neighbor of v in $R \backslash y$ closest to x. If $u x \in E(G)$, then G contains a prism from $u x u^{\prime}$ to $v^{\prime \prime} v v^{\prime}$ through the paths $u-u^{\prime \prime}-P-v^{\prime \prime}, u^{\prime}-P-v^{\prime}$, and $x-R-v^{\prime \prime \prime}-v$, so $u x \notin E(G)$ and thus $N_{H}(v)=\left\{x, v^{\prime}, v^{\prime \prime}, y\right\}$. Now, G contains a pyramid from u^{\prime} to $v v^{\prime} v^{\prime \prime}$ via the paths $u^{\prime}-x-v, u^{\prime}-u-u^{\prime \prime}-P-v^{\prime \prime}$, and $u^{\prime}-P-v^{\prime}$, a contradiction.

Now, suppose P contains exactly one neighbor v^{\prime} of v. We may assume that $v^{\prime} \neq u^{\prime}, u^{\prime \prime}$, otherwise outcome (i) holds. If u and v both have neighbors in R^{*}, then G contains a theta between u and v^{\prime} through $u^{\prime}, u^{\prime \prime}$, and $R^{*} \cup\{v\}$, so at least one of u, v has no neighbors in R^{*}. By Lemma 2.1, either $N_{H}(u)=\left\{x, u^{\prime}, u^{\prime \prime}, y\right\}$ or $N_{H}(v)=\left\{x, v^{\prime}, y\right\}$. Since v is major, v has a neighbor in $R \backslash y$. Let $v^{\prime \prime}$ be the neighbor of v in R closest to x. If $u x \in E(G)$, then G contains a pyramid from v^{\prime} to $u^{\prime} u x$ through the paths $v^{\prime}-P-u^{\prime}, v^{\prime}-v-v^{\prime \prime}-R-x$, and $v^{\prime}-P-u^{\prime \prime}-u$, so $u x \notin E(G)$. By symmetry, $u y \notin E(G)$. It follows that $N_{H}(v)=\left\{x, v^{\prime}, y\right\}$. Because u is major, u has a neighbor in R^{*}. Let $u^{\prime \prime \prime}$ be the neighbor of u in R^{*} closest to y. Then G contains a theta between u and y through the paths $u-u^{\prime \prime}-y, u-u^{\prime}-x-v-y$, and $u-u^{\prime \prime \prime}-R-y$, unless $x u^{\prime \prime \prime} \in E(G)$. Similarly, G contains a theta between u and x unless $y u^{\prime \prime \prime} \in E(G)$. If $u^{\prime} v^{\prime} \notin E(G)$, then G contains a theta between u^{\prime} and v^{\prime} through the paths $u^{\prime}-P-v^{\prime}, u^{\prime}-x-v-v^{\prime}$, and $u^{\prime}-u-u^{\prime \prime}-P-v^{\prime}$, so $v^{\prime} u^{\prime} \in E(G)$. Similarly, $v^{\prime} u^{\prime \prime} \in E(G)$. Now, $H \cup\{u, v\}$ is a cube, and so outcome (iv) holds. This completes the proof.

Let H be a hole in a graph G and let $u, v \in V(G) \backslash V(H)$. We say that u and v are nested with respect to H if there exist distinct $a, b \in V(H)$ such that one $a b$-path of H contains all the neighbors of u and the other $a b$-path of H contains all the neighbors of v. Note that pendants, caps, and vertices of $G \backslash H$ with no neighbor in H are nested with all other vertices of $G \backslash H$. The vertices u and v are strictly nested with respect to H if u and v are nested with respect to H and $N_{H}(u) \cap N_{H}(v)=\emptyset$.

Lemma 2.5. Let H be a hole in a graph $G \in \mathcal{C}$, let u and v be major or clones for H such that u and v are nested, and suppose $u v \in E(G)$. Then, u and v have a common neighbor in H.

Proof. Since u and v are major or clones, u and v have at least three neighbors in H. If u and v have no common neighbors in H, then $H \cup\{u, v\}$ is a $u v$-turtle in G, a contradiction.

Two vertices u and v not in H that are not nested with respect to H are said to cross. The following lemmas characterize the behavior of vertices that cross.

Lemma 2.6. Let H be a hole in a graph $G \in \mathcal{C}$ and let u and v be two vertices not in H that cross. Then, one of the following holds:
(i) H contains four distinct vertices $u^{\prime}, v^{\prime}, u^{\prime \prime}, v^{\prime \prime}$ that appear in this order along H such that $u^{\prime}, u^{\prime \prime} \in N_{H}(u)$ and $v^{\prime}, v^{\prime \prime} \in N_{H}(v)$,
(ii) $N_{H}(u)=N_{H}(v), N_{H}(u)$ is an independent set, $\left|N_{H}(u)\right|=3$, and $u v \in E(G)$,
(iii) $N_{H}(u)=N_{H}(v)$, both u and v are clones in H, and $u v \in E(G)$.

Proof. Since u and v are not nested, u and v are major or clones for H. Suppose u and v are both clones. Since u and v cross, it follows that either u and v are clones of adjacent vertices, so outcome (i) holds, or u and v are clones of the same vertex. Let u and v both be clones of y and let $N_{H}(u)=N_{H}(v)=\{x, y, z\}$. Then, G contains a theta between x and z in $H_{u \backslash y} \cup\{v\}$ unless $u v \in E(G)$, so outcome (iii) holds. Now, suppose u is a clone of y and v is major. Because u and v cross, $v y \in E(G)$, and because v is major, v has at least one neighbor in $V(H) \backslash N_{H}(u)$. Therefore, outcome (i) holds. Finally, suppose u and v are both major. Assume that u has a neighbor x in H such that $v x \notin E(G)$. Then, x is contained in a v-sector $P=v^{\prime} \ldots v^{\prime \prime}$ of H. Because u and v cross, u has a neighbor in $H \backslash P$, so outcome (i) holds. Therefore, we may assume that $N_{H}(u)=N_{H}(v)$. If $\left|N_{H}(u)\right|>3$, outcome (i) holds, so $\left|N_{H}(u)\right|=3$. Because u is major and $\left|N_{H}(u)\right|=3$, it follows from Lemma 2.1 that $N_{H}(u)$ is an independent set. Let $N_{H}(u)=\{x, y, z\}$. Then, G contains a theta between x and y in $(H \backslash\{z\}) \cup\{u, v\}$ unless $u v \in E(G)$, so outcome (ii) holds.

Let $H=h_{1}-h_{2}-\ldots-h_{k}-h_{1}$ be a hole in a graph $G \in \mathcal{C}$ and let $u, v \in V(G) \backslash V(H)$ be two nonadjacent major vertices for H. The following lemma shows that if u and v cross, then $H \cup\{u, v\}$ is a major non-adjacent cross (MNC) configuration. We describe MNC configurations as follows (see also Figure 4).

- MNC configuration (1): $k=4$, and $\{u, v\}$ are complete to H.
- MNC configuration (2): $k=5$, and $\{u, v\}$ are complete to H.
- MNC configuration (3): $k=6, N_{H}(u)=\left\{h_{1}, h_{3}, h_{5}\right\}$, and $N_{H}(v)=\left\{h_{2}, h_{4}, h_{6}\right\}$.
- MNC configuration (4): $\{u, v\}$ is complete to $\left\{h_{1}, h_{2}, h_{3}, h_{4}\right\}, v$ has no other neighbors in H, and u has at least one other neighbor in H.

Let $3<i<k-1$. Let H_{1} be the path from h_{1} to h_{i+1} in $H \backslash\left\{h_{2}\right\}$ and let H_{2} be the path from h_{2} to h_{i} in $H \backslash\left\{h_{1}\right\}$.

- MNC configuration (5): $\{u, v\}$ is complete to $\left\{h_{1}, h_{2}, h_{i}, h_{i+1}\right\}, u$ and v both have other neighbors in $H, N_{H}(u) \subseteq H_{1} \cup\left\{h_{2}, h_{i}\right\}$, and $N_{H}(v) \subseteq H_{2} \cup\left\{h_{1}, h_{i+1}\right\}$.
- MNC configuration (6): $\{u, v\}$ is complete to $\left\{h_{1}, h_{2}, h_{i}, h_{i+1}\right\}, v$ has no other neighbors in H, and u has neighbors both in H_{1}^{*} and H_{2}^{*}.
- MNC configuration (7): $\{u, v\}$ is complete to $\left\{h_{1}, h_{2}, h_{i}\right\}, u$ and v both have other neighbors in $H, N_{H}(u) \subseteq H_{1} \cup\left\{h_{2}, h_{i}\right\}$, and $N_{H}(v) \subseteq H_{2} \cup\left\{h_{1}\right\}$.
- MNC configuration (8): $\{u, v\}$ is complete to $\left\{h_{1}, h_{2}\right\}, u$ and v both have other neighbors in $H, N_{H}(u) \subseteq H_{1} \cup\left\{h_{2}\right\}$, and $N_{H}(v) \subseteq H_{2} \cup\left\{h_{1}\right\}$.

Figure 4: MNC configurations (dashed lines represent possible edges)

Lemma 2.7. Let H be a hole in a graph $G \in \mathcal{C}$ and suppose that u and v are two major vertices for H. If $u v \in E(G)$, then either u and v cross or u and v have a common neighbor in H. If u and v cross, then either $u v \in E(G)$ or G contains an MNC configuration.

Proof. The first statement follows from Lemma 2.5. It remains to prove the second statement. Assume that u and v cross and $u v \notin E(G)$. Let $H=h_{1}-\ldots-h_{k}-h_{1}$.
(1) No three common neighbors of u and v in H form an independent set.

If u and v have three common neighbors $x, y, z \in V(H)$ such that $\{x, y, z\}$ is an independent set, then $\{u, v, x, y, z\}$ is a theta in G between u and v, a contradiction. This proves (1).
(2) Suppose there exist $i, j \in\{1, \ldots, k\}$ with $j>i$ such that $h_{i} h_{j} \notin E(G),\{u, v\}$ is complete to $\left\{h_{i}, h_{j}\right\}$, and there are no common neighbors of u and v in $P=h_{j+1}-h_{j+2}-\ldots-h_{i-1}$. Then, u and v do not both have neighbors in P.

If both u and v have neighbors in P^{*}, then G contains a theta between u and v, through h_{i}, h_{j}, and P^{*}. Therefore, we may assume that h_{j+1} is adjacent to u. If v has a neighbor in P^{*}, let v^{\prime} be the neighbor of v in P^{*} closest to h_{j+2}. Then, G contains a pyramid from v to $u h_{j} h_{j+1}$ through the paths $v-h_{j}, v-h_{i}-u$, and $v-v^{\prime}-P-h_{j+1}$, a contradiction. Therefore, we may assume that $N_{P}(v)=\left\{h_{i-1}\right\}$. Then, G contains a prism from $u h_{j} h_{j+1}$ to $h_{i} v h_{i-1}$ through the paths $u-h_{i}, h_{j}-v$, and $h_{j+1}-P-h_{i-1}$, a contradiction. This proves (2).

Let $N=N_{H}(u) \cap N_{H}(v)$.
(3) We may assume that $R=H[N]$ is a subpath of H of length at most one.

If $N=V(H)$, then by (1), $H \cup\{u, v\}$ is MNC configuration (1) or (2). So, we may assume that $N \neq V(H)$. Suppose first that R is a subpath of H of length greater than one. By (1), R is of length at most three. If it is of length two, then by (2), one of u, v is a clone, a contradiction. Suppose R is of length three, say $R=h_{i}-h_{i+1}-h_{i+2}-h_{i+3}$. Then, by (2), at most one of u, v has a neighbor in $H \backslash R$. If one of u, v has a neighbor in $H \backslash R$, then $H \cup\{u, v\}$ is MNC configuration (4), otherwise G contains a theta between h_{i} and h_{i+3} through u, v, and $H \backslash R$.

Next, suppose that R is not a subpath of H. By (1), it follows that R is the disjoint union of two subpaths Q_{1}, Q_{2} of H of length at most one. Let $Q_{1}=h_{1}-\ldots-h_{i}$ and $Q_{2}=h_{s^{-}} \ldots-h_{t}$, where $k>t \geq s \geq i+2, i \leq 2$, and $t \leq s+1$. By (2), we may assume that v has no neighbors in $h_{t+1}-h_{t+2} \ldots-h_{k}$, and that not both u and v have neighbors in $h_{i+1^{-}} \ldots-h_{s-1}$. Since u and v cross, at least one of Q_{1} and Q_{2} has length one, so we may assume $i=2$.

Note that at least one of u and v has a neighbor in $h_{t+1^{-} \ldots-h_{k}}$, otherwise G contains a theta between h_{1} and h_{t} through $H \backslash\left\{h_{2}, h_{s}\right\}$, u, and v. Similarly, at least one of u and v has a neighbor in $h_{i+1^{-}} \ldots-h_{s-1}$. It follows that if $t=s+1$, then G contains MNC configuration (5) or (6), and if $t=s$, then G contains MNC configuration (7). This proves (3).
(4) We may assume that $N=\emptyset$.

We may assume that $H \cup\{u, v\}$ is not a cube (MNC configuration (3)) or MNC configuration (8). By (3), we may assume that $R=h_{1}$ or $R=h_{1} h_{2}$. Let $i=1$ if $R=h_{1}$, and $i=2$ if $R=$ $h_{1} h_{2}$. We claim that we may assume that $H \backslash R$ contains three distinct vertices $u^{\prime}, v^{\prime}, u^{\prime \prime}$ such that $h_{i}, u^{\prime}, v^{\prime}, u^{\prime \prime}, h_{1}$ appear in this order and $u^{\prime}, u^{\prime \prime} \in N_{H}(u), v^{\prime} \in N_{H}(v)$. If $i=2$, then this follows from the assumption that G does not contain MNC configuration (8), and if $i=1$, it follows from Lemma 2.6. Let $u^{\prime}, v^{\prime}, u^{\prime \prime}$ be chosen such that the path from u^{\prime} to $u^{\prime \prime}$ in $H \backslash R$ is a u-sector. Let H_{a} be the path from h_{i} to v^{\prime} in $H \backslash\left\{u^{\prime \prime}\right\}$, let H_{b} be the path from h_{1} to v^{\prime} in $H \backslash\left\{u^{\prime}\right\}$, and let H_{u} be the path from u^{\prime} to $u^{\prime \prime}$ in $H \backslash R$. Since H_{a} contains a v-sector that contains u^{\prime}, it follows from Lemma 2.4 that there are at least three neighbors of u in H_{a}, and so there at least two neighbors of u in H_{a}^{*}. Since H_{u} is a u-sector, there is a neighbor of u in H_{a}^{*} between h_{i} and u^{\prime}. Similarly, there are at least three neighbors of u in H_{b}, and so at least two neighbors of u in H_{b}^{*}. Since H_{u} is a u-sector, there is a neighbor of u in H_{b}^{*} between h_{1} and $u^{\prime \prime}$. Finally, since H_{u} is a u-sector that contains v^{\prime}, there are at least three neighbors of v in H_{u}^{*}. Let v_{1} be the neighbor of v in H_{u}^{*} closest to u^{\prime}, and let v_{2} be the neighbor of v in H_{u}^{*} closest to $u^{\prime \prime}$. Then, G contains a theta from u to v, through $u-h_{1}-v, u-u^{\prime}-H_{u}-v_{1}-v$, and $u-u^{\prime \prime}-H_{u}-v_{2}-v$. This proves (4).

It follows from Lemma 2.6 and (4) that H contains four distinct vertices $u^{\prime}, v^{\prime}, u^{\prime \prime}, v^{\prime \prime}$ that appear in that order along H, such that $u^{\prime}, u^{\prime \prime} \in N_{H}(u)$ and $v^{\prime}, v^{\prime \prime} \in N_{H}(v)$. By (4), u and v have no common neighbors in H, and so every neighbor of u in H is in the interior of a v-sector and every neighbor of v in H is in the interior of a u-sector. Let $u^{\prime}, v^{\prime}, u^{\prime \prime}, v^{\prime \prime}$ be chosen so that $P=u^{\prime} \ldots u^{\prime \prime}$ is a u-sector and $Q=v^{\prime} \ldots v^{\prime \prime}$ is a v-sector. We may assume that $H \cup\{u, v\}$ is not a cube (i.e. MNC configuration (3)). Because v^{\prime} is in P^{*}, it follows from Lemma 2.4 that there are at least three neighbors of v in P^{*}. Since there are no neighbors of v in Q^{*}, we may assume that v_{1}, v_{2} are neighbors of v in P^{*} between u^{\prime} and v^{\prime} in that order. Similarly, there are at least three neighbors of u in Q^{*}. Since there are no neighbors of u in P^{*}, we may assume that u_{1}, u_{2} are neighbors of u in Q^{*} between $u^{\prime \prime}$ and $v^{\prime \prime}$ in that order. Finally, because $v^{\prime \prime}$ is in the interior of a u-sector and $Q=v^{\prime} \ldots v^{\prime \prime}$ is a v-sector, there is another neighbor of v between $v^{\prime \prime}$ and u^{\prime}. Then, G contains a theta between u and v through the paths $u-u_{2}-Q-v^{\prime \prime}-v, u-u^{\prime \prime}-Q-v^{\prime}-v$, and $u-u^{\prime}-P-v_{1}-v$, a contradiction.

Lemma 2.8. Let H be a hole of length greater than six in a graph $G \in \mathcal{C}$ and suppose u and v are non-adjacent vertices of $G \backslash H$ that cross. Then, H contains a $\{u, v\}$-complete edge.

Proof. Since u and v cross, u and v are major or clones. If u and v are both major, it follows from Lemma 2.7 that $H \cup\{u, v\}$ is MNC configuration (4), (5), (6), (7), or (8), so H contains a $\{u, v\}$-complete edge. Now, suppose u is a clone of y in H and $N_{H}(u)=\{x, y, z\}$. Because u and v cross, it follows that $v y \in E(G)$. We may assume that $x v, z v \notin E(G)$ since otherwise H contains a $\{u, v\}$-complete edge. Note that $x-u-z$ is a subpath of $H_{u \backslash y}$ that contains all the neighbors of y in $H_{u \backslash y}$ and no neighbors of v. If v has at least three neighbors in $H_{u \backslash y}$, then G contains a $v y$-turtle. So v has two neighbors in $H_{u \backslash y}$, say v_{1} and v_{2}, and hence three neighbors in H. By Lemma 2.1 applied to H and $v, v_{1} v_{2} \notin E(G)$. But then $H_{u \backslash y}$ and v form a theta, a contradiction.

The following lemma describes the behavior of paths whose endpoints are nested with respect to H and whose internal vertices are anticomplete to H.

Lemma 2.9. Let H be a hole in a graph $G \in \mathcal{C}$ and let $P=u-\ldots-v$ be a path of length at least 1, vertex-disjoint from H, such that u and v have neighbors in H and are nested with respect to H, and no internal vertex of P has a neighbor in H. Then, u and v have a common neighbor in H, or u and v are both pendants of H with adjacent neighbors in H. In particular, if u and v are strictly nested with respect to H, then u and v are both pendants of H with adjacent neighbors in H.

Proof. We may assume that u and v do not have a common neighbor in H. If u (resp. v) has at least two neighbors in H, then let u^{\prime} and $u^{\prime \prime}$ (resp. v^{\prime} and $v^{\prime \prime}$) be the endpoints of the u-sector (resp. v-sector) that contains all neighbors of v (resp. u) in H, and otherwise let $u^{\prime}=u^{\prime \prime}$ (resp. $v^{\prime}=v^{\prime \prime}$) be its unique neighbor in H. Without loss of generality, $u^{\prime}, v^{\prime}, v^{\prime \prime}, u^{\prime \prime}$ appear in this order along H. If u and v both have two non-adjacent neighbors in H (and so by Lemma 2.1 and Lemma 2.2, u and v each has at least three neighbors in $H)$ and $u v \in E(G)$, then $H \cup\{u, v\}$ is a $u v$-turtle, a contradiction. If u and v both have two non-adjacent neighbors in H and $u v \notin E(G)$, then G contains a theta between u and v through the paths $u-u^{\prime}-H \backslash\left\{u^{\prime \prime}, v^{\prime \prime}\right\}-v^{\prime}-v, u-u^{\prime \prime}-H \backslash\left\{u^{\prime}, v^{\prime}\right\}-v^{\prime \prime}-v$, and $u-P-v$, a contradiction. If u has two non-adjacent neighbors in H and v is a cap, then G contains a pyramid from u to $v v^{\prime} v^{\prime \prime}$ through $u-P-v, u-u^{\prime}-H \backslash\left\{u^{\prime \prime}\right\}-v^{\prime}$, and $u-u^{\prime \prime}-H \backslash\left\{u^{\prime}\right\}-v^{\prime \prime}$, a contradiction. If u has two non-adjacent neighbors in H and v is a pendant, then G contains a theta between u and v^{\prime} through $u-u^{\prime}-H \backslash\left\{u^{\prime \prime}\right\}-v, u-P-v-v^{\prime}$, and $u-u^{\prime \prime}-H \backslash\left\{u^{\prime}\right\}-v^{\prime}$, a contradiction. Thus, neither u nor v has two non-adjacent neighbors in H.

If u and v are both caps, then $H \cup P$ is a prism between $u u^{\prime} u^{\prime \prime}$ and $v v^{\prime} v^{\prime \prime}$, a contradiction. If u is a cap and v is a pendant, then $H \cup P$ is a pyramid from v^{\prime} to $u u^{\prime} u^{\prime \prime}$. If u and v are both pendants, then $H \cup P$ is a theta between u^{\prime} and v^{\prime}, unless $u^{\prime} v^{\prime}$ is an edge.

Let $G \in \mathcal{C}$, let H be a hole in G, and let w be a major vertex for H. A path $N \subseteq H$ is an extended neighborhood of w in H if there exists a w-sector $Q=x \ldots y$ such that $N=Q \cup\left(\left\{x^{\prime}, y^{\prime}\right\} \cap N_{H}(w)\right)$, where x^{\prime} and y^{\prime} are the neighbors of x and y in $H \backslash Q$, respectively. Two vertices $a, b \in H$ are distant in H with respect to w if a, b are not contained in an extended neighborhood of w in H. Note that if a vertex $v \in H$ is not adjacent to w, then v is in exactly one extended neighborhood of w in H.

Suppose H is a hole in a graph $G \in \mathcal{C}$ and u is a major vertex for H. The vertex u is called a $h u b$ if $N_{H}(u)=\{x, y, z, w\}$ where the vertices x, y, z, w appear in that order in $H, x y, z w \in E(G)$, and $x w, z y \notin E(G)$.

Lemma 2.10. Let $G \in \mathcal{C}$, let H be a hole in G of length greater than six, and let w be a major vertex for H. Let $p \in V(G) \backslash V(H)$ be such that $p w \notin E(G)$. Then, either $N_{H}(p)$ is contained in an extended neighborhood of w in H or $H \cup\{p, w\}$ is MNC configuration (6).

Proof. If p and w are nested, then $N_{H}(p)$ is contained in an extended neighborhood of w in H, so we may assume that p and w cross. It follows that p is either a clone or a major vertex for H. If p is a clone, then it follows from Lemma 2.8 that $N_{H}(p)$ is contained in an extended neighborhood of w. Now, suppose p is major. By Lemma 2.7, it follows that $H \cup\{w, p\}$ is MNC configuration (4), (5), (6), (7), or (8), and therefore either $N_{H}(p)$ is contained in an extended neighborhood of w in H, or $H \cup\{w, p\}$ is MNC configuration (6).

Let $G \in \mathcal{C}$, let H be a hole in G, and let w be a major vertex for H. We say that a path $P=p_{1}-\ldots-p_{k}$ is (H, w)-significant if there exist $a, b \in V(H)$ such that $a \in N_{H}\left(p_{1}\right) \backslash N_{H}(w)$, $b \in N_{H}\left(p_{k}\right)$, and a and b are distant in H with respect to w.

Lemma 2.11. Let $G \in \mathcal{C}$, let H be a hole in G of length greater than six, and let w be a major vertex for H such that either w is not a hub or every major vertex for H is a hub. Let $P=p_{1}-\ldots-p_{k}$ be (H, w)-significant with $a, b \in V(H)$ as in the definition of a significant path. Let $Q=x \ldots y$
be the w-sector containing a. Suppose w is anticomplete to $\left\{p_{1}, p_{k}\right\}$ and $p_{1}, p_{k} \notin H$. Then, p_{k} is anticomplete to Q^{*}.

Proof. Since p_{1} has a neighbor in the interior of a w-sector, $H \cup\left\{w, p_{1}\right\}$ is not MNC configuration (6). By Lemma 2.10, it follows that $N_{H}\left(p_{1}\right)$ is contained in an extended neighborhood of w. Note that, by definition, a w-sector of length greater than one is contained in exactly one extended neighborhood of w. Let \bar{Q} be the extended neighborhood of w containing Q, and suppose for sake of contradiction that p_{k} has a neighbor in Q^{*}. Since p_{k} has a neighbor in the interior of a w-sector, $H \cup\left\{w, p_{k}\right\}$ is not MNC configuration (6), so by Lemma 2.10, $N_{H}\left(p_{k}\right)$ is contained in an extended neighborhood of w. Because p_{1} has a neighbor a in Q^{*}, it follows that $N_{H}\left(p_{1}\right) \subseteq \bar{Q}$. Similarly, because p_{k} has a neighbor in Q^{*}, it follows that $N_{H}\left(p_{k}\right) \subseteq \bar{Q}$. Then, a and b are contained in an extended neighborhood of w, a contradiction.

Lemma 2.12. Let $G \in \mathcal{C}$, let H be a hole in G of length greater than six, and let w be a major vertex for H such that either w is not a hub or every major vertex for H is a hub. Let $P=p_{1}-\ldots-p_{k}$ be (H, w)-significant with $a, b \in V(H)$ as in the definition of a significant path. Assume that P^{*} is anticomplete to H, w is anticomplete to $\left\{p_{1}, p_{k}\right\}$, and $p_{1}, p_{k} \notin H$. Then, p_{1} and p_{k} have a common neighbor in H.

Proof. Assume for a contradiction that p_{1} and p_{k} do not have a common neighbor in H. In particular, $p_{1} \neq p_{k}$. Suppose that p_{1} and p_{k} are nested. Then, they are strictly nested. By Lemma 2.9, p_{1} and p_{k} are pendants of H with adjacent neighbors in H. It follows that a and b are adjacent, contradicting that a and b are distant in H with respect to w. Therefore, p_{1} and p_{k} cross, and hence they are clone or major for H. Since p_{1} and p_{k} cross and they do not have a common neighbor in H, it follows that p_{1} and p_{k} are both major. If w and p_{1} are nested, then by Lemma 2.11, p_{1} and p_{k} are nested. Hence, w and p_{1} cross. By Lemma $2.8, H$ contains a $\left\{w, p_{1}\right\}$-complete edge. Let $Q=x \ldots y$ be the w-sector containing a. Let x^{\prime} and y^{\prime} be the neighbors of x and y in $H \backslash Q$, respectively. Since p_{1} has a neighbor in the interior of a w-sector, $H \cup\left\{w, p_{1}\right\}$ is not MNC configuration (6). By Lemma 2.10, it follows that $N_{H}\left(p_{1}\right) \subseteq Q \cup\left(\left\{x^{\prime}, y^{\prime}\right\} \cap N_{H}(w)\right)$, and by Lemma 2.11, it follows that $N_{H}\left(p_{k}\right) \subseteq H \backslash Q^{*}$. Up to symmetry, suppose $\left\{w, p_{1}\right\}$ is complete to $\left\{x, x^{\prime}\right\}$. Since p_{1} and p_{k} cross and p_{1} and p_{k} have no common neighbor in $H, p_{1} y^{\prime}, p_{k} y \in E(G)$ and $p_{1} y, p_{k} y^{\prime} \notin E(G)$. Also, p_{k} has another neighbor in $H \backslash\left(Q \cup\left\{x^{\prime}, y^{\prime}\right\}\right)$ and in particular, $x^{\prime} y^{\prime} \notin E(G)$. Because $p_{1} y^{\prime} \in E(G)$, it follows that $w y^{\prime} \in E(G)$. Let p^{\prime} be the neighbor of p_{1} in Q^{*} closest to y. Then, G contains a pyramid from p_{1} to $w y y^{\prime}$ through $p_{1}-y^{\prime}, p_{1}-x^{\prime}-w$, and $p_{1}-p^{\prime}-Q-y$, a contradiction.

We can now prove the main result of this section.
Theorem 2.13. Let $G \in \mathcal{C}$, let H be a hole in G of length greater than six, and let w be a major vertex for H such that either w is not a hub or every major vertex for H is a hub. Let $P=p_{1}-\ldots-p_{k}$ be (H, w)-significant. Then, w has a neighbor in P.

Proof. We may assume that no subpath of P is (H, w)-significant. Suppose that w is anticomplete to P. Let $a, b \in V(H)$ be as in the definition of a significant path, i.e., $a \in N_{H}\left(p_{1}\right) \backslash N_{H}(w)$, $b \in N_{H}\left(p_{k}\right)$, and a and b are distant in H with respect to w. Let $Q=x \ldots y$ be the w-sector containing a, and let x^{\prime} and y^{\prime} be the neighbors of x and y in $H \backslash Q$, respectively. Possibly $x^{\prime}=b$ (resp. $y^{\prime}=b$), in which case w is not adjacent to x^{\prime} (resp. y^{\prime}) since a and b are distant in H with respect to w.

Suppose that $k=1$. Since a and b are distant in $H, p_{1} \notin V(H)$. So, by Lemma 2.11 and Lemma 2.2, p_{1} is major but not a hub. It follows that w is not a hub. But this contradicts Lemma 2.10. Therefore, $k>1$.
(1) P is disjoint from H.

Suppose that $p_{i} \in P$ is in H. Since no subpath of P is (H, w)-significant, it follows that a and p_{i} are not distant in H with respect to w. Then, either $p_{i} \in Q^{*}$ or $p_{i} w \in E(G)$. Since w is anticomplete to $P, p_{i} w \notin E(G)$, so $p_{i} \in Q^{*}$. Note that since $p_{i} \in Q^{*}$ and $b \notin Q, i<n$. Then, $p_{i+1}-\ldots-p_{k}$ is (H, w)-significant, a contradiction. This proves (1).
(2) Either $N_{H}\left(P^{*}\right) \subseteq\{x\} \cup\left(N_{H}(w) \cap\left\{x^{\prime}\right\}\right)$ or $N_{H}\left(P^{*}\right) \subseteq\{y\} \cup\left(N_{H}(w) \cap\left\{y^{\prime}\right\}\right)$.

No vertex $p_{i} \in P \backslash\left\{p_{1}\right\}$ can have a neighbor in Q^{*}, otherwise $p_{i^{-}} \ldots-p_{k}$ is (H, w)-significant. Similarly, no vertex $p_{i} \in P \backslash\left\{p_{k}\right\}$ can be adjacent to a vertex v such that a and v are distant in H with respect to w, otherwise $p_{1}-\ldots-p_{i}$ is (H, w)-significant. It follows that $N_{H}\left(P^{*}\right) \subseteq\{x, y\} \cup$ $\left(\left\{x^{\prime}, y^{\prime}\right\} \cap N_{H}(w)\right)$.

Consider a vertex $p_{i} \in P^{*}$ such that p_{i} has neighbors in H. Suppose p_{i} is not a cap or a pendant, so by Lemmas 2.1 and $2.2, N_{H}\left(p_{i}\right)=\left\{x, y, x^{\prime}, y^{\prime}\right\}$. Then, since $Q=x \ldots a \ldots y$ is a w-sector and $p_{i} x, p_{i} y \in E(G)$, by Lemma 2.4 it follows that $x y \in E(G)$, a contradiction. Therefore, p_{i} is a cap or a pendant for every $p_{i} \in P^{*}$ that has a neighbor in H.

Now, assume that there exist $p_{i}, p_{j} \in P^{*}$ such that $N_{H}\left(p_{i}\right) \subseteq\{x\} \cup\left(N_{H}(w) \cap\left\{x^{\prime}\right\}\right)$ and $N_{H}\left(p_{j}\right) \subseteq$ $\{y\} \cup\left(N_{H}(w) \cap\left\{y^{\prime}\right\}\right)$. Consider the shortest path R from $\{x\} \cup\left(N_{H}(w) \cap\left\{x^{\prime}\right\}\right)$ to $\{y\} \cup\left(N_{H}(w) \cap\left\{y^{\prime}\right\}\right)$ through P^{*}. By Lemma 2.9, the endpoints of R^{*} have a common neighbor in H or are pendants of H with adjacent neighbors, a contradiction since $b \in H \backslash\left(Q \cup\left(\left\{x^{\prime}, y^{\prime}\right\} \cap N_{H}(w)\right)\right)$. This proves (2).

In view of (2), we assume from now on that $N_{H}\left(P^{*}\right) \subseteq\{x\} \cup\left(N_{H}(w) \cap\left\{x^{\prime}\right\}\right)$. Let H_{x} and H_{y} be the paths in H from a to b through x and y, respectively. Since p_{1} has a neighbor in the interior of a w-sector, $H \cup\left\{w, p_{1}\right\}$ is not MNC configuration (6). By Lemma 2.10, it follows that $N_{H}\left(p_{1}\right) \subseteq Q \cup\left(\left\{x^{\prime}, y^{\prime}\right\} \cap N_{H}(w)\right)$, and by Lemma 2.11, it follows that $N_{H}\left(p_{k}\right) \subseteq H \backslash Q^{*}$. Therefore, if p_{1} and p_{k} have a common neighbor v in H_{y}, then $v \in\left\{y, y^{\prime}\right\}$. Let $r_{1}=r_{s}=v$ if p_{1} and p_{k} have a common neighbor v in H_{y}. Otherwise, let r_{1} be the neighbor of p_{1} in H_{y} that is furthest from a, and let r_{s} be the neighbor of p_{k} in H_{y} that is furthest from b. Let $R=r_{1} \ldots r_{s}$ be the path from r_{1} to r_{s} through H_{y}. Note that r_{1} is between a and r_{s} unless $r_{1}=y^{\prime}$ and $r_{s}=y$, in which case $p_{k} y^{\prime}, p_{1} y \notin E(G)$. It follows that $P \cup R$ is a hole when P has length at least two.
(3) w has a neighbor in $R \cap\left\{y, y^{\prime}\right\}$.

Because $N_{H}\left(p_{1}\right) \subseteq Q \cup\left(\left\{x^{\prime}, y^{\prime}\right\} \cap N_{H}(w)\right)$, it follows that $N_{H_{y}}\left(p_{1}\right) \subseteq Q \cup\left(\left\{y^{\prime}\right\} \cap N_{H}(w)\right)$. If $r_{1} \neq y^{\prime}$, then $y \in R$ and $w y \in E(G)$, so w has a neighbor in $R \cap\left\{y, y^{\prime}\right\}$. If $r_{1}=y^{\prime}$, then $p_{1} y^{\prime} \in E(G)$, so $w y^{\prime} \in E(G)$, and w has a neighbor in $R \cap\left\{y, y^{\prime}\right\}$. This proves (3).
(4) If $P \cup R$ is a hole, then x is anticomplete to $P \cup R$.

Let J be the hole given by $P \cup R$. We prove a number of subclaims.
(4.1) $x^{\prime} \notin J$.

Suppose $x^{\prime} \in J$. Then $x^{\prime}=r_{s}=b$, and so x^{\prime} is non-adjacent to w, since otherwise a and b are not distant in H with respect to w. By Lemma 2.9 applied to J and the path $x-w$, it follows that w and x are strictly nested with respect to the hole J, and so x and w are both pendants of J with adjacent neighbors in J. Let $N_{J}(w)=\left\{x^{\prime \prime}\right\}$, then $x^{\prime \prime}$ is the neighbor of x^{\prime} in $H \backslash x$. Since w has a unique neighbor in J, it follows from (3) that $x^{\prime \prime} \in\left\{y, y^{\prime}\right\}$. If $x^{\prime \prime}=y^{\prime}$, then $H=y-Q-x-x^{\prime}-x^{\prime \prime}-y$ and $N_{H}(w)=\left\{x, y, y^{\prime}\right\}$, so $H \cup\{w\}$ is a pyramid, a contradiction. So $x^{\prime \prime}=y$. But now $H=y-Q-x-x^{\prime}-y$ and $N_{H}(y)=\{x, y\}$, so $H \cup\{w\}$ is a theta, a contradiction. This proves (4.1).
(4.2) If w is a hub, then p_{1} is anticomplete to $\left\{x^{\prime}, y^{\prime}\right\}$.

Suppose w is a hub and p_{1} is adjacent to y^{\prime} (the argument is similar if p_{1} is adjacent to x^{\prime}). Since p_{1} is adjacent to a and to y^{\prime}, we deduce that p_{1} is either a clone of y or p_{1} is major for H. Since w is a hub, it follows that if p_{1} is major for H, then p_{1} is a hub for H. In both cases, $N_{H}\left(p_{1}\right) \backslash Q=\left\{y^{\prime}\right\}$.

Then, G contains a pyramid from y^{\prime} to $x x^{\prime} w$ through the paths $y^{\prime}-w, y^{\prime}-p_{1}-Q-x$, and the path from y^{\prime} to x^{\prime} with interior in $H \backslash Q$, a contradiction. This proves (4.2).

Suppose that x has a neighbor in J. Since, by (4.1), $x^{\prime} \notin J$, it follows that x is anticomplete to R, so x has a neighbor in P. We apply Lemma 2.9 to J and the path $x-w$. Since w is anticomplete to P, we have that x and w have no common neighbor in J. Consequently, w and x are strictly nested with respect to J, and so x and w are both pendants of J with adjacent neighbors in J. Since x is anticomplete to R, and w is anticomplete to P, there are two possibilities:

1. $N_{J}(x)=\left\{p_{k}\right\}, N_{J}(w)=\left\{r_{s}\right\}$, or
2. $N_{J}(x)=\left\{p_{1}\right\}, N_{J}(w)=\left\{r_{1}\right\}$.

Suppose the former holds. By (3), $r_{s} \subseteq\left\{y, y^{\prime}\right\} \cap N(w)$. If p_{k} is adjacent to y (so $r_{s}=y$), then G contains a theta between x and r_{s} given by the paths $x-w-r_{s}, x-p_{k}-r_{s}$ and $x-Q-r_{s}$, a contradiction. It follows that p_{k} is non-adjacent to y, and so $r_{s}=y^{\prime}$. Then, G contains a pyramid from x to $y y^{\prime} w$ through the paths $x-w, x-p_{k}-r_{s}$ and $x-Q-y$, a contradiction. This proves that the former case does not hold, and therefore the latter holds.

By (3), $r_{1} \in\left\{y, y^{\prime}\right\}$. If $r_{1}=y$, let $r_{1}^{\prime}=y^{\prime}$, and if $r_{1}=y^{\prime}$ let r_{1}^{\prime} be the neighbor of r_{1} in $H \backslash\{y\}$. Let M be the subpath of $H \backslash\{a\}$ from r_{1}^{\prime} to x^{\prime}. Suppose that both w and p_{k} have neighbors in M^{*}. Then there is a path M^{\prime} from w to p_{k} with $M^{* *} \subseteq M^{*}$. Now, G contains a theta between p_{1} and w through the paths $p_{1}-r_{1}-w, p_{1}-x-w$ and $p_{1}-P-p_{k}-M^{\prime}-w$, a contradiction. This proves that either p_{k} or w is anticomplete to M^{*}.
(4.3) w has no neighbor in M^{*}.

Suppose that w has a neighbor in M^{*}. Then, p_{k} is anticomplete to M^{*}. Since w has a neighbor in M^{*}, and $N_{R}(w)=\left\{r_{1}\right\}$, it follows that $r_{s} \neq x^{\prime}$ and r_{s} is non-adjacent to x^{\prime}. Consequently, $r_{s} \in\left\{y, y^{\prime}, r_{1}^{\prime}\right\}$. Since $r_{1} \in\left\{y, y^{\prime}\right\} \cap N(w)$ and a and b are distant in H with respect to w, it follows that either $b=r_{1}^{\prime}$, or $b=x^{\prime}$ and x^{\prime} is non-adjacent to w. Also, since w has a unique neighbor in J, it holds that if $r_{s}=y$ then $r_{1}=y$.

Suppose x^{\prime} has a neighbor in $P \backslash p_{1}$. Then, there is a path P^{\prime} from x^{\prime} to p_{k} with interior in P^{*}. It follows from the minimality of k that P^{\prime} is not (H, w)-significant. If x^{\prime} is non-adjacent to w, then x^{\prime} and r_{s} are distant in H with respect to w since w has a neighbor in M^{*}, and so P^{\prime} is (H, w)-significant, a contradiction. It follows that x^{\prime} is adjacent to w, and so $x^{\prime} \neq b$ and $b=r_{1}^{\prime}$. Suppose $r_{1}^{\prime} \in R$. Then, w is non-adjacent to r_{1}^{\prime} since $N_{R}(w)=\left\{r_{1}\right\}$. Now, we get a contradiction applying Lemma 2.9 to the path $x^{\prime}-w$ and the hole J. This implies that $r_{1}^{\prime} \notin R$, and so $r_{1}=r_{s}$. (Indeed, if $r_{1} \neq r_{s}$, then $r_{1}=y, r_{s}=y^{\prime}, p_{k} y \notin E(G), w y^{\prime} \notin E(G), r_{1}^{\prime}=b=y^{\prime}$, and hence the path $x^{\prime}-w$ and the hole J contradict Lemma 2.9.) Since J is a hole, we have $k>2$. Again, by Lemma 2.9 applied to the path $x^{\prime}-w$ and the hole J, it follows that x^{\prime} is a pendant for J, and $N_{J}\left(x^{\prime}\right)=p_{k}$. But now G contains a pyramid from r_{1} to $x x^{\prime} w$ with paths $r_{1}-p_{1}-x, r_{1}-w$ and $r_{1}-p_{k}-x^{\prime}$, a contradiction. This proves that x^{\prime} is anticomplete to $P \backslash p_{1}$.

Since $N_{H}\left(P^{*}\right) \subseteq\{x\} \cup\left(N_{H}(w) \cap\left\{x^{\prime}\right\}\right), x^{\prime}$ is anticomplete to $P \backslash p_{1}$, and p_{k} is anticomplete to M^{*}, it follows that $P \backslash p_{1}$ is anticomplete to $M \backslash r_{1}^{\prime}$. Since x^{\prime} is non-adjacent to p_{k}, it follows that $b=r_{1}^{\prime}$. Since $k>1$ and by minimality of k, we deduce that p_{1} is non-adjacent to r_{1}^{\prime}. If $r_{1}^{\prime} \in R$, then G contains a theta between p_{1} and r_{1}^{\prime} through the paths $p_{1}-r_{1}-r_{1}^{\prime}, p_{1}-x-H_{x}-r_{1}^{\prime}$ (possibly shortcutting through the edge $p_{1} x^{\prime}$), and $p_{1}-P-p_{k}-r_{1}^{\prime}$, a contradiction. This proves that $r_{1}^{\prime} \notin R$, and so $r_{s} \in\left\{y, r_{1}\right\}$. Since $N_{J}(x)=\left\{p_{1}\right\}, x^{\prime}$ is anticomplete to $P \backslash\left\{p_{1}\right\}$, and $N_{H}\left(P^{*}\right) \subseteq\left\{x, x^{\prime}\right\}$, it follows that P^{*} is anticomplete to H. By Lemma 2.12, p_{1} and p_{k} have a common neighbor in H. It follows that either $r_{1}=r_{s}=y$ or $r_{1}=r_{s}=y^{\prime}$. Since $P \cup R$ is a hole, it follows that $k>2$. But now G contains a pyramid from p_{1} to $r_{1} r_{1}^{\prime} p_{k}$ through the paths $p_{1}-r_{1}, p_{1}-P-p_{k}$, and $p_{1}-x-H_{x}-r_{1}^{\prime}$ (possibly shortcutting through $\left.p_{1} x^{\prime}\right)$. This proves (4.3).
(4.4) w is a hub for H.

If w has no neighbor in $M \backslash\left\{x^{\prime}, y^{\prime}\right\}$, then by Lemma 2.1, w is a hub for H. Suppose w has a neighbor in $M \backslash\left\{x^{\prime}, y^{\prime}\right\}$. Since, by (4.3), w is anticomplete to M^{*}, it follows that the only neighbor of w in $M \backslash\left\{x^{\prime}, y^{\prime}\right\}$ is r_{1}^{\prime}. Thus, $r_{1}^{\prime} \neq y^{\prime}$, and so $r_{1}=y^{\prime}$. Since $r_{1}=y^{\prime}$ (and thus p_{1} is adjacent to y^{\prime}), it follows that w is adjacent to y^{\prime}. Since $N_{J}(w)=\left\{r_{1}\right\}$, it holds that $r_{1}=r_{s}=y^{\prime}$, and since J is a hole, P has length at least two. If w is non-adjacent to x^{\prime}, then p_{1} is non-adjacent to x^{\prime} (as $N_{H}\left(p_{1}\right) \subseteq Q \cup\left(\left\{x^{\prime}, y^{\prime}\right\} \cap N_{H}(w)\right)$) and hence G contains a pyramid from x to $y^{\prime} r_{1}^{\prime} w$ through $x-p_{1}-y^{\prime}, x-w$, and $x-x^{\prime}-M^{*}-r_{1}^{\prime}$, a contradiction. Therefore, w is adjacent to x^{\prime}. Suppose that the only neighbor of p_{k} in M is r_{1}^{\prime}. Then, G contains a pyramid from p_{1} to $p_{k} r_{1} r_{1}^{\prime}$ through $p_{1}-r_{1}$, $p_{1}-P-p_{k}$ (recall that P has length at least two), and $p_{1}-x-x^{\prime}-H_{x}-r_{1}^{\prime}$ (possibly shortcutting through the edge $p_{1}-x^{\prime}$), a contradiction. So p_{k} has a neighbor in M different from r_{1}^{\prime}. Let b^{\prime} be the neighbor of p_{k} in M closest to x^{\prime}. Now, G contains a pyramid from y^{\prime} to $x x^{\prime} w$ through $y^{\prime}-w, y^{\prime}-p_{1}-x$, and $y^{\prime}-p_{k}-b^{\prime}-M-x^{\prime}$, a contradiction. This proves (4.4).

It follows that w is a hub and $N_{H}(w)=\left\{x, x^{\prime}, y, y^{\prime}\right\}$. Consequently, by (4.2), p_{1} is anticomplete to $\left\{x^{\prime}, y^{\prime}\right\}$, and so $N_{H}\left(p_{1}\right) \subseteq Q$. Since $r_{1} \in\left\{y, y^{\prime}\right\}$ and p_{1} is non-adjacent to y^{\prime}, we deduce that $r_{1}=y$. Since $N_{J}(w)=\left\{r_{1}\right\}$, it follows that $y^{\prime} \notin R$, and so $r_{s}=y$. Since $\left(H \backslash\left\{y^{\prime}\right\}\right) \cup\left\{w, p_{k}\right\}$ is not a pyramid, it follows that p_{k} is not a clone of y^{\prime}. Since a and b are distant in H with respect to w, it follows that $b \in H \backslash\left(Q \cup\left\{x^{\prime}, y^{\prime}\right\}\right)$. Since p_{k} is adjacent to y and to b, it holds that p_{k} is a major vertex for H, and so p_{k} is a hub by the assumption of the theorem. Consequently, p_{k} is adjacent to y^{\prime}, and p_{k} is non-adjacent to x. Since $P \cup R$ is a hole and $r_{1}=r_{s}$, it follows that $k>2$. But now G contains a pyramid from y to $w x x^{\prime}$ given by paths $y-w, y-p_{1}-x$ and $y-p_{k}-H_{x}-x^{\prime}$. This proves that x is anticomplete to J and completes the proof of (4).
(5) If x^{\prime} is not anticomplete to $P \backslash p_{k}$, then $p_{1} x \in E(G)$.

Assume x^{\prime} has a neighbor in $P \backslash p_{k}$, but $p_{1} x \notin E(G)$. By our assumption, $N_{H}\left(P^{*}\right) \subseteq\{x\} \cup$ $\left(N_{H}(w) \cap\left\{x^{\prime}\right\}\right)$, and by Lemma 2.10, $N_{H}\left(p_{1}\right) \subseteq Q \cup\left(\left\{x^{\prime}, y^{\prime}\right\} \cap N_{H}(w)\right)$. Hence, $w x^{\prime} \in E(G)$. Let z be the neighbor of x^{\prime} in P closest to p_{1}. Note that if $z \neq p_{1}$, then P is of length at least two, so $P \cup R$ is a hole and by (4), x is anticomplete to P. In particular, x is anticomplete to $p_{1}-P-z$. Consider the triangle given by $w x x^{\prime}$. If $N_{Q}\left(p_{1}\right)=a$, then G contains a pyramid from a to $w x x^{\prime}$ through $a-Q-y-w, a-Q-x$, and $a-P-z-x^{\prime}$, a contradiction. Suppose p_{1} has two non-adjacent neighbors in Q and let q and q^{\prime} be the neighbors of p_{1} in Q closest to x and y, respectively. Then, G contains a pyramid from p_{1} to $w x x^{\prime}$ through $p_{1}-q^{\prime}-Q-y-w, p_{1}-q-Q-x$, and $p_{1}-P-z-x^{\prime}$, a contradiction. Finally, suppose p_{1} has exactly two adjacent neighbors in Q and let $N_{H}\left(p_{1}\right)=\left\{q, q^{\prime}\right\}$, where q is between x and q^{\prime} in Q. Then, G contains a prism between $p_{1} q q^{\prime}$ and $x^{\prime} x w$ through $p_{1}-P-z-x^{\prime}, q-Q-x$, and $q^{\prime}-Q-y-w$, a contradiction. This proves (5).
(6) If $P \cup R$ is a hole, then $\left\{x, x^{\prime}\right\}$ is anticomplete to $P \backslash p_{k}$. In particular, $N_{H}\left(P^{*}\right)=\emptyset$.

Suppose $P \cup R$ is a hole. By (4), x is anticomplete to P. If x^{\prime} has neighbors in $P \backslash p_{k}$, then, by (5), $p_{1} x \in E(G)$, contradicting that x is anticomplete to P. This proves the first assertion. Next, suppose that $N_{H}\left(P^{*}\right) \neq \emptyset$. Then, $P^{*} \neq \emptyset$, and so $P \cup R$ is a hole. Now, by the first assertion, $\left\{x, x^{\prime}\right\}$ is anticomplete to $P \backslash p_{k}$. But $N_{H}\left(P^{*}\right) \subseteq\left\{x, x^{\prime}\right\}$, a contradiction. This proves (6).

By (6), $N_{H}\left(P^{*}\right)=\emptyset$, and so the symmetry between x and y is restored. Let $T=N_{H}\left(p_{1}\right) \cap$ $N_{H}\left(p_{k}\right)$. By Lemma 2.12, $T \neq \emptyset$. Because $N_{H}\left(p_{1}\right) \subseteq Q \cup\left\{x^{\prime}, y^{\prime}\right\}$ and $N_{H}\left(p_{k}\right) \subseteq H \backslash Q^{*}$, it follows that $T \subseteq\left\{x, x^{\prime}, y, y^{\prime}\right\}$. Suppose first that one of $T \cap\left\{x, x^{\prime}\right\}$ and $T \cap\left\{y, y^{\prime}\right\}$ is empty. We may assume up to symmetry that $T \subseteq\left\{x, x^{\prime}\right\}$. Because p_{1} and p_{k} do not have a common neighbor in $\left\{y, y^{\prime}\right\}$, it follows that $P \cup R$ is a hole. Then, by (6), $\left\{x, x^{\prime}\right\}$ is anticomplete to p_{1}, a contradiction. Therefore, we may assume that $T \cap\left\{x, x^{\prime}\right\} \neq \emptyset$ and $T \cap\left\{y, y^{\prime}\right\} \neq \emptyset$. By Lemma 2.4 and since p_{k} is anticomplete Q^{*}, it follows that p_{k} is adjacent to at most one of x and y, and so not both x and
y are in T. Suppose that x^{\prime} and y are both in T. Then, w has three neighbors in the hole given by $x^{\prime}-x-Q-y-p_{k}-x^{\prime}$ and w is not a clone or a major vertex for this hole, contradicting Lemmas 2.1 and 2.2. This proves that not both x^{\prime} and y are in T. By symmetry, not both y and x^{\prime} are in T. It follows that $T=\left\{x^{\prime}, y^{\prime}\right\}$. Because p_{1} and w are major and non-adjacent, and p_{1} is adjacent to x^{\prime} and y^{\prime}, it follows by Lemma 2.7 that $H \cup\left\{p_{1}, w\right\}$ is MNC configuration (5). Therefore, p_{1} is adjacent to x and y. Since $T=\left\{x^{\prime}, y^{\prime}\right\}$, it follows that $\{x, y\}$ is anticomplete to $V(P) \backslash\left\{p_{1}\right\}$. Further, because p_{1} is not a hub, it follows that w is not a hub, so w has neighbors in $H \backslash\left(Q \cup\left\{x^{\prime}, y^{\prime}\right\}\right)$. Note also that $b \in H \backslash\left(Q \cup\left\{x^{\prime}, y^{\prime}\right\}\right)$. Then, G contains a theta between p_{1} and w, through x, y, and $P \cup\left(H \backslash\left(Q \cup\left\{x^{\prime}, y^{\prime}\right\}\right)\right)$, a contradiction.

Let $H=h_{1}-h_{2^{-}} \ldots-h_{k^{-}} h_{1}$ be a hole in a graph $G \in \mathcal{C}$ and let $v \in V(G)$. We say that v is a gem-center if $k \geq 5$ and $N_{H}(v)=\left\{h_{1}, h_{2}, h_{3}, h_{4}\right\}$.

Corollary 2.14. Let $G \in \mathcal{C}$ and let H be a hole in G of length greater than six. Let w be a major vertex for H such that w is not complete to H, w is not a gem-center, and either w is not a hub or every major vertex for H is a hub. Then, w is the center of a star cutset in G.

Proof. Let $u \in H$ such that $u w \notin E(G)$. We claim that there exists a vertex $v \in H$ such that u and v are distant in H with respect to w. Suppose otherwise. Let Q be the w-sector containing u and let \bar{Q} be the extended neighborhood of w containing Q. It follows that $\bar{Q}=H$, so $N_{H}(w)$ is contained in a subpath of H of length at most three. Since w is major, it follows that $N_{H}(w)$ is a subpath of H of length exactly three, so w is a gem-center, a contradiction. Let $v \in H$ be such that u and v are distant in H with respect to w. It follows from Theorem 2.13 that w has a neighbor in the interior of every path from u to v. Therefore, u and v are in different components of $G \backslash(N[w] \backslash v)$, so w is the center of a star cutset in G.

3 Structure of proper separators

In this section, we consider minimal separators of graphs in \mathcal{C}. We start with the following result concerning minimal separators that are cliques.

Lemma 3.1 ([4]). For every graph G, there are at most $\mathcal{O}(|V(G)|)$ minimal clique separators of G and they can be enumerated in time $\mathcal{O}(|V(G)||E(G)|)$.

A separator in a graph is proper if it is minimal and not a clique. By Lemma 3.1, we restrict our attention here to proper separators. Our goal is to prove that graphs in \mathcal{C} have polynomially many proper separators.

Let C be a minimal separator of a graph G. A connected component D of $G \backslash C$ is a full component for C if every vertex of C has a neighbor in D, i.e., $N(D)=C$. Recall that there are at least two full components for every minimal separator. The next lemma, while not necessary for our results, is a convenient observation about full components for proper separators of graphs in \mathcal{C}.

Lemma 3.2. If C is a proper separator of a graph $G \in \mathcal{C}$, then there are exactly two full components for C.

Proof. Let $c_{1} c_{2}$ be a non-edge in C, and suppose that there are three full components for C. Then, G contains a path from c_{1} to c_{2} through each of the three full components, and so G contains a theta between c_{1} and c_{2}, a contradiction.

For the rest of this section, we let C be a proper separator of a graph $G \in \mathcal{C}$, and we denote by L and R the two full components for C. Let H be a hole with $V(H) \cap V(C)=\left\{c_{1}, c_{2}\right\}$, and let H_{L} and H_{R} be the two paths of H between c_{1} and c_{2}. We say that H is a $\left(C, c_{1}, c_{2}\right)$-hole if $H_{L}^{*} \subseteq L$ and $H_{R}^{*} \subseteq R$. A vertex $v \in V(G)$ is $\left(c_{1}, c_{2}\right)$-heavy with respect to H if v is major for H and c_{1}, c_{2} are distant in H with respect to v. Note that if $v \in V(G)$ is $\left(c_{1}, c_{2}\right)$-heavy with respect to H, then v has a neighbor in H_{L}^{*} and a neighbor in H_{R}^{*}, and therefore $v \in C$. The frame of H is given by $F(H)=\left(c_{1}, c_{2}, \ell_{1}^{\prime}, \ell_{1}, r_{1}, r_{1}^{\prime}, \ell_{2}^{\prime}, \ell_{2}, r_{2}, r_{2}^{\prime}\right)$, where ℓ_{1} is the neighbor of c_{1} in H_{L}, ℓ_{1}^{\prime} is the neighbor of ℓ_{1} in H_{L}^{*} if $\ell_{1} \neq \ell_{2}$, and otherwise $\ell_{1}^{\prime}=\ell_{1}=\ell_{2}$. We define similarly $\ell_{2}, \ell_{2}^{\prime}, r_{1}, r_{1}^{\prime}, r_{2}, r_{2}^{\prime}$. We denote by $V(F)$ the vertices of F. We call F a $\left(C, c_{1}, c_{2}\right)$-frame if F is the frame of a $\left(C, c_{1}, c_{2}\right)$-hole. A hole H is an F-hole if H is a $\left(C, c_{1}, c_{2}\right)$-hole with frame F.

Lemma 3.3. Let H be a (C, c_{1}, c_{2})-hole with frame $F=\left(c_{1}, c_{2}, \ell_{1}^{\prime}, \ell_{1}, r_{1}, r_{1}^{\prime}, \ell_{2}^{\prime}, \ell_{2}, r_{2}, r_{2}^{\prime}\right)$. Assume that $v \in V(G) \backslash V(H)$ has a neighbor both in $H_{L}^{*} \backslash\left\{\ell_{1}, \ell_{2}\right\}$ and in $H_{R}^{*} \backslash\left\{r_{1}, r_{2}\right\}$. Then, v is $\left(c_{1}, c_{2}\right)$-heavy with respect to H.

Proof. Suppose that v is not $\left(c_{1}, c_{2}\right)$-heavy with respect to H. Then, c_{1} and c_{2} are in an extended neighborhood \bar{Q} of v. Let $\bar{Q}=Q \cup\left(N_{H}(v) \cap\left\{x^{\prime}, y^{\prime}\right\}\right)$, where $Q=x \ldots y$ is a v-sector, and x^{\prime} and y^{\prime} are the neighbors of x and y in $H \backslash Q^{*}$, respectively. Then, c_{1} and c_{2} are either in $V(Q)$ or have a neighbor in $V(Q)$. Since v has a neighbor in $H_{L}^{*} \backslash\left\{\ell_{1}, \ell_{2}\right\}$, it follows that $H_{L}^{*} \backslash V(Q) \neq \emptyset$. Similarly, $H_{R}^{*} \backslash V(Q) \neq \emptyset$.

Suppose first that c_{1} is not adjacent to v. Let S be the v-sector of H that contains c_{1}. Since $c_{1} v \notin E(G)$ and $c_{1} \in \bar{Q}$, it follows that $S=Q$. Since $c_{2} \in \bar{Q}$, either v has no neighbor in $H_{L}^{*} \backslash\left\{\ell_{1}, \ell_{2}\right\}$ or v has no neighbor in $H_{R}^{*} \backslash\left\{r_{1}, r_{2}\right\}$, a contradiction. Thus, $c_{1} v \in E(G)$, and similarly $c_{2} v \in E(G)$. But then, since $c_{1}, c_{2} \in \bar{Q}$, either $H_{L}^{*} \backslash V(Q)=\emptyset$ or $H_{R}^{*} \backslash V(Q)=\emptyset$, a contradiction.

The potential of a (C, c_{1}, c_{2})-hole H is the total number of $\left(c_{1}, c_{2}\right)$-heavy vertices with respect to H. The following lemma shows that the potential of a (C, c_{1}, c_{2})-hole only depends on its frame.

Lemma 3.4. Let H_{1} and H_{2} be (C, c_{1}, c_{2})-holes with the same frame, given by $F\left(H_{1}\right)=F\left(H_{2}\right)=$ $\left(c_{1}, c_{2}, \ell_{1}^{\prime}, \ell_{1}, r_{1}, r_{1}^{\prime}, \ell_{2}^{\prime}, \ell_{2}, r_{2}, r_{2}^{\prime}\right)$. Then, $v \in V(G)$ is $\left(c_{1}, c_{2}\right)$-heavy with respect to H_{1} if and only if v is $\left(c_{1}, c_{2}\right)$-heavy with respect to H_{2}. In particular, the potential of H_{1} and the potential of H_{2} are equal.

Proof. Suppose $v \in V(G)$ is $\left(c_{1}, c_{2}\right)$-heavy with respect to H_{1} and not with respect to H_{2}.
(1) If v has no neighbor in $H_{2 L}^{*} \backslash\left\{\ell_{1}, \ell_{2}\right\}$, then $N(v) \cap H_{1 L}^{*} \subseteq\left\{\ell_{1}, \ell_{2}\right\}$. Similarly, if v has no neighbor in $H_{2 R}^{*} \backslash\left\{r_{1}, r_{2}\right\}$, then $N(v) \cap H_{1 R}^{*} \subseteq\left\{r_{1}, r_{2}\right\}$.

By symmetry, it suffices to prove the first statement. So assume that v has no neighbor in $H_{2 L}^{*} \backslash\left\{\ell_{1}, \ell_{2}\right\}$. We may assume that $\ell_{1}, \ell_{1}^{\prime}, \ell_{2}, \ell_{2}^{\prime}$ are all distinct, since otherwise the result clearly holds. In particular, H_{1} and H_{2} are both of length greater than six.

Since v is $\left(c_{1}, c_{2}\right)$-heavy with respect to H_{1}, v has a neighbor in both $H_{1 L}^{*}$ and $H_{1 R}^{*}$. Suppose v is anticomplete to $\left\{\ell_{1}, \ell_{2}\right\}$. Then, there exists a path $P=p_{1} \ldots-p_{k}$ in $\left(H_{1} \backslash\left\{\ell_{1}, \ell_{2}\right\}\right) \cup\{v\}$ such that $P \cap H_{2}=\emptyset, p_{1}$ has a neighbor in $H_{2 L}^{*}, p_{k}$ has a neighbor in $H_{2 R}$, and P^{*} is anticomplete to H_{2}. Note that $v \in P$ and $p_{1} \in L$ (i.e. $p_{1} \neq v$), so P is of length at least 1. But then P and H_{2} contradict Lemma 2.9. So v is not anticomplete to $\left\{\ell_{1}, \ell_{2}\right\}$. Thus, we may assume that v is adjacent to ℓ_{1}. Let Q be the v-sector of H_{1} that contains ℓ_{1}^{\prime}. Then, $\ell_{1} \in V(Q)$. Since c_{1} and c_{2} are distant in H_{1} with respect to v, it follows that v is a major vertex for H_{1}. We claim that v is not a hub for H_{1}. Suppose v is a hub for H_{1}. Since $\ell_{1} \in N(v)$ and $\ell_{1}^{\prime} \notin N(v)$, it follows that $c_{1} \in N(v)$. But then c_{1} and c_{2} are not distant in H_{1} with respect to v, a contradiction. This proves that v is not a hub for H_{1}. Now, since v is anticomplete to $\ell_{1}^{\prime}-H_{2 L}-\ell_{2}^{\prime}$, it follows from Theorem 2.13 that ℓ_{1}^{\prime} and
ℓ_{2}^{\prime} are not distant in H_{1} with respect to v. Since v is not adjacent to ℓ_{2}^{\prime}, it follows that $\ell_{2}^{\prime} \in Q$, so $N(v) \cap H_{1 L}^{*} \subseteq\left\{\ell_{1}, \ell_{2}\right\}$. This proves (1).

By Lemma 3.3, we may assume that v has no neighbor in $H_{2 L}^{*} \backslash\left\{\ell_{1}, \ell_{2}\right\}$. By (1), it follows that $N(v) \cap H_{1 L}^{*} \subseteq\left\{\ell_{1}, \ell_{2}\right\}$.
(2) v has a neighbor in $H_{2 R}^{*} \backslash\left\{r_{1}, r_{2}\right\}$.

Assume that v has no neighbor in $H_{2 R}^{*} \backslash\left\{r_{1}, r_{2}\right\}$. Then, by (1), $N(v) \cap H_{1 R}^{*} \subseteq\left\{r_{1}, r_{2}\right\}$. But now, $N(v) \cap H_{1}=N(v) \cap H_{2}$, and so c_{1} and c_{2} are distant in H_{2} with respect to v, a contradiction. This proves (2).

Since c_{1} and c_{2} are not distant in H_{2} with respect to v, there exists an extended neighborhood \bar{Q} of v in H_{2} such that c_{1} and c_{2} are both in \bar{Q}. Let $\bar{Q}=Q \cup\left(N_{H_{2}}(v) \cap\left\{x^{\prime}, y^{\prime}\right\}\right)$ where $Q=x \ldots y$ is a v-sector in H_{2} and x^{\prime} and y^{\prime} are the neighbors of x and y in $H_{2} \backslash Q$, respectively. Since \bar{Q} contains c_{1} and c_{2}, it follows that either $H_{2 L} \subseteq \bar{Q}$ or $H_{2 R} \subseteq \bar{Q}$. Suppose that $H_{2 L} \subseteq \bar{Q}$. Since c_{1} and c_{2} are distant in H_{1} with respect to v and $N(v) \cap H_{1 L}^{*} \subseteq\left\{\ell_{1}, \ell_{2}\right\}$, we may assume that v is adjacent to ℓ_{1}. Since c_{1} is in \bar{Q}, it follows that v is also adjacent to c_{1}. Because \bar{Q} is an extended neighborhood of v in H_{2} that contains c_{1} and c_{2}, v is either non-adjacent to ℓ_{2}, or v is adjacent to ℓ_{2} and c_{2}. But now c_{1} and c_{2} are not distant in H_{1} with respect to v, a contradiction. Therefore, $H_{2 R} \subseteq \bar{Q}$. However, by (2), v has a neighbor in $H_{2 R}^{*} \backslash\left\{r_{1}, r_{2}\right\}$, a contradiction.

Let $F=\left(c_{1}, c_{2}, \ell_{1}^{\prime}, \ell_{1}, r_{1}, r_{1}^{\prime}, \ell_{2}^{\prime}, \ell_{2}, r_{2}, r_{2}^{\prime}\right)$ be a $\left(C, c_{1}, c_{2}\right)$-frame. We say that a vertex $v \in V(G)$ is F-heavy if there exists an F-hole H such that v is $\left(c_{1}, c_{2}\right)$-heavy with respect to H. Note that Lemma 3.4 implies that an F-heavy vertex v is $\left(c_{1}, c_{2}\right)$-heavy with respect to every hole H with frame F. A vertex v that is not F-heavy is said to be F-light. The potential of F is the total number of F-heavy vertices.

Let $c_{1}, c_{2} \in C$. We denote by $\operatorname{dist}_{L}\left(c_{1}, c_{2}\right)$ and $\operatorname{dist}_{R}\left(c_{1}, c_{2}\right)$ the length of the shortest path from c_{1} to c_{2} through L and R, respectively, and we let $\operatorname{dist}\left(c_{1}, c_{2}\right)=\min \left(\operatorname{dist}_{R}\left(c_{1}, c_{2}\right), \operatorname{dist}_{L}\left(c_{1}, c_{2}\right)\right)$. We say that $\left(c_{1}, c_{2}\right)$ is a long pair of C if $\operatorname{dist}\left(c_{1}, c_{2}\right) \geq 4$. A $\left(C, c_{1}, c_{2}\right)$-frame F is long if $\left(c_{1}, c_{2}\right)$ is a long pair of C. A proper separator C is rich if there exist $c_{1}, c_{2} \in C$ such that $\left(c_{1}, c_{2}\right)$ is a long pair, and poor otherwise.

Lemma 3.5. Suppose F is a $\left(C, c_{1}, c_{2}\right)$-frame, H is an F-hole, and $c_{3} \in C \backslash\left\{c_{1}, c_{2}\right\}$ is F-light. Let $P=p_{k}-\ldots-p_{1}-c_{3}-q_{1}-\ldots-q_{j}$ be a path such that $c_{3}-p_{1}-\ldots-p_{k}$ is a path from c_{3} to H_{L}^{*} through L and $c_{3}-q_{1}-\ldots-q_{j}$ is a path from c_{3} to H_{R}^{*} through R (possibly $c_{3}=p_{k}$ or $c_{3}=q_{j}$), and assume P has length at least two. Then, up to symmetry between c_{1} and c_{2}, one of the following holds:
(i) c_{1} and c_{2} are anticomplete to $P^{*}, N_{H}\left(p_{k}\right)=\left\{\ell_{1}, c_{1}\right\}$, and $N_{H}\left(q_{j}\right)=\left\{c_{1}, r_{1}\right\}$,
(ii) c_{2} is anticomplete to P^{*}, c_{1} has neighbors in P^{*}, p_{k} is either adjacent to c_{1} or a pendant of H with neighbor ℓ_{1}, and q_{j} is either adjacent to c_{1} or a pendant of H with neighbor r_{1}.

Proof. If both c_{1} and c_{2} have neighbors in P^{*}, then G contains a theta between c_{1} and c_{2} through H_{L}, H_{R}, and P^{*}, so we may assume that c_{2} is anticomplete to P^{*}.

Suppose c_{1} is also anticomplete to P^{*}. By Lemma 2.9, either p_{k} and q_{j} have a common neighbor in H, or their neighbors in H form an edge. Since p_{k} has a neighbor in H_{L}^{*} and q_{j} has a neighbor in H_{R}^{*}, it follows that the neighbors of p_{k} and q_{j} in H do not form an edge. Hence, we may assume that p_{k} and q_{j} are both adjacent to c_{1}. If p_{k} and q_{j} both have neighbors in $H \backslash\left\{c_{1}\right\}$ other than ℓ_{1} and r_{1}, respectively, then G contains a theta between p_{k} and q_{j} through P, c_{1}, and $H \backslash\left\{\ell_{1}, c_{1}, r_{1}\right\}$, a contradiction. Suppose $N_{H}\left(q_{j}\right)=\left\{c_{1}, r_{1}\right\}$ and p_{k} has a neighbor in H_{L} other than ℓ_{1}. Let s be the neighbor of p_{k} in H_{L} closest to c_{2}. Then, G contains a pyramid from p_{k} to $q_{j} c_{1} r_{1}$ through $p_{k}-P-q_{j}$,
$p_{k}-c_{1}$, and $p_{k}-s-H \backslash\left\{c_{1}\right\}-r_{1}$, a contradiction. By definition, p_{k} and q_{j} have neighbors in H_{L}^{*} and H_{R}^{*}, respectively, and so $N_{H}\left(p_{k}\right)=\left\{\ell_{1}, c_{1}\right\}$ and $N_{H}\left(q_{j}\right)=\left\{c_{1}, r_{1}\right\}$, and outcome (i) holds.

Next, suppose c_{1} has neighbors in P^{*}. Let r be the closest neighbor of c_{1} to p_{k} in P^{*}. By Lemma 2.9 applied to the path $p_{k}-P-r$, either p_{k} and r have a common neighbor in H, or p_{k} and r are pendants of H with adjacent neighbors in H. Since $N_{H}(r)=\left\{c_{1}\right\}$, either p_{k} is adjacent to c_{1} or $N_{H}\left(p_{k}\right)=\left\{\ell_{1}\right\}$. By symmetry, either q_{j} is adjacent to c_{1} or $N_{H}\left(q_{j}\right)=\left\{r_{1}\right\}$, and outcome (ii) holds.

Let H be an F-hole and let $c_{3} \in C \backslash\left\{c_{1}, c_{2}\right\}$ be F-light. A c_{3}-butterfly is a path $P=p_{k^{-} \ldots-p_{1}-c_{3^{-}}}$ $q_{1}-\ldots-q_{j}$, where $c_{3}-p_{1}-\ldots-p_{k}$ is a shortest path from c_{3} to H_{L}^{*} through L and $c_{3}-q_{1}-\ldots-q_{j}$ is a shortest path from c_{3} to H_{R}^{*} through R (possibly $p_{k}=c_{3}$ or $c_{3}=q_{j}$). We call the path $c_{3}-p_{1}-\ldots-p_{k}$ the left wing of P, and the path $c_{3}-q_{1}-\ldots-q_{j}$ the right wing of P. We say that c_{3} is a central vertex of P if $c_{3} \neq p_{k}, p_{k-1}, q_{j}, q_{j-1}$.

The following results deal with the structure of c_{3}-butterflies.
Lemma 3.6. Suppose F is a $\left(C, c_{1}, c_{2}\right)$-frame, H is an F-hole, and $c_{3} \in C \backslash\left\{c_{1}, c_{2}\right\}$ is F-light. Suppose further that if C is a rich separator, then F is long, and if C is a poor separator, then $\operatorname{dist}\left(c_{1}, c_{2}\right)$ is maximum over all non-adjacent pairs in C. Let P be a c_{3}-butterfly and assume c_{2} is anticomplete to P^{*}. Suppose that c_{3} is a central vertex of P. Then, $\left(c_{3}, c_{2}\right)$ is a long pair of C. In particular, C is a rich separator.

Proof. Assume for a contradiction that $\left(c_{3}, c_{2}\right)$ is not a long pair of C. Then, there exists a path from c_{3} to c_{2} of length less than or equal to three through L or through R. First, assume that there exists a path of length two from c_{3} to c_{2}, say $c_{3}-x-c_{2}$, and without loss of generality let $x \in L$. Because P is a butterfly and c_{3} is a central vertex of P, neither c_{3} nor $c_{3}-x$ is the left wing of a c_{3}-butterfly, so $x \notin H$ and x is anticomplete to H_{L}^{*}. It follows that $N_{H}(x) \subseteq\left\{c_{1}, c_{2}\right\}$. If $N_{H}(x)=\left\{c_{1}, c_{2}\right\}$, then G contains a theta between c_{1} and c_{2} through H_{L}, H_{R}, and x, so $N_{H}(x)=\left\{c_{2}\right\}$. If c_{1} has neighbors in P^{*}, then G contains a theta between c_{1} and c_{2} through H_{L}, H_{R}, and $P^{*} \cup\{x\}$, so c_{1} is anticomplete to P^{*}. It follows from Lemma 3.5 that $N_{H}\left(p_{k}\right)=\left\{\ell_{1}, c_{1}\right\}$. Now, G contains a pyramid from c_{2} to $p_{k} \ell_{1} c_{1}$ through $c_{2}-x-c_{3}-P-p_{k}, c_{2}-H_{L}-\ell_{1}$, and $c_{2}-H_{R^{-}} c_{1}$, a contradiction. Therefore, there is no path of length two from c_{3} to c_{2}.

Next, let $c_{3}-x-y-c_{2}$ be a path of length three from c_{3} to c_{2}, and without loss of generality let $x, y \in L$. Since $\operatorname{dist}\left(c_{3}, c_{2}\right)=3$, it follows that $\operatorname{dist}\left(c_{1}, c_{2}\right) \geq 3$. In particular, c_{1} is not adjacent to y. Because c_{3} is a central vertex of P, it follows that neither c_{3} nor $c_{3}-x$ is the left wing of a c_{3}-butterfly. Therefore, $x, y \notin H$ and $N_{H}(x) \subseteq\left\{c_{1}\right\}$. Suppose x is adjacent to c_{1}. Then, x and y are strictly nested with respect to H. By Lemma $2.9, x$ and y are pendants of H with adjacent neighbors in H, so c_{1} is adjacent to c_{2}, a contradiction. Hence, x is anticomplete to H.

Suppose first that c_{1} is adjacent to c_{3}. Consider the path $y-x-c_{3}$. By Lemma 2.9, either y and c_{3} have a common neighbor in H, or y and c_{3} are pendants of H with adjacent neighbors in H. Since $N_{H}\left(c_{3}\right)=\left\{c_{1}\right\}$ and y is not adjacent to c_{1}, it follows that y is a pendant with $N_{H}(y)=\left\{\ell_{1}\right\}$. But $c_{2} \in N_{H}(y)$, a contradiction. This shows that c_{1} is not adjacent to c_{3}. Next, suppose that c_{1} has a neighbor in $\left\{q_{1}, q_{2}, \ldots, q_{j}\right\}$. Let t be minimum such that c_{1} is adjacent to q_{t}. Let Q be a path from y to q_{t} with $Q^{*} \subseteq\left\{x, c_{3}, q_{1}, \ldots, q_{t-1}\right\}$. By Lemma 2.9, either y and q_{t} have a common neighbor in H, or y and q_{t} are pendants of H with adjacent neighbors in H. Suppose $t \neq j$, so $N_{H}\left(q_{t}\right)=\left\{c_{1}\right\}$. Since y is not adjacent to c_{1}, it follows that y is a pendant of H and $N_{H}(y)=\left\{\ell_{1}\right\}$. But $c_{2} \in N_{H}(y)$, a contradiction. Therefore, $t=j$. Since q_{j} is adjacent to c_{1} and q_{j} has a neighbor in H_{R}^{*}, q_{j} is not a pendant of H. Therefore, q_{j} and y have a common neighbor in H. Since $y \in L$ and $q_{j} \in R$, the common neighbor of y and q_{j} is c_{2}. Then, q_{j} is a common neighbor of c_{1} and c_{2}, contradicting that $\operatorname{dist}\left(c_{1}, c_{2}\right) \geq 3$. This proves that c_{1} is anticomplete to $\left\{c_{3}, q_{1}, \ldots, q_{j}\right\}$.

Since q_{j} is not adjacent to c_{1}, by Lemma $3.5, N_{H}\left(q_{j}\right)=\left\{r_{1}\right\}$. Now, consider the path $Q=$ $y-x-c_{3}-\ldots-q_{j}$. By Lemma 2.9, either y and q_{j} are pendants of H with adjacent neighbors in H, or y and q_{j} have a common neighbor in H. Since $y \in L$ and $N_{H}\left(q_{j}\right)=\left\{r_{1}\right\}, y$ and q_{j} do not have a common neighbor in H. Therefore, r_{1} is adjacent to c_{2}, contradicting that $\operatorname{dist}\left(c_{1}, c_{2}\right) \geq 3$.

By Lemma 3.5 and Lemma 3.6, if C is a poor separator and $\operatorname{dist}\left(c_{1}, c_{2}\right)$ is maximum over all non-adjacent pairs in C, then c_{3} is not a central vertex of P. The following two lemmas prove a similar result for rich separators.

Lemma 3.7. Suppose C is a rich separator, $\left(c_{1}, c_{2}\right)$ is a long pair of C, F is a $\left(C, c_{1}, c_{2}\right)$-frame, H is an F-hole, $c_{3} \in C \backslash\left\{c_{1}, c_{2}\right\}$ is F-light, and $P=p_{k}-\ldots-c_{3}-\ldots-q_{j}$ is a c_{3}-butterfly with c_{2} anticomplete to P^{*}. Assume that c_{3} is a central vertex of P and let w be an F-heavy vertex. Let s be the neighbor of p_{k} in H_{L} closest to c_{2}, and let t be the neighbor of q_{j} in H_{R} closest to c_{2}. Let S be the path from s to t in $H \backslash\left\{c_{1}\right\}$, and consider the $\left(C, c_{3}, c_{2}\right)$-hole given by $J=P \cup S$. Then, w is a $\left(c_{3}, c_{2}\right)$-heavy vertex with respect to J.

Proof. By Lemma 3.5, p_{k} is either adjacent to c_{1} or $N_{H}\left(p_{k}\right)=\left\{\ell_{1}\right\}$. Since $\left(c_{1}, c_{2}\right)$ is a long pair of C, it follows that $s \neq \ell_{2}$. By symmetry, $t \neq r_{2}$. Assume for a contradiction that w is not (c_{3}, c_{2})-heavy with respect to J.
(1) If p_{k} is adjacent to c_{1}, then w has a neighbor in $p_{k}-s-H_{L}-\ell_{2}$.

Because (c_{1}, c_{2}) is a long pair of C, H has length at least eight. By Lemma 3.4, w is $\left(c_{1}, c_{2}\right)$ heavy with respect to H. Suppose w is anticomplete to the path given by $p_{k}-s-H_{L}-\ell_{2}$. If w is not complete to $\left\{c_{1}, c_{2}\right\}$, then since c_{1} and c_{2} are distant in H with respect to w, the path $p_{k}-s-H_{L}-\ell_{2}$ is (H, w)-significant and w is not a hub for H, a contradiction to Theorem 2.13. So w is complete to $\left\{c_{1}, c_{2}\right\}$. Let w^{\prime} be the neighbor of w in H_{L}^{*} that is closest to ℓ_{2}. Note that w^{\prime} exists and $w^{\prime} \neq \ell_{1}$ since w is $\left(c_{1}, c_{2}\right)$-heavy with respect to H. Also, observe that there is a path Q from w to p_{k} through $P \cup H_{R} \backslash\left\{c_{1}, r_{1}\right\}$: either w has a neighbor in $P \backslash\left\{p_{k}\right\}$, or there is a path $Q^{\prime}=q_{j}-t-H_{R}-w^{\prime \prime}-w$, where $w^{\prime \prime}$ is the neighbor of w in $t-H_{R^{-}} c_{2}$ closest to t (possibly $w^{\prime \prime}=c_{2}$). Let s^{\prime} be the neighbor of p_{k} in $w^{\prime}-H_{L}-c_{2}$ closest to w^{\prime}; note that s^{\prime} exists since s is in $w^{\prime}-H_{L}-c_{2}$ (possibly $s^{\prime}=w^{\prime}$). Now, G contains a theta between p_{k} and w through $p_{k}-s^{\prime}-H_{L}-w^{\prime}-w, p_{k}-c_{1}-w$, and $p_{k}-Q-w$, a contradiction. This proves (1).
(2) w has a neighbor in $J_{L}^{*} \backslash N_{J}\left(c_{3}\right)$ and a neighbor in $J_{R}^{*} \backslash N_{J}\left(c_{3}\right)$.

By symmetry, it suffices to show that w has a neighbor in $J_{L}^{*} \backslash N_{J}\left(c_{3}\right)$. Assume first that $s=\ell_{1}$. Then, $H_{L}^{*} \subseteq J_{L}^{*}$. Further, c_{3} does not have a neighbor in H_{L}^{*}, otherwise $c_{3}=p_{k}$, contradicting that c_{3} is a central vertex of P. Finally, since w is $\left(c_{1}, c_{2}\right)$-heavy with respect to H, w has a neighbor in H_{L}^{*}, and we are done. Hence, we may assume that $s \neq \ell_{1}$. By Lemma 3.5, p_{k} is adjacent to c_{1}, so by (1), w has a neighbor in $p_{k}-s-H_{L}-\ell_{2}$. Note that $p_{k}-s-H_{L}-\ell_{2} \subseteq J_{L}^{*}$, so w has a neighbor in J_{L}^{*}. Further, c_{3} does not have a neighbor in $p_{k}-s-H_{L}-\ell_{2}$, otherwise c_{3} is adjacent to p_{k}, contradicting that c_{3} is a central vertex of P. Therefore, w has a neighbor in $J_{L}^{*} \backslash N_{J}\left(c_{3}\right)$. This proves (2).

By Lemma 3.3, w does not have a neighbor in both $J_{L}^{*} \backslash N_{J}\left(\left\{c_{3}, c_{2}\right\}\right)$ and $J_{R}^{*} \backslash N_{J}\left(\left\{c_{3}, c_{2}\right\}\right)$, so by (2) we may assume that ℓ_{2} is the only neighbor of w in $J_{L}^{*} \backslash N_{J}\left(c_{3}\right)$. By (2) w has a neighbor in $J_{R}^{*} \backslash N_{J}\left(c_{3}\right)$ and since c_{3} and c_{2} are not distant in J with respect to w, it follows that w is also adjacent to c_{2}. Because c_{1} and c_{2} are distant in H with respect to w, it follows that $s \neq \ell_{1}$ and w has neighbors in the interior of $c_{1}-H_{L}-s$. Since $s \neq \ell_{1}$, by Lemma 3.5, it follows that p_{k} is adjacent to c_{1}. Thus, w and p_{k} cross with respect to H. There are two cases: either p_{k} is a clone of ℓ_{1}, or p_{k} is major and by Lemma 2.7 $H \cup\left\{w, p_{k}\right\}$ is MNC configuration (4), (5), (6), (7), or (8). Suppose the first case holds, so p_{k} is a clone of ℓ_{1}. Since p_{k} is a clone of ℓ_{1}, it holds that $s=\ell_{1}^{\prime}$. By Lemma 2.8, H contains a $\left\{w, p_{k}\right\}$-complete edge, so w is adjacent to ℓ_{1} and c_{1} (note that w is not adjacent
to $s=\ell_{1}^{\prime}$ since ℓ_{2} is the only neighbor of w in $\left.J_{L}^{*} \backslash N_{J}\left(c_{3}\right)\right)$. Then, $N(w) \cap H_{L}=\left\{c_{1}, \ell_{1}, \ell_{2}, c_{2}\right\}$, so c_{1} and c_{2} are not distant in H with respect to w, a contradiction. Therefore, p_{k} is major and $H \cup\left\{w, p_{k}\right\}$ is MNC configuration (4), (5), (6), (7), or (8). It follows that there is a $\left\{w, p_{k}\right\}$-complete edge in $c_{1}-H_{L^{-}} s$. Let $e=v_{1} v_{2}$ be a $\left\{w, p_{k}\right\}$-complete edge in $c_{1}-H_{L^{-}} s$ such that v_{2} is between v_{1} and s in H_{L}. Suppose that w is not a cap with respect to J and let u be the neighbor of w in the $p_{k} c_{2}$-subpath of $J \backslash \ell_{2}$ that is closest to p_{k}. Then G contains a theta between p_{k} and w through $p_{k}-v_{1}-w, p_{k}-s-H_{L}-\ell_{2}-w$, and $p_{k}-J \backslash\left\{\ell_{2}\right\}-u-w$. Hence, $N_{J}(u)=\left\{\ell_{2}, c_{2}\right\}$. Then, G contains a pyramid from p_{k} to $w \ell_{2} c_{2}$ through $p_{k}-v_{1}-w, p_{k}-s-H_{L}-\ell_{2}$, and $p_{k}-P-q_{j}-t-H_{R}-c_{2}$, a contradiction.

Lemma 3.8. Suppose C is a rich separator, F is a $\left(C, c_{1}, c_{2}\right)$-frame with maximum potential over all long frames, and H is an F-hole. Let $c_{3} \in C \backslash\left\{c_{1}, c_{2}\right\}$ be F-light, and let $P=p_{k}-\ldots-c_{3}-\ldots-q_{j}$ be a c_{3}-butterfly. Then, c_{3} is not a central vertex of P.

Proof. Suppose that c_{3} is a central vertex of P. By Lemma 3.5, we may assume that c_{2} is anticomplete to P^{*}. Furthermore, by Lemma 3.5, p_{k} is adjacent to c_{1} or $N_{H}\left(p_{k}\right)=\left\{\ell_{1}\right\}$. Since $\left(c_{1}, c_{2}\right)$ is a long pair of C, it follows that p_{k} is anticomplete to $\left\{c_{2}, \ell_{2}\right\}$. By symmetry, q_{j} is anticomplete to $\left\{c_{2}, r_{2}\right\}$. Let r be the neighbor of p_{k} in H_{L} closest to c_{2}, and let s be the neighbor of q_{j} in H_{R} closest to c_{2}. Let S be the path in H from r to s through c_{2}. Let J be the (C, c_{3}, c_{2})-hole given by $P \cup S$, and let F^{\prime} be the $\left(C, c_{3}, c_{2}\right)$-frame of J. By Lemma 3.7 it follows that every F-heavy vertex is $\left(c_{2}, c_{3}\right)$-heavy with respect to J, and therefore is F^{\prime}-heavy. Now, consider c_{1} with respect to the hole J. Either c_{1} is adjacent to p_{k}, or ℓ_{1} is in J and c_{1} is adjacent to ℓ_{1}. Similarly, either c_{1} is adjacent to q_{j}, or r_{1} is in J and c_{1} is adjacent to r_{1}. Then, c_{1} has a neighbor in $J_{L}^{*} \backslash N_{J}\left(\left\{c_{3}, c_{2}\right\}\right)$ and a neighbor in $J_{R}^{*} \backslash N_{J}\left(\left\{c_{3}, c_{2}\right\}\right)$, so by Lemma 3.3, c_{1} is a (c_{3}, c_{2})-heavy vertex of J. Finally, it follows from Lemma 3.6 that $\left(c_{3}, c_{2}\right)$ is a long pair of C. Then, F^{\prime} is a long $\left(C, c_{3}, c_{2}\right)$-frame with higher potential than F, a contradiction.

We call a (C, c_{1}, c_{2})-frame F optimal if one of the following holds:
(i) C is a rich separator and F has maximum potential over all long frames of C
(ii) C is a poor separator and $\operatorname{dist}\left(c_{1}, c_{2}\right)$ is maximum over all non-adjacent pairs of vertices in C.

The following theorem combines the results of Lemma 3.5, Lemma 3.6, and Lemma 3.8.
Theorem 3.9. Let F be an optimal $\left(C, c_{1}, c_{2}\right)$-frame, H be an F-hole, $c_{3} \in C \backslash\left\{c_{1}, c_{2}\right\}$ be F-light, and $P=p_{k}-\ldots-c_{3}-\ldots-q_{j}$ be a c_{3}-butterfly. Then, c_{3} is not a central vertex of P.

4 Constructing proper separators

In this section, we show how to use the structure results from previous sections to prove the main result of the paper. Our goal is to reconstruct proper separators C given only an optimal frame F of C, and two 4 -tuples $M_{1}(C), M_{2}(C)$ of vertices in C. We first show that we can construct an F-hole H, and then show that we can construct three sets C_{1}, C_{2}, C_{3} such that $C=C_{1} \cup C_{2} \cup C_{3}$.

We begin with a key observation about the structure of graphs in \mathcal{C}.
Lemma 4.1. If $G \in \mathcal{C}$, then G does not contain a 3 -creature.
Proof. Assume that G contains a 3 -creature with notation as in the definition of a k-creature. Suppose first that x_{3} is adjacent to x_{1} and x_{2}. Let Q_{A} be a path from x_{1} to x_{2} through A, and let Q_{B} be a path from y_{1} to y_{2} through B. Then, $x_{1}-Q_{A}-x_{2}-y_{2}-Q_{B}-y_{1}-x_{1}$ is a hole H in G. Let $R_{B}=y_{3}-\ldots-b$ be a path from y_{3} to Q_{B} through B. Consider the path $R=x_{3}-y_{3}-R_{B}-b$. Since x_{3}
and b are strictly nested with respect to H, by Lemma 2.9 , it follows that x_{3} and b are pendants of H with adjacent neighbors in H. However, x_{3} is adjacent to x_{1} and x_{2}, a contradiction.

We may therefore assume that x_{1} is not adjacent to x_{2} and y_{1} is not adjacent to y_{2}. Let Q_{A} be a path from x_{1} to x_{2} through A, and let Q_{B} be a path from y_{1} to y_{2} through B. Then, $x_{1}-Q_{A}-x_{2}-y_{2}-Q_{B}-y_{1}-x_{1}$ is a hole H in G. Let $R_{A}=x_{3}-\ldots-a$ be a path from x_{3} to Q_{A}^{*} through A and let $R_{B}=y_{3}-\ldots-b$ be a path from y_{3} to Q_{B}^{*} through B. Consider the path $R=a-R_{A}-x_{3}-y_{3}-R_{B}-b$. If $\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}$ is anticomplete to R^{*}, then a and b are strictly nested with respect to H, and a and b are not pendants of H with adjacent neighbors in H, contradicting Lemma 2.9. Hence, one of $x_{1}, y_{1}, x_{2}, y_{2}$ has a neighbor in R^{*}. In particular, R^{*} is not empty. Suppose x_{1} and x_{2} both have neighbors in R^{*}. Then, G contains a theta between x_{1} and x_{2} through Q_{A}, Q_{B}, and R^{*}, a contradiction. Therefore, not both x_{1} and x_{2} have neighbors in R^{*}. Similarly, not both y_{1} and y_{2} have neighbors in R^{*}. Since $\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}$ is not anticomplete to R^{*}, we may assume that x_{1} has a neighbor in R^{*}. If y_{2} also has a neighbor in R^{*}, then G contains a theta between x_{1} and y_{2} through Q_{A}, Q_{B}, and R^{*}, a contradiction. Therefore, y_{2} is anticomplete to R^{*}.

Let c be the closest neighbor of x_{1} to x_{3} in R_{A}. Suppose y_{1} is anticomplete to R^{*} and consider the path $c-R_{A}-x_{3}-y_{3}-R_{B}-b$. Then, c and b are strictly nested with respect to H. Since b has a neighbor in Q_{B}^{*}, c and b are not pendants of H with adjacent neighbors in H, contradicting Lemma 2.9. Hence, y_{1} has a neighbor in R^{*}. Let a^{\prime} be the neighbor of a in Q_{A} closest to x_{2}, and let b^{\prime} be the neighbor of b in Q_{B} closest to y_{2}. Let H^{\prime} be the hole given by $H^{\prime}=x_{3}-R_{A}-a-a^{\prime}-Q_{A}-x_{2}-y_{2}-Q_{B}-b^{\prime}-b-R_{B}-y_{3}-x_{3}$. Since x_{1} and y_{1} are strictly nested with respect to H^{\prime}, by Lemma $2.9, x_{1}$ and y_{1} are pendants of H^{\prime} with adjacent neighbors in H^{\prime}. Therefore, $N_{H^{\prime}}\left(x_{1}\right)=\left\{x_{3}\right\}$ and $N_{H^{\prime}}\left(y_{1}\right)=\left\{y_{3}\right\}$. In particular, $a^{\prime} x_{1}, b^{\prime} y_{1} \notin E(G)$. Since $R^{*} \neq \emptyset$, without loss of generality $y_{3} \neq b$. Now, G contains a theta between x_{3} and y_{1} through y_{3}, x_{1}, and $x_{3}-R_{A}-a-a^{\prime}-Q_{A}-x_{2}-y_{2}-Q_{B}-y_{1}$, a contradiction.

For the rest of the section, unless otherwise specified, let C be a proper separator of $G \in \mathcal{C}$ and let $F=\left(c_{1}, c_{2}, \ell_{1}^{\prime}, \ell_{1}, r_{1}, r_{1}^{\prime}, \ell_{2}^{\prime}, \ell_{2}, r_{2}, r_{2}^{\prime}\right)$ be an optimal $\left(C, c_{1}, c_{2}\right)$-frame. We denote by G_{F} the graph $G \backslash\left(N\left(\left\{c_{1}, c_{2}, \ell_{1}, r_{1}, \ell_{2}, r_{2}\right\}\right) \backslash\left\{\ell_{1}^{\prime}, \ell_{2}^{\prime}, r_{1}^{\prime}, r_{2}^{\prime}\right\}\right)$. The following two lemmas show that we can construct a set $W=W(F)$ containing every F-heavy vertex v such that $v \in V\left(G_{F}\right)$.

Lemma 4.2. Let H be an F-hole and let $v \in C \cap V\left(G_{F}\right)$ be major for H. Then, v is F-heavy.
Proof. Assume that v is not F-heavy, and let P be a v-butterfly. Since v is major for H, v must be an endpoint of P. Since $v \in V\left(G_{F}\right), v$ is anticomplete to $\left\{c_{1}, c_{2}, \ell_{1}, r_{1}, \ell_{2}, r_{2}\right\}$, and so by Lemma 3.5, P is of length at most one. Since v is F-light, by Lemma 3.3, P is of length exactly one. But then since v is anticomplete to $\left\{c_{1}, c_{2}, \ell_{1}, r_{1}, \ell_{2}, r_{2}\right\}, P$ and H contradict Lemma 2.9.

We call $v \in C$ a $\left(c_{1}, c_{2}\right)$-strong vertex of G if c_{1} and c_{2} belong to different components of $G \backslash N[v]$. Note that given a graph G, and $v, c_{1}, c_{2} \in V(G)$, one can determine if v is $\left(c_{1}, c_{2}\right)$-strong in time $\mathcal{O}\left(|V(G)|^{2}\right)$.

Lemma 4.3. One can construct in polynomial time a set $W=W(F)$ that contains all F-heavy vertices v such that v is anticomplete to $\left\{c_{1}, c_{2}, \ell_{1}, \ell_{2}, r_{1}, r_{2}\right\}$ and $W \subseteq C$.

Proof. Let H be an F-hole where the path from ℓ_{1}^{\prime} to ℓ_{2}^{\prime} through H_{L} is a shortest path from ℓ_{1}^{\prime} to ℓ_{2}^{\prime} in L, and the path from r_{1}^{\prime} to r_{2}^{\prime} through H_{R} is a shortest path from r_{1}^{\prime} to r_{2}^{\prime} through R. We may assume that H has length greater than six since otherwise W is empty. Let X_{1} be the set of all $\left(c_{1}, c_{2}\right)$-strong vertices of G_{F}, and let X_{2} be the set of all $\left(c_{1}, c_{2}\right)$-strong vertices of $G_{F} \backslash X_{1}$. Note that X_{1} and X_{2} can be constructed in time $\mathcal{O}\left(|V(G)|^{3}\right)$. If v is $\left(c_{1}, c_{2}\right)$-strong, then v has a neighbor in H_{L}^{*} and a neighbor in H_{R}^{*}, so $v \in C$. It follows that $X_{1} \cup X_{2} \subseteq C$. We claim that $W=X_{1} \cup X_{2}$ contains all F-heavy vertices v such that v is anticomplete to $\left\{c_{1}, c_{2}, \ell_{1}, r_{1}, \ell_{2}, r_{2}\right\}$.

By Theorem 2.13, X_{1} contains all F-heavy vertices v in G_{F} such that v is not a hub of H. Now, consider $G_{F} \backslash X_{1}$. Every F-heavy vertex in $G_{F} \backslash X_{1}$ is a hub. Suppose $v \in V\left(G_{F} \backslash X_{1}\right)$ is a major vertex for H and v is F-light. By Lemma 4.2, $v \in L$ or $v \in R$. Without loss of generality suppose $v \in L$. Since v is a major vertex for H and $v \in V\left(G_{F} \backslash X_{1}\right)$, it follows that $N(v) \cap\left(H_{L}^{*} \backslash\left\{\ell_{1}, \ell_{2}\right\}\right)$ is not contained in a path of length three, so there exists a shorter path from ℓ_{1}^{\prime} to ℓ_{2}^{\prime} in L through v, a contradiction. Therefore, every major vertex for H in $G_{F} \backslash X_{1}$ is F-heavy, so every major vertex for H in $G_{F} \backslash X_{1}$ is a hub. Then, it follows from Theorem 2.13 that X_{2} contains every F-heavy vertex of H in $G_{F} \backslash X_{1}$.

Finally, let v be an F-heavy vertex in G such that v is anticomplete to $\left\{c_{1}, c_{2}, \ell_{1}, r_{1}, \ell_{2}, r_{2}\right\}$. If v is not a hub, then v is an F-heavy vertex in G_{F}, so $v \in X_{1}$. If v is a hub and $v \notin X_{1}$, then v is an F-heavy vertex of $G_{F} \backslash X_{1}$, so $v \in X_{2}$.

Lemma 4.4. Given an optimal frame F of C, one can construct in polynomial time an F-hole H.
Proof. By Lemma 4.3, we can construct the set $W=W(F) \subseteq C$ of all F-heavy vertices v such that v is anticomplete to $\left\{c_{1}, c_{2}, \ell_{1}, \ell_{2}, r_{1}, r_{2}\right\}$. Let H be the graph given by the union of $V(F)$, a shortest path Q_{L} from ℓ_{1}^{\prime} to ℓ_{2}^{\prime} through $G_{F} \backslash W$, and a shortest path Q_{R} from r_{1}^{\prime} to r_{2}^{\prime} through $G_{F} \backslash W$. We claim that H is an F-hole.

If $Q_{L} \subseteq L$ and $Q_{R} \subseteq R$, then clearly H is an F-hole, so assume without loss of generality that $Q_{L} \nsubseteq L$. Let ℓ^{*} be the vertex of $Q_{L} \backslash L$ closest to ℓ_{1}^{\prime} on Q_{L}. Since ℓ^{*} has a neighbor in L and $\ell^{*} \notin L$, it follows that $\ell^{*} \in C$. Suppose ℓ^{*} is F-heavy. Since W contains all F-heavy vertices anticomplete to $\left\{c_{1}, c_{2}, \ell_{1}, \ell_{2}, r_{1}, r_{2}\right\}$, it follows that ℓ^{*} has a neighbor in $\left\{c_{1}, c_{2}, \ell_{1}, \ell_{2}, r_{1}, r_{2}\right\}$, a contradiction. Therefore, ℓ^{*} is F-light. Let J be an F-hole. Let P_{R} be a path from ℓ^{*} to J_{R}^{*} through R, and let P_{L} be a path from ℓ^{*} to J_{L}^{*} contained in $\ell^{*}-Q_{L}-\ell_{1}^{\prime}$. Consider the path $P=P_{L}-\ell^{*}-P_{R}$ and let p_{k} be the end of P_{L} with neighbors in J_{L}^{*}. Suppose P is of length at least two. By Lemma 3.5, it follows that either p_{k} is adjacent to c_{1} or p_{k} is a pendant with $N_{J}\left(p_{k}\right)=\left\{\ell_{1}\right\}$. Since $P_{L} \subseteq V\left(G_{F} \backslash W\right), p_{k}$ is not adjacent to c_{1} or ℓ_{1}, a contradiction. Therefore, P is of length at most one. Because ℓ^{*} is F-light and ℓ^{*} is anticomplete to $\left\{c_{1}, c_{2}, \ell_{1}, \ell_{2}, r_{1}, r_{2}\right\}$, it follows that ℓ^{*} does not have a neighbor in both J_{L}^{*} and J_{R}^{*}. Therefore, P has length exactly one, and P and J contradict Lemma 2.9.

By Lemma 4.4, we can construct an F-hole H. Let $c_{3} \in C$ be F-light, and let $P=p_{k^{-}} \ldots-p_{1}-c_{3^{-}}$ $q_{1}-\ldots-q_{j}$ be a c_{3}-butterfly for H. By Theorem 3.9, c_{3} is not a central vertex of P. We call c_{3} an L-end vertex if $c_{3}=p_{k}$, and an L-adjacent vertex if $c_{3}=p_{k-1}$. We define similarly R-end and R-adjacent. The following lemma shows that every L-adjacent vertex is in the neighborhood of two vertices in L and that every R-adjacent vertex is in the neighborhood of two vertices in R.

Lemma 4.5. Let $X \subseteq N\left(H_{L}^{*}\right) \cap L$ be a minimal subset of $N\left(H_{L}^{*}\right) \cap L$ such that every L-adjacent vertex has a neighbor in X. Then, $|X| \leq 2$. Similarly, let $Y \subseteq N\left(H_{R}^{*}\right) \cap R$ be a minimal subset of $N\left(H_{R}^{*}\right) \cap R$ such that every R-adjacent vertex has a neighbor in Y. Then, $|Y| \leq 2$.

Proof. Suppose $|X|>2$ and let $x_{1}, x_{2}, x_{3} \in X$. It follows from the minimality of X that for every $x_{i} \in X$ there exists $y_{i} \in C$ such that y_{i} is L-adjacent and $N_{X}\left(y_{i}\right)=\left\{x_{i}\right\}$. For $i=1,2,3$, let P_{i} be the right wing of a y_{i}-butterfly. Let $A=H_{L}^{*}$ and let $B=\left(P_{1} \backslash\left\{y_{1}\right\}\right) \cup\left(P_{2} \backslash\left\{y_{2}\right\}\right) \cup\left(P_{3} \backslash\left\{y_{3}\right\}\right) \cup H_{R}^{*}$. Then, A is anticomplete to $B, G[A]$ and $G[B]$ are connected, and for $i=1,2,3, x_{i}$ has a neighbor in A and is anticomplete to B, and y_{i} has a neighbor in B and is anticomplete to A. It follows that $A \cup B \cup\left\{x_{1}, x_{2}, x_{3}\right\} \cup\left\{y_{1}, y_{2}, y_{3}\right\}$ is a 3 -creature, contradicting Lemma 4.1.

Let $X=\left\{x_{1}, x_{2}\right\}$ and $Y=\left\{y_{1}, y_{2}\right\}$ be as in Lemma 4.5 (so possibly $x_{1}=x_{2}$ or $y_{1}=y_{2}$). Let $M_{1}(C)=\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$. Let $C_{L}=N\left(H_{L}^{*} \cup\left\{x_{1}, x_{2}\right\}\right)$ and $C_{R}=N\left(H_{R}^{*} \cup\left\{y_{1}, y_{2}\right\}\right)$. Note that C_{L} and C_{R} depend only on H and $M_{1}(C)$.

Lemma 4.6. $C_{L} \cap C_{R} \subseteq C \subseteq C_{L} \cup C_{R}$.
Proof. It follows from the definition of C_{L} that $C_{L} \subseteq L \cup C$. Similarly, $C_{R} \subseteq R \cup C$. Since L and R are disjoint, it follows that $C_{L} \cap C_{R} \subseteq C$. Next, suppose $c \in C$. Since $\left\{c_{1}, c_{2}\right\} \subseteq C_{L} \cap C_{R}$, we may assume that $c \in C \backslash\left\{c_{1}, c_{2}\right\}$. If c is F-heavy, then by Lemma $3.4 c$ is $\left(c_{1}, c_{2}\right)$-heavy with respect to H, and hence c has neighbors in both H_{L}^{*} and H_{R}^{*}, so $c \in C_{L} \cap C_{R}$. Therefore, we may assume that c is F-light. By Theorem 3.9, c is either L-end, L-adjacent, R-end, or R-adjacent. If c is L-end, then c has a neighbor in H_{L}^{*}. If c is L-adjacent, it follows from Lemma 4.5 that c has a neighbor in $\left\{x_{1}, x_{2}\right\}$. Therefore, if c is L-end or L-adjacent, then $c \in C_{L}$. By symmetry, if c is R-end or R-adjacent, $c \in C_{R}$. Hence, $C \subseteq C_{L} \cup C_{R}$.

Let $C_{1}=C_{L} \cap C_{R}$. Note that for every $s \in C$, if there exists an s-butterfly P of length zero or one, then $s \in C_{1}$. Let $D=V(G) \backslash\left(H \cup C_{L} \cup C_{R}\right)$. The following lemmas show how to identify the vertices of $C \backslash C_{1}$.

Lemma 4.7. Let $S \subseteq C_{R} \cap R$ be a minimal subset of $C_{R} \cap R$ such that for every vertex $z \in$ $\left(C_{L} \backslash C_{R}\right) \cap C$, there exists a path from z to S through D. Then, $|S| \leq 2$. Similarly, let $T \subseteq C_{L} \cap L$ be a minimal subset of $C_{L} \cap L$ such that for every vertex $z \in\left(C_{R} \backslash C_{L}\right) \cap C$, there exists a path from z to T through D. Then, $|T| \leq 2$.
Proof. First, note that for every vertex $z \in\left(C_{L} \backslash C_{R}\right) \cap C$ there exists a path from z to $C_{R} \cap R$ through D given by a subpath of the right wing of a z-butterfly. Suppose $|S|>2$ and let $s_{1}, s_{2}, s_{3} \in S$. By the minimality of S, it follows that there exist $z_{1}, z_{2}, z_{3} \in\left(C_{L} \backslash C_{R}\right) \cap C$ such that there exists a path P_{i} from z_{i} to s_{i} through D for $i=1,2,3$, and there does not exist a path from z_{i} to s_{j} through D for $1 \leq i \neq j \leq 3$. Let $z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}$ be the neighbors of z_{1}, z_{2}, z_{3} in P_{1}, P_{2}, P_{3}, respectively. Let $A=H_{L}^{*} \cup\left\{x_{1}, x_{2}\right\}$ and let $B=\left(P_{1} \backslash\left\{z_{1}, z_{1}^{\prime}\right\}\right) \cup\left(P_{2} \backslash\left\{z_{2}, z_{2}^{\prime}\right\}\right) \cup\left(P_{3} \backslash\left\{z_{3}, z_{3}^{\prime}\right\}\right) \cup\left(H_{R}^{*} \cup\left\{y_{1}, y_{2}\right\}\right)$. Then, A is anticomplete to $B, G[A]$ and $G[B]$ are connected, and for $i=1,2,3 z_{i}$ has a neighbor in A and is anticomplete to B, and z_{i}^{\prime} has a neighbor in B and is anticomplete to A. It follows that $A \cup B \cup\left\{z_{1}, z_{2}, z_{3}\right\} \cup\left\{z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}\right\}$ is a 3 -creature, contradicting Lemma 4.1.

Let $S=\left\{r_{a}, r_{b}\right\}$ and $T=\left\{\ell_{a}, \ell_{b}\right\}$ be as in Lemma 4.7 (possibly $r_{a}=r_{b}$ or $\ell_{a}=\ell_{b}$). Let $M_{2}(C)=\left(\ell_{a}, \ell_{b}, r_{a}, r_{b}\right)$. Let C_{2} be the set of all vertices $c \in C_{L}$ such that there exists a path P from c to $\left\{r_{a}, r_{b}\right\}$ through D. Similarly, let C_{3} be the set of all vertices $c \in C_{R}$ such that there exists a path P from c to $\left\{\ell_{a}, \ell_{b}\right\}$ through D. Note that C_{2} and C_{3} depend only on H, W, C_{L}, C_{R}, and $M_{2}(C)$.
Lemma 4.8. $C_{2} \cup C_{3} \subseteq C$.
Proof. Suppose $c \in C_{L}$ such that there exists a path P from c to $\left\{r_{a}, r_{b}\right\}$ through D. Since $c \in C_{L}$, c has a neighbor in L, so some vertex of P belongs to C. Since, by Lemma 4.6, $C \subseteq C_{L} \cup C_{R}$, no vertex of $P \backslash\{c\}$ is in C. It follows that $c \in C$. Therefore, $C_{2} \subseteq C$. By symmetry, $C_{3} \subseteq C$.
Lemma 4.9. $C=C_{1} \cup C_{2} \cup C_{3}$. In particular, C is uniquely determined by $F, M_{1}(C)$, and $M_{2}(C)$.
Proof. By Lemmas 4.6 and 4.8, it follows that $C_{1} \cup C_{2} \cup C_{3} \subseteq C$. Consider $c \in C$. We may assume $c \notin C_{1}$. Then, by Lemma 4.6, either $c \in\left(C_{L} \backslash C_{R}\right) \cap C$ or $c \in\left(C_{R} \backslash C_{L}\right) \cap C$. If $c \in\left(C_{L} \backslash C_{R}\right) \cap C$, it follows from Lemma 4.7 that there is a path P from c to $\left\{r_{a}, r_{b}\right\}$, so $c \in C_{2}$. Similarly, if $c \in\left(C_{R} \backslash C_{L}\right) \cap C$, then $c \in C_{3}$. Therefore, $C \subseteq C_{1} \cup C_{2} \cup C_{3}$.

Let $C\left(F, M_{1}(C), M_{2}(C)\right)=C_{1} \cup C_{2} \cup C_{3}$ be the set constructed from $F, M_{1}(C)$, and $M_{2}(C)$, as described in this section. We proved that if C is a proper separator and F is an optimal frame of C, then $C\left(F, M_{1}(C), M_{2}(C)\right)=C$. The following corollary is a summary of the results presented in Section 4 so far.

Corollary 4.10. Given the tuples F, M_{1}, and M_{2}, one can construct $C\left(F, M_{1}, M_{2}\right)$ in polynomial time. Further, if F is an optimal frame of C, then $C\left(F, M_{1}(C), M_{2}(C)\right)=C$.

Finally, we prove Theorem 1.2, which we restate here for convenience. Recall that by [3], to construct a list of all minimal separators of a graph, it suffices to prove that it has polynomially many minimal separators. We prove that \mathcal{C} has the polynomial separator property and provide in addition a polynomial-time algorithm to construct the minimal separators of graphs in \mathcal{C}, which follows naturally from the results in this section.
Theorem 4.11. Let $G \in \mathcal{C}$. One can construct a set \mathcal{S} of size at most $|V(G)|^{18}$ in polynomial time such that \mathcal{S} is the set of all minimal separators of G.
Proof. Let $\mathcal{S}=\{ \}$. By Lemma 3.1, we add to \mathcal{S} all minimal clique separators of G. Next, we list the proper separators of G. Let $T=\left(c_{1}, c_{2}, \ell_{1}^{\prime}, \ell_{1}, r_{1}, r_{1}^{\prime}, \ell_{2}^{\prime}, \ell_{2}, r_{2}, r_{2}^{\prime}, x_{1}, x_{2}, y_{1}, y_{2}, \ell_{a}, \ell_{b}, r_{a}, r_{b}\right)$ be an 18 -tuple consisting of vertices in $V(G)$. Let $F^{T}=\left(c_{1}, c_{2}, \ell_{1}^{\prime}, \ell_{1}, r_{1}, r_{1}^{\prime}, \ell_{2}^{\prime}, \ell_{2}, r_{2}, r_{2}^{\prime}\right), M_{1}^{T}=$ $\left(x_{1}, x_{2}, y_{1}, y_{2}\right)$, and $M_{2}^{T}=\left(\ell_{a}, \ell_{b}, r_{a}, r_{b}\right)$. For every 18-tuple T, let $C^{T}=C\left(F^{T}, M_{1}^{T}, M_{2}^{T}\right)$. By Corollary 4.10, C^{T} can be constructed in polynomial time. We can test in time $\mathcal{O}(|E(G)||V(G)|)$ whether C^{T} is a minimal separator of G. We add C^{T} to \mathcal{S} if and only if C^{T} is a minimal separator of G. Clearly, \mathcal{S} has size at most $|V(G)|^{18}$ and can be constructed in polynomial time.

It remains to show that \mathcal{S} contains every minimal separator of G. Let C be a minimal separator of G. We may assume that C is proper. Let F be an optimal frame of C and let T be the 18 -tuple given by the union of $F, M_{1}(C)$, and $M_{2}(C)$, in that order. It follows from Corollary 4.10 that $C^{T}=C$, so $C \in \mathcal{S}$.

References

[1] T. Abrishami, M. Chudnovsky, M. Pilipczuk, P. Rzążewski, P. Seymour. "Induced subgraphs of bounded treewidth and the container method", arXiv preprint, arXiv:2003.05185 (2020).
[2] I. Adler, N.K. Le, H. Müller, M. Radovanović, N. Trotignon, K. Vušković. "On rank-width of (diamond, even hole)-free graphs", Discrete Mathematics and Theoretical Computer Science, 19(1) (2017).
[3] A. Berry, J.P. Bordat, O. Cogis. "Generating all the minimal separators of a graph", In Lecture Notes in Computer Science, Workshop on Graph-theoretic Concepts in Computer Science, WG (1999), Vol. 1665, Springer, Berlin, 1999.
[4] A. Berry, R. Pogorelcnik, G. Simonet. "An introduction to clique minimal separator decomposition", Algorithms, 3(2) (2010), 197-215.
[5] V. Bouchitté, I. Todinca. "Treewidth and minimum fill-in: Grouping the minimal separators", SIAM J. Comput., 31 (1)(2001), 212-232.
[6] V. Bouchitté, I. Todinca. "Listing all potential maximal cliques of a graph", Theor. Comput. Sci., 276 (1-2)(2002), 17-32.
[7] M. Chudnovsky, S. Thomassé, N. Trotignon, K. Vušković. "Maximum independent sets in (pyramid, even hole)-free graphs", arXiv preprint, arXiv:1912.11246 (2019).
[8] M. Conforti, B. Gerards, K. Pashkovich. "Stable sets and graphs with no even holes", Mathematical Programming, 153(1) (2015), 13-39.
[9] F.V. Fomin, Y. Villanger. "Finding induced subgraphs via minimal triangulations", In 27th International Symposium on Theoretical Aspects of Computer Science, STACS (2010), 383-394. Schloss Dagstuhl -Leibniz-Zentrum für Informatik, 2010.
[10] A. Grzesik, T. Klimošová, M. Pilipczuk, M. Pilipczuk. "Polynomial-time algorithm for maximum weight independent set on P_{6}-free graphs", In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA (2019), 1257-1271.
[11] D. Lokshantov, M. Vatshelle, Y. Villanger. "Independent set in P_{5}-free graphs in polynomial time", In Proceedings of the Twenty- Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA (2014), 570-581.

[^0]: *Supported by NSF Grant DMS-1763817. This material is based upon work supported by, or in part by, the U.S. Army Research Laboratory and the U. S. Army Research Office under grant number W911NF-16-1-0404.
 ${ }^{\dagger}$ Partially supported by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program Investissements d'Avenir (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR), and by the French National Research Agency under research grant ANR DIGRAPHS ANR-19-CE48-0013-01.
 ${ }^{\ddagger}$ Partially supported by EPSRC grant EP/N0196660/1.

