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Abstract

In a graph, a chordless cycle of length greater than three is called

a hole. Let 
 be a f0; 1g vector whose entries are in one-to-one cor-

respondence with the holes of a graph G. We characterize graphs for

which, for all choices of the vector 
, we can pick a subset F of the

edge set of G such that jF \ H j � 


H

(mod 2), for all holes H of

G and jF \ T j � 1 for all triangles T of G. We call these graphs

universally signable. The subset F of edges is said to be labelled odd.

All other edges are said to be labelled even. Clearly graphs with no

holes (triangulated graphs) are universally signable with a labelling of

odd on all edges, for all choices of the vector 
. We give a decompo-

sition theorem which leads to a good characterization of graphs that

are universally signable. This is a generalization of a theorem due to

Hajnal and Suranyi [3] for triangulated graphs.

1 Introduction

In a graph a chordless cycle of length greater than three is called a hole.

We consider the problem of assigning labels odd and even to the edges of a

graph G(V;E) so that, given any f0; 1g vector 
 with entries in one-to-one

correspondence with the holes of G, the parity of the number of odd edges

in a hole H of G is 


H

and the parity of the number of odd edges in every

triangle is odd. An assignment of odd and even labels to the edges of G is

called a signing of G. Graphs for which there exists a signing in accordance

with 
, for all choices of the vector 
, are called universally signable. Graphs

that contain no holes (triangulated graphs), are seen to be universally signable

by signing all edges odd.

A subset of the edge set E is odd (resp. even) if it contains an odd

(resp. even) number of odd edges. A graph is even signable if there exists a

labelling of its edges such that every triangle is odd and every hole even. A

graph is odd signable if there exists a labelling of its edges such that every

triangle is odd and every hole is also odd. Even signable (resp. odd signable)

graphs generalize graphs with no odd holes (resp. even holes). Our interest

in universally signable graphs is motivated by the easy observation that they

are both odd and even signable.

We obtain a co-NP characterization of universally signable graphs as a

corollary to a theorem of Truemper [5]. Using this result, we obtain a de-
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composition theorem for universally signable graphs. The decomposition

theorem is a generalization of a theorem due to Hajnal and Suranyi [3] for

triangulated graphs. The decomposition result leads to a polynomial time

recognition algorithm for universally signable graphs.

2 Universally Signable Graphs

The following theorem of Truemper [5] is used to obtain a co-NP character-

ization of universally signable graphs.

Theorem 2.1 Let � be a f0; 1g vector whose entries are in one-to-one cor-

respondence with the chordless cycles of a graph G. Then there exists a

subset F of the edge set of G such that jF \ Cj � �

C

(mod2) for all chord-

less cycles C of G, if and only if for every induced subgraph G

0

of G of type

H

0

, H

1

, H

2

or H

3

, there exists a subset F

0

of the edge set of G

0

such that

jF

0

\ Cj � �

C

(mod2), for all chordless cycles C of G

0

.

The graphs H

0

;H

1

;H

2

and H

3

are shown in Figure 1. A dotted line

indicates a chordless path containing one or more edges.

H

0

H

1

H

2

H

3

Figure 1: 3-path con�gurations and wheel

Subgraphs of type H

0

;H

1

or H

2

are referred to as 3-path con�gurations

(3PC's). A subgraph of type H

0

is called a 3PC(x; y) where node x and
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node y are connected by three paths P

1

; P

2

and P

3

. A subgraph of type H

1

is called a 3PC(xyz; u), where xyz is a triangle and P

1

, P

2

and P

3

are three

paths with endnodes x, y and z respectively and a common endnode u. A

subgraph of type H

2

is called a 3PC(xyz; uvw), consists of two node disjoint

triangles xyz and uvw and paths P

1

, P

2

and P

3

with endnodes x and u, y

and v and z and w respectively. Furthermore in all three cases the nodes of

P

i

[P

j

i 6= j must induce a hole. This implies that all paths P

1

; P

2

; P

3

of H

0

have length greater than one, and at most one path of H

1

has length one.

Subgraphs of type H

3

are wheels. These consist of a chordless cycle called

the rim together with a node called the center that has at least three neigh-

bors on the rim. The edges of the wheel that do not belong to the rim are

called spokes.

Since all cuts and cycles of G have even intersections, switching the labels

on all edges of a cut does not change the parity of a cycle. In particular,

given a labelled graph, switching the label on all edges incident to a node

will not change the parity of any cycle. The operation of switching the labels

on all the edges incident to a node is called scaling. Since every edge of a

spanning forest T belongs to a cut of G which does not contain any other

edge of T , it follows that, if G can be signed in accordance with �, then there

exists such a signing with the edges of T labelled arbitrarily.

This implies that if a graph G can be signed in accordance with the vector

�, one can produce such a signing as follows. Order the edges of G e

1

; : : : ; e

n

,

so that the edges of T are the �rst in the sequence and all other edges e

j

have the property that e

j

closes a chordless cycle H

j

of G together with

edges having smaller indices. Sign the edges of T arbitrarily and label the

remaining edges e

j

so that H

j

is signed in accordance with �.

The following theorem gives a co-NP characterization of universally signable

graphs.

Theorem 2.2 A graph is universally signable if and only if it contains no

3PC and no wheel whose rim is a hole.

Proof: By Theorem 2.1 we only need to characterize the subgraphs of type

H

0

;H

1

;H

2

and H

3

that are universally signable. Subgraphs of type H

0

are

not odd signable. To see this, let 3PC(x; y) be a subgraph of type H

0

. Pick

the spanning tree that contains all the edges of the 3PC except two of the

edges incident at node x. Label all edges of the spanning tree even. Now
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both the remaining edges close holes with the edges of the spanning tree

and must be labelled odd. But now the hole of the 3PC(x; y) that contains

both these edges is even. Similarly, it is easy to show that subgraphs of type

H

2

are not odd signable and subgraphs of type H

1

are not even signable.

Consequently, universally signable graphs contains no 3PC.

If the rim of a wheel (H;x) is a hole, then by choosing 


H

to be opposite

in parity to the number of spokes of the wheel, and all other components of


 to be one, we show that the wheel is not universally signable. If the rim is

not a hole, the wheel is a triangulated graph and so it is universally signable.

2

3 Decomposition

Unless otherwise stated, we assume in the remainder that G is a universally

signable graph. For triangulated graphs, Hajnal and Suranyi showed the

following:

Theorem 3.1 [3] A minimal node cutset C in a triangulated graph G is a

clique.

The following is the main result of this paper:

Theorem 3.2 A minimal node cutset C in a universally signable graph G

is either a clique or a stable set of size two. Furthermore in the latter case

G(V n C) has exactly two connected components.

Let F � V and u 2 V n F . We say that node u is adjacent to F if it

has a neighbor in F . Node u is strongly adjacent to F if it has more than

one neighbor in F . We also loosely say that a node u is adjacent (strongly

adjacent) to a subgraph H of G to mean that node u is adjacent (strongly

adjacent) to the node set V (H). In other instances as well, where our intent

is clear from the context, we use H to mean V (H).

Lemma 3.3 A node x strongly adjacent to a hole H in G has exactly two

neighbors in H which are furthermore adjacent.
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Proof: If node x has more than two neighbors in H, graph G contains a wheel

whose rim is a hole. If node x is adjacent to exactly two nodes u and v in

H, which are not adjacent, then G contains a 3PC(u; v). 2

Proof of Theorem 3.2: Let C be a minimal node cutset. We �rst show

that C is either a clique or a stable set of size two. Let two of the connected

components of G(V nC) be the subgraphs G

1

and G

2

with node sets V

1

and

V

2

respectively. By the minimality of C, every node u 2 C is adjacent to at

least one node in each of the connected components of G(V n C). Suppose

that C is not a clique. Let x; y be two nonadjacent nodes in C. Let P

i

,

i = 1; 2, be paths in G

i

with one endnode adjacent to x, the other to y and

with the property that the node set V (P

i

) [ fx; yg induces a chordless path.

Now the node set V (P

1

) [ V (P

2

) [ fx; yg induces a hole H of G. Suppose

that jCj > 2 then we consider three possible cases

1. there exists a node z 2 C adjacent to both x and y,

2. there exists a node z 2 C not adjacent to x or y,

3. there exists a node z 2 C adjacent to exactly one of x or y.

Case 1: There exists a node z 2 C adjacent to both nodes x and y.

Node z is strongly adjacent to H and contradicts Lemma 3.3.

Case 2: There exists a node z 2 C adjacent to neither x nor y.

Let Q

i

for i 2 f1; 2g be a chordless path in G(V

i

[fzg), with one endnode

z and the other adjacent to a node in P

i

. Furthermore no intermediate node

of Q

i

is adjacent to P

i

. Note that by the minimality of C such paths must

exist.

Claim 1: We can pick paths P

i

and Q

i

, i = 1; 2, such that the path

Q

i

contains no neighbor of neither node x nor y except possibly the endnode

adjacent to a node in P

i

.

Proof of Claim 1: Assume such a choice of P

i

and Q

i

is not possible.

Assume w.l.o.g. that i = 1. Let z

1

be the node closest to z on Q

1

adjacent to

either node x or y, say x. Let z

0

and z

2

be the neighbors of z

1

in Q

1

, with z

0

closer to z than z

1

. In the graph induced by the nodes V (Q

1

)[ V (P

1

) [ fyg

let P

0

1

be the shortest path from z

1

to y. Let P be the shortest path from

node z to node y in the graph induced by V (P

2

) [ V (Q

2

) [ fyg. Since the

nodes of P;P

0

1

and the z; : : : ; z

1

subpath of Q

1

, together form a hole, by
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Lemma 3.3 node x either has exactly one neighbor in this hole, namely node

z

1

, or possibly nodes z

1

and z

2

. In the �rst case, the choice of P

0

1

and the

z; : : : ; z

0

instead of P

1

and Q

1

contradicts the assumption. In the other case,

the choice of z

2

; : : : ; y subpath of P

0

1

and the z; : : : ; z

1

subpath of Q

1

contra-

dicts the assumption. By symmetry we can choose P

2

and Q

2

appropriately

as well. This completes the proof of the claim.

Let P

i

and Q

i

, i = 1; 2 be chosen in accordance with Claim 1. Let the

endnode of Q

1

adjacent to a node in P

1

be node u and the endnode of Q

2

adjacent to a node in P

2

be node v. Note that by Lemma 3.3 node z is not

adjacent to both P

1

and P

2

and so is di�erent from either node u or node v.

By Lemma 3.3 node u (resp. v) is either adjacent to exactly one node of H

or to two adjacent nodes of H. If u and v have a common neighbor in H,

say x, then the node set V (H)[ V (Q

1

)[ V (Q

2

) induces a wheel with center

x and whose rim is a hole. Otherwise the node set V (H) [ V (Q

1

) [ V (Q

2

)

induces a 3PC.

Case 3: There exists a node z 2 C adjacent to exactly one of the nodes

x or y.

Assume w.l.o.g. that z is adjacent to x.

Let Q

i

for i 2 f1; 2g be a chordless path in G(V

i

[fzg), with one endnode

z and the other adjacent to a node in P

i

. Furthermore no intermediate node

of Q

i

is adjacent to P

i

. Note that by the minimality of C such paths must

exist.

Claim 2: We can pick paths P

i

and Q

i

, i = 1; 2 such that the path Q

i

contains no neighbor of node y except possibly the endnode of Q

i

distinct from

z and no neighbors of node x except node z.

Proof of Claim 2: Assume such a choice of P

i

and Q

i

is not possible.

Assume w.l.o.g. that i = 1. Let z

1

be the node of Q

1

, distinct from and

closest to node z, adjacent to either node x or y. If z

1

is adjacent to both

nodes x and y then node z

1

and hole H contradict Lemma 3.3.

Assume �rst that node z

1

is adjacent to node y. By our assumption on

P

1

and Q

1

node z

1

is not the endnode of Q

1

distinct from node z. If node

z is not adjacent to a node of P

2

graph G contains a 3PC(x; y) with paths

x; z; : : : ; z

1

; y ; x; P

2

; y and x; P

1

; y. If node z is adjacent to P

2

then by Lemma

3.3 applied to node z and hole H, z is adjacent to the neighbor of x in P

2

.

Let this node be z

2

. But now G contains a 3PC(zxz

2

; y).
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So, we assume that node z

1

is adjacent to node x. Let P

0

1

be the shortest

path from z

1

to y in G(V (P

1

) [ V (Q

1

) [ fyg). Let P

0

2

be the shortest path

from z to y in G(V (P

2

) [ V (Q

2

) [ fyg). The nodes in P

0

1

, P

0

2

together with

the nodes of the z; : : : ; z

1

subpath of Q

1

induce a hole H

0

. By Lemma 3.3

applied to H

0

and node x, node z

1

is adjacent to z and node x is adjacent

to no node of H

0

other than z and z

1

. Let the endnode of Q

1

adjacent to

a node in P

1

be node u and the endnode of Q

2

adjacent to a node in P

2

be

node v. Note that node z

1

is distinct from u since otherwise by Lemma 3.3

node u is adjacent to the neighbor of x in P

1

and consequently node x has

three neighbors in H

0

. We �rst consider the case when no node of Q

1

nfug is

adjacent to node y. Now Q

1

n fzg is a subpath of P

0

1

and so has no neighbor

of x other than z

1

. If node u is adjacent to exactly one node u

1

, of P

1

, then G

contains a 3PC(z

1

zx; u

1

). Otherwise u is adjacent to adjacent nodes u

1

and

u

2

of P

1

[fyg. Note that since x is not adjacent to node u, it is distinct from

both u

1

and u

2

. Now G contains a 3PC(z

1

zx; uu

1

u

2

). We now consider the

case where a node of Q

1

n fug is adjacent to node y. Note that in this case

P

0

1

is a subpath of Q

1

together with node y. Let z

2

be the node of Q

1

n fug

closest to z adjacent to y. If v has a unique neighbor v

1

in P

2

[ fyg, such

that v

1

x is an edge, then there is a wheel with center x whose rim is a hole.

Otherwise there is a 3PC(zz

1

x; y) with paths zP

0

2

y; z

1

; : : : ; z

2

; y and xP

1

y.

This completes the proof of the claim.

Let P

i

and Q

i

, i = 1; 2 be chosen in accordance with Claim 2. Let the

endnode of Q

1

adjacent to a node in P

1

be node u and the endnode of Q

2

adjacent to a node in P

2

be node v. By Lemma 3.3 applied to node z and

hole H we know that node z is di�erent from either node u or v. We �rst

consider the case when it is distinct from both. Suppose node u has a unique

neighbor u

1

in H. If v has a neighbor in P

2

not adjacent to node x, then

G contains a 3PC(u

1

; z). If the only neighbor of node v in P

2

, say v

1

, is

adjacent to node x then the graph either contains a 3PC(v

1

; z) or a wheel

whose rim is a hole, with center x, having spokes xv

1

; xz and xu

1

. So node u

has adjacent neighbors u

1

and u

2

in H. If node x does not coincide with u

1

or u

2

, graph G contains a 3PC(uu

1

u

2

; x). Otherwise, assume w.l.o.g. that

x coincides with u

2

, G contains a wheel whose rim is a hole with center x

and at least the three spokes xu

1

, xu and xz. So we assume w.l.o.g. that

node z coincides with node v. Then by Lemma 3.3 node z is adjacent to

the neighbor of x in P

2

say node v

1

. If node u is adjacent to a unique node

8



u

1

of P

1

[ fyg the graph G contains a 3PC(zxv

1

; u

1

), otherwise node u has

adjacent neighbors u

1

and u

2

in H. If x does not coincide with neither u

1

nor

u

2

, then G contains 3PC(uu

1

u

2

; zxv

1

). Otherwise G contains a wheel, whose

rim is a hole, with center x and spokes xv

1

; xz; xu and xu

1

. This shows that

Case 3 cannot occur.

Therefore every minimal cutset C of G is either a clique or a stable set of

size two. If C = fx; yg is a stable set of size two and G(V nC) has more than

two connected components then the graph G contains a 3PC(x; y) picking

one path each in three of the components. 2

4 Algorithm

Lemma 4.1 Let H be a hole in G and let G

1

; : : : ; G

k

be the connected com-

ponents of G n V (H). Then for every i 2 f1; : : : kg, H contains an edge uv

such that N(G

i

) \ V (H) � fu; vg.

Proof: Let i 2 f1; : : : ; kg. First assume that G

i

contains a node z that is

strongly adjacent to H. By Lemma 3.3 the neighbors of z in H are two

adjacent nodes of H, say u and v. Suppose that N(G

i

) \ V (H) 6� fu; vg.

Then G

i

contains a chordless path P whose one endnode is z, the other,

say y, is adjacent to a node in H n fu; vg and no intermediate node of P is

adjacent to a node in H n fu; vg. Let z

0

be the node of P which is closest to

y and is adjacent to both u and v. Note that by Lemma 3.3, z

0

is distinct

from y. Let P

0

be the y; : : : ; z

0

subpath of P . Let C be a minimal node

cutset separating z

0

from H n fu; vg. C must contain the edge uv and so by

Theorem 3.2 it must be a clique cutset. But by the choice of z

0

, no node of

V (P

0

) n fz

0

g is adjacent to both u and v, contradicting our assumption that

C is a cutset separating z from H n fu; vg.

Now assume that no node of G

i

is strongly adjacent to H. Suppose that

N(G

i

)\V (H) contains two nonadjacent nodes u and w. Let P be a chordless

path in G

i

whose one endnode is adjacent to u and the other to w. Assume

w.l.o.g. that no proper subpath of P has endnodes that are adjacent to

two nonadjacent nodes of H. In particular, no intermediate node of P is

adjacent to u or w. If no node of V (H) n fu;wg is adjacent to a node of P

then the node set V (P ) [ V (H) induces a 3PC(u;w). So assume that node

v 2 V (H)nfu;wg is adjacent to a node of P . Then by our assumption on P ,

9



both uv and vw are edges and no node of V (H) n fu; v; wg is adjacent to a

node of P . But now the node set V (P ) [ V (H) induces a wheel with center

v, whose rim is a hole. 2

Corollary 4.2 A connected universally signable graph G with no clique cut-

set is either a clique or a hole.

Proof: Suppose that G does not contain a clique cutset and that it is not

a clique. Then, by Theorem 3.1, G is not triangulated. Let H be a hole

of G. If G is not H itself, then by Lemma 4.1 G contains a clique cutset,

contradicting our assumption. 2

De�nition 4.3 A node of G is simplicial if its neighborhood set forms a

clique.

De�nition 4.4 A hole H of G is simplicial if G 6= H and H contains an

edge uv such that N(G nH) \ V (H) � fu; vg.

Dirac [2] showed the following result for triangulated graphs.

Theorem 4.5 [2] Every triangulated graph that is not a clique contains at

least two nonadjacent simplicial nodes.

We prove the following generalization:

Theorem 4.6 Every connected universally signable graph G that is not a

clique nor a hole, contains either a simplicial hole or two nonadjacent sim-

plicial nodes.

Proof: LetG be a connected universally signable graph that is not a clique nor

a hole. Assume that G does not contain a simplicial hole. If G is triangulated

then by Theorem 4.5 we are done. So let H be a hole of G. Let G

0

1

; : : : ; G

0

k

be the connected components of G n H. By Lemma 4.1, for i 2 f1; : : : ; kg,

let u

i

v

i

be an edge of H so that N(G

0

i

) \ V (H) � fu

i

; v

i

g, and let G

i

be the

graph induced by the node set V (G

0

i

) [ fu

i

; v

i

g. We now show that every

G

i

contains a simplicial vertex that is also a simplicial vertex of G, i.e. it is

distinct from both u

i

and v

i

. We consider the following two cases.

Case 1: G

i

is triangulated.

10



IfG

i

is a clique then every vertex of G

i

is simplicial in G

i

, and every vertex

in V (G

i

)nfu

i

; v

i

g is simplicial also in G. If G

i

is not a clique then by Theorem

4.5, it contains two nonadjacent simplicial vertices. One of these two vertices

must be distinct from both u

i

and v

i

, and hence is also a simplicial vertex of

G.

Case 2: G

i

is not triangulated.

Let H

i

be a hole of G

i

such that the connected component of G n H

i

,

which contains the nodes of H nfu

i

; v

i

g, is maximal. Let C

1

be the connected

component of G n H

i

which contains the nodes of H n fu

i

; v

i

g. Since H

i

is

not a simplicial hole of G, there exists a component C

2

of G n H

i

such that

N(C

2

) \ V (H

i

) 6� N(C

1

) \ V (H

i

) and N(C

1

) \ V (H

i

) 6� N(C

2

) \ V (H

i

).

Let G

C

1

be the graph induced by the node set V (C

1

)[ (N(C

1

)\V (H

i

)) and

let G

C

2

be the graph induced by the node set V (C

2

) [ (N(C

2

) \ V (H

i

)). If

G

C

2

is triangulated, then by Case 1 we are done. So suppose that it is not

and let H

0

be a hole in G

C

2

. Let C

0

1

be a connected component of G n H

0

which contains H n fu

i

; v

i

g. Let G

C

0

1

be the graph induced by the node set

V (C

0

1

)[(N(C

0

1

)\V (H

0

)). Then G

C

0

1

contains both H

i

and G

C

1

, contradicting

our choice of H

i

.

Hence every G

i

contains a simplicial vertex that is also a simplicial vertex

of G. Now since H is not a simplicial hole of G, k � 2. So both G

1

and G

2

contain a simplicial vertex of G, and by de�nition of G

1

and G

2

, these two

vertices are not adjacent. 2

Lemma 4.7 If a node u of G is simplicial then G is universally signable if

and only if G n fug is universally signable.

Proof: Since Gnfug is an induced subgraph of G, if G is universally signable

then so is G n fug. Now suppose that G n fug is universally signable. Then

by Theorem 2.2, G n fug does not contain a 3PC nor a wheel whose rim

is a hole. Since the neighborhood set of u in G induces a clique, u is not

contained in any hole of G. Since every node of a 3PC is contained in at

least one hole, u cannot be contained in any 3PC. Since u can have at most

two neighbors on a hole, u cannot be contained in any wheel whose rim is

a hole. Hence graph G does not contain a 3PC nor a wheel whose rim is a

hole, and so by Theorem 2.2 it is universally signable. 2
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Lemma 4.8 Let H be a simplicial hole of G and uv an edge of H such that

N(G n H) \ V (H) � fu; vg. Then G is universally signable if and only if

G n (V (H) n fu; vg) is universally signable.

Proof: Let G

0

= G n (V (H) n fu; vg). Since G

0

is an induced subgraph of G,

if G is universally signable then so is G

0

. Now assume that G

0

is universally

signable. By Theorem 2.2 it is su�cient to show that G does not contain a

3PC nor a wheel whose rim is a hole, which contains a node of V (H)nfu; vg.

Since every node of a 3PC is contained in at least two holes, no node of

V (H) n fu; vg can be contained in a 3PC. If a node of V (H) n fu; vg is

contained in a wheel then H is the rim of that wheel. But then there is a

node of G with at least three neighbors in H, contradicting the assumption

that H is simplicial. Hence no node of V (H) n fu; vg can be contained in a

wheel either. 2

Recognition Algorithm

Input: A connected graph G.

Output: YES if G is universally signable, NO otherwise.

Step 1: If G is a clique or a hole return YES.

Step 2: If G contains a simplicial node, remove it and go to Step 1.

Step 3: If G contains a simplicial hole H, remove from G the node set

V (H)nfu; vg, where uv is an edge of H such that N(GnH)\V (H) � fu; vg,

and go to Step 1.

Step 4: Return NO.

The validity of the algorithm follows from Theorem 4.6, Lemma 4.7 and

Lemma 4.8. Steps 1 and 2 can obviously be performed in polynomial time.

Step 3 can be performed in polynomial time as follows: �nd two adjacent

nodes u and v whose removal disconnects the graph in such a way that

one of the connected components together with u and v induces a hole. In

each iteration of the algorithm at least one node is removed, so there are at

most jV j iterations. Therefore the algorithm can be implemented to run in

polynomial time.
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5 Optimization

A graph G is h-perfect if its stable set polytope, STAB(G) (the convex hull

of the incidence vectors of all stable sets of G), is described by the clique

inequalities, the odd hole inequalities and non-negativity of the variables.

A graph is perfect if the clique inequalities and the non-negativity of the

variables su�ce. The following theorem of V. Chv�atal appears in [1].

Theorem 5.1 Let G be a graph that contains a clique cutset C. Let the

graph induced by V (G) n V (C) induce components G

0

1

; : : : ; G

0

m

and let G

i

be the graph induced by V (G

0

i

) [ V (C). Let STAB(G

i

) be given by the lin-

ear system A

i

x

i

� b

i

; x

i

� 0, where x

i

is a vector indexed by the nodes of

V (G

i

). Then STAB(G) is given by the linear system A

i

x

i

� b

i

; x

i

� 0; i 2

f1; : : : ;mg; x

i

v

= x

j

v

;8v 2 C; i; j 2 f1; : : : ;mg.

Holes and cliques are easily veri�ed to be h-perfect. Now by Theorem 4.6

and Theorem 5.1 we have the following theorem.

Theorem 5.2 Universally signable graphs are h-perfect.

Corollary 5.3 A universally signable graph is perfect if and only it contains

no odd hole.

Markossian, Gasparian and Reed [4] have introduced the notion of �-

perfection. For a graph G let �(G) = maxf�(F ) + 1jF an induced subgraph

of Gg, where �(F ) is the minimum degree in F . A graph is �-perfect if for

all its induced subgraphs H, the chromatic number �(H) = �(H). An even

hole is not �-perfect since �(G) = 2 while �(G) = 3. In [4] the following

lemma is proved:

Lemma 5.4 A graph with no even holes is �-perfect if every induced sub-

graph of G contains a simplicial node or a vertex of degree two.

By Theorem 4.6 and the above lemma we have the following theorem.

Theorem 5.5 A universally signable graph is �-perfect if and only it con-

tains no even hole.

Finally we remark that it is an easy exercise to modify the procedure to

�nd a maximumweight stable set or clique in a triangulated graph to obtain

an algorithm to solve the corresponding problems in universally signable

graphs.
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