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1. INTRODUCTION

A hole in a graph is a chordless cycle containing at least 4 edges. A convenient
setting for the study of graphs with no holes of given parity is that of signed
graphs: a graph G is said to be signed if each edge of G is given an odd or even
label. Let E�G� denote the edge set of G and V�G� its node set. In a signed graph
G, a subset of E�G� is odd (resp. even) if it contains an odd (resp. even) number of
odd-labeled edges. A graph is odd-signable if it can be signed so that the edge set
of every chordless cycle is odd. A signed graph is odd-signed if the edge set of
every chordless cycle is odd. We say that a graph G contains a graph H if H is an
induced subgraph of G. Note that G contains no hole of even cardinality if and
only if G is odd-signable with all edges odd. The importance of these graphs in
the study of �-perfection is discussed in [7].

In this article we study triangle-free (TF, for short) odd-signable graphs. These
graphs arise as building blocks of cap-free odd-signable graphs [3] but their
structure was not studied before. Cap-free odd-signable graphs are, in turn,
building blocks for graphs with no even holes [4].

We give a decomposition theorem for this class of graphs. We then exploit this
theorem to obtain a polytime algorithm for testing whether a TF graph is odd-
signable. We also give an algorithm for testing whether a signed TF graph is odd-
signed. As a special case, this yields a polytime algorithm to detect whether a TF
graph has a hole of even cardinality. It is interesting to note that Bienstock [1] has
shown that it is NP-complete to test whether a TF graph has a hole of even
cardinality that contains a speci®c node. In the last section, we give a construction
that generates all TF odd-signable graphs.

A wheel (H, v) in a graph consists of a hole H together with a node v, called the
center, that has at least three neighbors on H. When the center has an even
number of neighbors on the hole, the wheel is called an even wheel. Let v1; . . . ; vn

be the neighbors of v in H, appearing in this order when traversing H. A sector Si

is a subpath of H with endnodes vi and vi�1 not containing any other neighbor of
v (throughout the paper, we take indices mod n when appropriate. For example,
here vn�1 � v1).

A three-path con®guration 3PC�x; y� consists of two nodes x and y connected
by three paths P1;P2, and P3 such that the nodes of V�Pi� [ V�Pj�; i 6� j, induce a
hole. Therefore, all paths of a 3PC�x; y� are chordless and have length greater
than one.

The following fact is a consequence of a fundamental theorem of Truemper [8]
(see Theorem 2.3 in [3]) and gives a co-NP characterization of TF odd-signable
graphs.

Theorem 1.1. A TF graph is odd-signable if and only if it contains neither an

even wheel nor a three-path con®guration.

If G is a TF graph, the only possible clique cutsets are the cliques K1 and K2 of
cardinality one and two, respectively. The blocks of a decomposition of G by a
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clique cutset Kl are the induced subgraphs of G obtained from each connected
components of GnKl by adding back the nodes of Kl.

Corollary 1.2. If G has a clique cutset, then G is odd-signable if and only if all
the blocks of the clique cutset decomposition are odd-signable.

In a graph G, we denote by N�v� the set of neighbors of node v. We say that a
path P of G is an xy-path if it has endnodes x and y.

2. DECOMPOSITION

The main result of this section is Theorem 2.11, a decomposition result for TF
odd-signable graphs. We also prove various properties of these graphs that will be
used in subsequent sections.

Remark 2.1. Let H be a hole in a TF odd-signable graph G. Let P � x1; . . . ; xn;
n � 3, be a path such that x1 and xn belong to H and the only adjacencies
between the nodes x2; . . . ; xnÿ1 and the nodes of H are the two edges x1x2 and

xnÿ1xn. Then x1 and xn are adjacent.

Proof. Suppose not. Then the two x1xn-subpaths of H, together with a
chordless subpath of P induce a 3PC�x1; xn). &

Let G0 be an induced subgraph of G. A node v is strongly adjacent to G0 if
v 2 V�G�nV�G0� and v has at least two neighbors in G0.

Remark 2.2. Let v be a node that is strongly adjacent to a hole H in a TF odd-
signable graph G. Then v has an odd number of neighbors in H.

Proof. Since no wheel of G is even by Theorem 1.1, it suf®ces to show that v
cannot have exactly two neighbors in H. Remark 2.1, applied to the subgraph of
G induced by V�H� [ fvg, shows that v together with its two neighbors in H

should induce a triangle, a contradiction. &

De®nition 2.3. The complete bipartite graph K4;4 with a perfect matching
removed is called cube. This graph is indeed the skeleton of a 3-dimensional

cube. So a cube is a hole H � u1; v2; u3; v1; u2; v3 of length 6, together with two
nonadjacent nodes, say u4 and v4, where u4 is adjacent to v1; v2 and v3, and v4 is
adjacent to u1; u2 and u3.

Note that a cube does not contain an even wheel nor a three-path con®guration
and hence, by Theorem 1.1, it is an odd-signable graph.

Theorem 2.4. Let G be a connected TF odd-signable graph containing no K1 or
K2 cutset. If G contains a cube M, then G � M.

Proof. Assume G contains a cube M induced by the nodes u1; . . . ; u4;
v1; . . . ; v4, where ui is adjacent to vj whenever i 6� j and no other adjacencies
exist.
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Claim. No node of G is strongly adjacent to M.

Proof of Claim. Assume a node w, strongly adjacent to M, has neighbors in
both sides of the bipartition of M. Since G is TF, we can assume w.l.o.g. that w is
adjacent to u1; v1 and no other node of M. Now w; v3, and v4 are intermediate
nodes in distinct paths of a 3PC�u1; u2�.

So all the neighbors of w belong to one side of the bipartition of M. Assume
w.l.o.g. that w is adjacent to u1 and u2 and possibly u3 and u4. Again, w; v3, and v4

are intermediate nodes in distinct paths of a 3PC�u1; u2�. This completes the
proof of the claim.

Assume G 6� M and let C be a connected component of GnM. Nodes of C that
have a neighbor in M, have a unique neighbor in M (by the claim). Since G has
no K1 or K2 cutset, nodes of C must have two nonadjacent neighbors in M.
Therefore, C contains a chordless path P � x1; . . . ; xn; n � 2, such that the
neighbors of x1 and xn in M are two nonadjacent nodes of M. Among all such
paths in C, assume that P has the shortest length. Therefore, at most one node of
M is adjacent to an intermediate node of P, and if this node exists, then it is
adjacent to both neighbors of x1 and xn in M.

Case 1: No node of M is adjacent to a node xi; 2 � i � nÿ 1.
By symmetry, we can consider two possibilities: Either x1 is adjacent to u1 and

xn is adjacent to v1 or x1 is adjacent to u1 and xn is adjacent to u2. The same
argument used for the claim shows the existence of a 3PC�u1; u2�.

Case 2: One node of M is adjacent to a node xi; 2 � i � nÿ 1.
Assume w.l.o.g. that x1 is adjacent to u1; xn is adjacent to u2 and v3 is adjacent

to a node xi; 2 � i � nÿ 1. Let P0 � u1; v2; u4; v1; u2 and H0 be the hole made up
by P and P0. Let H00 be the hole closed by v4 with P. Then either �H0; v3� or
(H00; v3) is an even wheel. &

Theorem 2.5. Let u and v be two nodes, strongly adjacent to a hole H in a TF
odd-signable graph G. Then u and v are nonadjacent and either V�H� [ fu; vg
induces a cube or a sector of �H; v� contains all the neighbors of u.

Proof. Assume ®rst that u and v are adjacent. Then they have no common
neighbor in H as G is TF. Also every sector of �H; v� has an even number of
neighbors of u (by Remark 2.2 applied to the hole closed by v and a sector of
�H; v��. But then �H; u� is an even wheel. Hence, u and v are not adjacent.

Next, assume that no node of H is adjacent to both u and v. Assume that u has
at least one neighbor in sector S1 of �H; v�, with endnodes v1 and v2, but S1 does
not contain all the neighbors of u in H. Let h1; h2 be the neighbors of v1; v2 in H

but not in S1. Then all the neighbors of u in H are contained in V�S1� [ fh1; h2g,
because if u has a unique neighbor u1 in S1, there is a 3PC�u1; v�, and if u has
several neighbors in S1, there is a 3PC�u ; v�. So u is adjacent to h1 or h2, say h1.
Assume u is not adjacent to h2. Then u has several neighbors in S1 and Remark
2.2, applied to the hole closed by v with S1, shows that u has an odd number of
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neighbors in S1. Therefore, �H; u� is an even wheel, a contradiction. So u is
adjacent to both h1 and h2. Let S be the h1h2-subpath of H that does not contain
S1. If S is not of length 2, then there is a 3PC�h1; v� or a 3PC�h2; v� contained in
the graph induced by the node set V�S� [ fu; v; v1; v2g. Hence S is of length 2 and
v is adjacent to the intermediate node of S. By symmetry, S1 is also of length 2
and hence the node set V�H� [ fu; vg induces a cube.

Finally assume that u and v have a common neighbor u� in H.

Claim 1. If u has a unique neighbor ui in a sector Si of �H; v�, the node ui is
an endnode of the sector Si .

Proof of Claim 1. Assume u has a unique neighbor u1 in S1 and u1 is not an
endnode of S1. Let v1; v2 be the endnodes of S1. Then there is a 3PC�u1; v�, where
v1; v2 and u� are intermediate nodes in the three distinct paths. This completes
the proof of the claim.

Claim 2. Both �N�v�nN�u�� \ V�H� and �N�u�nN�v�� \ V�H� are nonempty.

Proof of Claim 2. Assume N�u� \ V�H� � N�v� \ V�H�. By Remark 2.2,
jN�u� \ V�H�j � 3, and no two nodes in N�u� \ V�H� are adjacent, else there is a
triangle. So G contains a 3PC�u; v�. This completes the proof of the claim.

By Claim 2, we can assume that u is adjacent to at least one intermediate node
of a sector, say node u1 of sector S1 of �H; v� with v1; v2 as endnodes. Claim 1
shows that u1 is not the unique neighbor of u in S1. Let h1; h2 be the neighbors of
v1; v2 in H but not in S1. Then all the neighbors of u in H are contained in
V�S1� [ fh1; h2g, else there is a 3PC�u; v�. Assume u is adjacent to h1. Since G is
TF, u and v1 are nonadjacent, and hence h1 is the unique neighbor of u in the
sector of �H; v� that contains h1, which contradicts Claim 1. So all the neighbors
of u in H belong to S1.

De®nition 2.6. A chordless xz-path P is an ear of the hole H if the intermediate

nodes of P belong to V�G�nV�H�, nodes x; z 2 V�H� have a common neighbor y
in H, and �V�H�nfyg� [ V�P� induces a hole H0. We say that x and z are the

attachments of P in H and that H0 is obtained by augmenting H with P.

Note that, in a TF odd-signable graph, Remark 2.2 shows that y has an odd
number of neighbors in H0.

Lemma 2.7. Let H � u1; . . . ; um be a hole in a TF odd-signable graph G, and

let P � ui; x1; . . . ; xn; uj be a chordless path such that ui is not adjacent to uj and
no intermediate node of P belongs to H nor is strongly adjacent to H. Then P is
an ear of H.

Proof. Let H and P be chosen so that they contradict the lemma and P

is shortest possible. By Remark 2.1, a node in V�H�nfui; ujg is adjacent to a
node in V�P�nfui; ujg. Let xr; r � 2, be the node of lowest index adjacent to a
node in H and let ul be its unique neighbor in H. By Remark 2.1, ul is adjacent
to ui. Let xs; s � r, be the node of lowest index adjacent to a node in
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V�H�nfulg, say ut. Again by Remark 2.1, ut is adjacent to ul and ut 6� ui, since P
is chordless.

Claim. t � j.

Proof of Claim. Do not assume. Let H0 be the hole induced by �V�H�n
fulg� [ fx1; . . . ; xsg. Now, since G is TF, the chordless path P0 � xs; . . . ; xn; uj

and the hole H0 satisfy the conditions of the lemma and P0 is strictly shorter than
P, so P0 is an ear of H0. Let H00 be the hole obtained by augmenting H0 with P0.
Nodes ut and ul are strongly adjacent to H00 and are adjacent, contradicting
Theorem 2.5. This completes the proof of the claim.

By the claim, xs is adjacent to uj, so xs � xn and P is an ear of H. &

We do not know of any polytime algorithm to check whether a graph contains
a wheel. By using the fact that a hole can be found in polytime, however, the
following consequence of Remark 2.2 and Lemma 2.7 yields a polytime algo-
rithm that either detects a wheel in G or else shows that G is not TF odd-signable.

Corollary 2.8. Let G be a connected TF odd-signable graph containing no K1

or K2 cutset and let H be a hole in G. Then either G � H or G contains a wheel

(H; v) or H has an ear P and G contains a wheel (H0; y) where H0 is obtained by
augmenting H with P and fyg � V�H�nV�H0�.
Lemma 2.9. Let (H; v) be a wheel of a TF odd-signable graph and let P be an

ear of H, with attachments x,z. Then v has no neighbors in the interior of P and
nodes x, z belong to the same sector of �H; v�.

Proof. Let H0 be the hole obtained by augmenting H by P and let
fyg � V�H�nV�H0�. Nodes y and v are both strongly adjacent to H0. By Theorem
2.5, y and v are nonadjacent. But then x,y and z all belong to the same sector of
�H; v�. Also, V�H0� [ fv; yg does not induce a cube, so by Theorem 2.5, all
neighbors of v are contained in one sector of �H0; y�. Thus v has no neighbors in
the interior of P. &

De®nition 2.10. Let G be a connected TF graph that contains a wheel �H; v�
and let v1; . . . ; vn be the neighbors of v in H, appearing in this order when
traversing H. Then G can be decomposed with wheel �H; v� if the following

holds:
(a) Gnfv; v1; . . . ; vng contains exactly n connected components Q01; . . . ;Q0n.
(b) The intermediate nodes of the sector with endnodes vi and vi�1 belong to

Q0i and no node of Q0i is adjacent to vj; j 6� i; i� 1.

Note that, given a wheel (H; v) in a TF graph G, one can check in polytime
whether G can be decomposed with (H; v). The blocks Qi; 1 � i � n of the
decomposition of G with (H; v) are the subgraphs of G induced by
V�Q0i� [ fvi; v; vi�1g. A subgraph G0 of G is separated in a decomposition if
no block contains all of G0.
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Theorem 2.11. Let G be a connected TF odd-signable graph with at least three
nodes and no K1 or K2 cutset. Furthermore, assume G is neither a cube nor a

hole. Then G contains a wheel and it can be decomposed with any arbitrarily
chosen wheel.

Proof. G contains a cycle since it contains at least three nodes, is connected
and contains no K1 cutset. Therefore, G contains a hole since G is TF. By
Corollary 2.8, G contains a wheel, say (H; v). Let v1; . . . ; vn be the neighbors of v
in H, appearing in this order when traversing H. Let Sl be the sector of (H; v) with
endnodes vl; vl�1.

Claim. Node set fvl; vl�1; vg is a cutset of G separating H.

Proof of Claim. Let (H; v) be chosen so that the claim is contradicted and
jV�H�j is as small as possible. Then there exists a chordless path P0 �
ui; x1; . . . ; xn; uj; ui 2 V�Sl�nfvl; vl�1g and uj 2 V�H�nV�Sl� such that v 62 V�P0�.
By picking P0 minimal with this property, we may assume that no node of
V�P0�nfui; x1; xn; ujg is adjacent to a node of V�H�nfvl; vl�1g. Furthermore, if
both vl and vl�1 have neighbors in V�P0�nfui; x1; xn; ujg, then a subpath of P0

contradicts Remark 2.1. Consequently no node of V�P0�nfui; x1; xn; ujg is strongly
adjacent to H. By Theorem 2.4, the graph G contains no cube. Now, by Theorem
2.5, if x1 is strongly adjacent to H, then all its neighbors are contained in sector Sl

and, by Remark 2.2, x1 has at least three neighbors in H. But then there exists a
hole H0 containing node x1 that is shorter than H, contradicting the choice of H.
The same argument shows that xn is not strongly adjacent to H. But then by
Lemma 2.7, P0 is an ear of H. Since the attachments of P0 are in distinct sectors of
(H; v), Lemma 2.9 is contradicted and the proof of the claim is complete.

The claim shows that no two nodes, belonging to distinct sectors of (H; v), are
in the same connected component of Gnfv; v1; . . . ; vng. So Gnfv; v1; . . . ; vng
contains at least n connected components. Let Q01; . . . ;Q0n be the connected
components containing the intermediate nodes of the sectors S1; . . . ; Sn and
assume Gnfv; v1; . . . ; vng contains an additional connected component Q�. Since
G contains no K1 or K2 cutset, there exist i and j; i 6� j, such that Q� contains a
node adjacent to vi and a node adjacent to vj. Since no node of Q� is adjacent to a
node in V�H�nfv; v1; . . . ; vng, Theorem 2.5 and Remark 2.2 show that no node of
Q� is strongly adjacent to H. So let vi and vj; i 6� j, be chosen so that the path P
connecting them with intermediate nodes in Q� is the shortest. Since G is TF, vi

and vj are nonadjacent and P contradicts Remark 2.1.
The claim also shows that no node of Q0i is adjacent to vj; j 6� i; i� 1. This

completes the proof of the theorem. &

Corollary 2.12. Let G be a connected TF odd-signable graph which is not a

cube and contains no K1 or K2 cutset and let �H; v� be a wheel in G. For any two
neighbors vi; vj of v in H, the nodes v; vi; vj form a cutset that separates H.

Furthermore, the graph Gnfv; vi; vjg contains exactly two connected components.
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As an application of Theorem 2.11, we prove an extension of a theorem of
Markossian Gasparian and Reed [7].

Theorem 2.13. Let G be a TF odd-signable graph containing no cube. Let x be
a node of G. Then either all other nodes of G are neighbors of x or G contains a

node y, which is not adjacent to x, whose degree is at most two.

Proof. A mate of x is a node y satisfying the theorem. Let G be a
counterexample with the smallest number of nodes. Then G is connected. Since
the theorem obviously holds when G contains at most two nodes or is a hole,
Theorem 2.11 shows that G has a K1 or a K2 cutset or contains a wheel (H; v).

Let u be the node in a K1 cutset of G and G1; . . . ;Gn be the blocks of the
corresponding decomposition of G. Since G is not the star of u, one block, say
G1, is not an edge and, by the minimality of G, u has a mate y in G1. Then y is a
mate of all nodes in G, except possibly the nodes in V�G1�nfug. Similarly, any
node of degree at most two in V�G2�nfug is a mate of all the nodes in
V�G1�nfug.

Assume G has no K1 cutset and let fu; vg be a K2 cutset of G. Let G1; . . . ;Gn

be the blocks of this K2 decomposition of G. Note that it is not possible that u is
adjacent to all the nodes in G1nfu; vg, since otherwise v would not have a
neighbor in G1nfu; vg and hence fug would be a K1 cutset. Hence, by minimality
of G, u has a mate y in G1. Since y 2 V�G1�nfu; vg; y is a mate of all nodes in G,
except possibly the nodes in V�G1�nfug. The same argument shows how to ®nd
mates of the nodes in V�G1�nfug.

Assume G has no K1 or K2 cutset and let Q1; . . . ;Qn be the blocks of a
decomposition of G with (H; v). Let vi and vi�1 be the neighbors of v in
V�H� \ V�Qi� and let y 6� vi; vi�1 be a mate of v in Qi. Such a node exists by the
minimality of G. Then y is a mate of all nodes in G, except possibly the nodes in
V�Qi�nfvg. Since n � 3, for every node x of G there exists an index i such that
x 62 V�Qi�nfvg and, therefore, every node of G has a mate. &

Markossian Gasparian and Reed [7] prove the above theorem for TF graphs
containing no even hole. They use it to show that graphs containing no even hole
and no even cycle with a unique short chord are �-perfect.

Lemma 2.14. Let G be a connected TF graph that contains a wheel �H; v�.
Assume that G can be decomposed with �H; v� and that some block Qi contains a
hole C. If �C; u� is a wheel of G for some u 6� v, then �C; u� is a wheel in Qi.

Proof. If u 62 V�Qi�, its only possible neighbors in Qi are v; vi or vi�1 (with
the notation used in and after De®nition 2.10). Since G is TF, if u is adjacent to v,
then u cannot be adjacent to vi or vi�1. Since u has at least three neighbors in C

and C is in Qi; u must belong to Qi. &

Lemma 2.15. Let G be a connected TF graph that contains a wheel �H; v�.
Assume G can be decomposed with �H; v� and let Q1 be a block of a
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decomposition of G with �H; v�. If G contains no K1 or K2 cutset, then Q1

contains no K1 or K2 cutset.

Proof. Let v1 and v2 be the endnodes of the sector S1 of (H; v) contained in
Q1. Let K be a clique cutset in Q1 separating node u from w. If K is not a clique
cutset in G, there exists a chordless path P from u to w in GnK: P uses nodes in
GnQ1, else it is a path in Q1 contradicting the assumption that K is a clique cutset.
But then P must contain both v1 and v2. The path v1; v; v2 is in Q1 and it can be
substituted for the subpath of P outside Q1 unless v 2 K (note that v1 and v2 are
not in K since P avoids K in G). So assume that v 2 K. Nodes v1 and v2 are the
only nodes of S1 which are adjacent to v, and hence no node of S1 is contained in
K. But then S1 together with V�P� \ V�Q1� contains a path connecting u to w in
Q1, a contradiction. &

3. COMPOSING TF ODD-SIGNABLE GRAPHS

Assume that a connected graph G is not a cube and contains a wheel (H; v) but no
K1 or K2 cutset. Then Theorem 2.11 shows that G can be decomposed with wheel
(H; v) when G is TF odd-signable. Similar wheel decomposition theorems were
obtained when G is linear balanced or, more generally, when G is balanced [6, 5].
In this section, we give suf®cient conditions for G to be TF odd-signable when all
the blocks of the wheel decomposition are. No such conditions are known for
linear balanced or balanced graphs.

Theorem 3.1. Let Q1; . . . ;Qn; n � 3 odd, be node-disjoint connected TF odd-

signable graphs. Let each Qi contain nodes labeled v; vi; vi�1 such that vvi; vvi�1

are edges and nodes vi and vi�1 are connected by a path Pi in Qinfvg not
containing other neighbors of v. Let G be obtained by identifying the n copies of v
�one in each of the Qi's� and, for every i, the node vi�1 2 V�Qi� with node
vi�1 2 V�Qi�1�. Then the followings are equivalent.

(1) G is a TF odd-signable graph.
(2) For every i,

(i) Qi contains no wheel �H; v�, where vi; vi�1 are neighbors of v in H,
and

(ii) Qi contains no wheel �H; u�, where vi; v; vi�1 are consecutive in H and
v is a neighbor of u.

(3) There exists no chordless path P in Qinfvg with endnodes vi and vi�1 that

has an intermediate node adjacent to v.

Proof. Throughout the proof we assume that the paths Pi are chosen to be the
shortest satisfying the condition of the theorem.

We ®rst prove that (1) implies (2). If Q1 contains a wheel (H; v) where v1 and
v2 are neighbors of v in H, then since v has an odd number of neighbors in H (by
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Remark 2.2), Q1 contains a chordless v1v2-path R with an odd number of
neighbors of v. Let H0 be the hole of G made up by R and P2; . . . ;Pn. Then (H0; v)
is an even wheel of G.

If Q1 contains a wheel (H; u) where v1; v; v2 belong to H and v is a neighbor
of u, let R be a shortest v1v2-path containing node u, with nodes in V�H�[
fugnfvg. Note that such a path R exists since u has an odd number of neigh-
bors in H, by Remark 2.2. Then the neighbors of v in R are v1; u, and v2. Let
H0 be the hole of G made up by R and P2; . . . ;Pn. Then (H0; v) is an even wheel
of G.

We now prove that (2) implies (3). Let Hi be the hole induced by V�Pi� [ fvg.
Claim. Let R be any chordless path with endnodes vi and vi�1 in V�Qi�nfvg.

Then one of the following holds:
(a) R is an ear of the hole Hi.
(b) V�R�nfvi; vi�1g contains a node u adjacent to v and strongly adjacent

to Pi.
(c) Node v is not adjacent to any intermediate node of R.

Proof of Claim. Suppose R does not satisfy the claim. Since R does not
satisfy (c) then R � vi; x1; . . . ; xk; vi�1, a node xl is adjacent to node v;R 6� Pi

and since G is TF, k > 1. Furthermore by Remark 2.2, if xl has a neighbor in
Pi, then xl has at least three neighbors in Hi, so xl is strongly adjacent to Pi

and R satis®es (b). Therefore, xl has no neighbors in Pi. Let R1 and R2 be the
xlvi and xlvi�1-subpaths of R, respectively, and let xs and xt be the nodes in R1

and R2 adjacent to a node in Pi, and closest to xl in R1 and R2, respectively.
Again, by Remark 2.2, applied to xs and Hi, if xs is adjacent to v, then R satis®es
(b). Now by the minimality of Pi and Remark 2.2, xs is not strongly adjacent
to Hi. The same argument shows that xt is not strongly adjacent to Hi. Let
y 2 V�Pi� be the unique neighbor of xs in Hi, let Rs be the xsxl-subpath of R1

and xm the neighbor of v closest to xs in Rs (possibly xm � xl�. Let
Ps � y; xs; . . . ; xm; v. Now Ps satis®es Remark 2.1 with respect to the hole Hi,
and hence y � vi. Similarly, vi�1 is the unique neighbor of xt in Hi. Since R is
chordless, xs � x1 and xt � xk. So R is an ear of Hi and the proof of the claim is
complete.

If the alternative (a) of the claim holds, then by Remark 2.2 (H; v) is a wheel,
where H is the hole induced by the node set V�R� [ V�Pi�. If the alternative (b) of
the claim holds, then �Hi; u� is a wheel. Hence if (2) holds, then alternatives (a)
and (b) of the claim are not possible. So every chordless vivi�1-path satis®es (c)
and hence (3) holds.

Finally we show that (3) implies (1). Suppose it does not. Since G is TF, it
contains an even wheel or a 3PC, by Theorem 1.1. Suppose ®rst that G contains
an even wheel �H;w�; v 6� w, with w 2 V�Q1�. Lemma 2.14 shows that H is not
contained in any block Qi and therefore H contains nodes v1; . . . ; vn. Let Pi be the
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vivi�1-subpath of H contained in Qi. By (3), v is not adjacent to any intermediate
node in Pi and so V�P1� [ fvg together with node w is a wheel in Q1. So the
graph induced by V�P1� [ fwg contains a chordless v1v2-path that contains w. If
w is adjacent to v then (3) is contradicted; hence Q1 contains an even wheel. This
contradicts the assumption that Q1 is odd-signable.

If G contains an even wheel (H; v) then, since Qi is odd-signable, H is not
contained in any of the Qi's and so it contains v1; . . . ; vn. Since (H; v) is an even
wheel, v has a neighbor in H distinct from v1; . . . ; vn. But then, for some i, the
vivi�1-subpath of H in Qi contains an intermediate node adjacent to v,
contradicting (3).

Suppose now that G contains a 3PC�x; y�. Let R1;R2;R3 be the three xy-paths
in the 3PC�x; y�. Note that x and y must belong to the same Qi and none of the
three paths can contain v. We can assume w.l.o.g. that R1;R2 belong to Q1 and the
v1v2-subpath R made up by P2; . . . ;Pn belongs to R3. We also assume that v1 is
encountered before v2 when traversing R3 from x. By (3), v is not adjacent to any
node of V�R1� [ V�R2� [ V�R3�nV�R�. But then there exists a 3PC(x,y) in Q1

obtained by replacing the subpath R by v1; v; v2. This completes the proof of the
theorem. &

4. TESTING WHETHER A TF GRAPH IS ODD-SIGNABLE

In this section, we give a polytime algorithm to test whether a TF graph is odd-
signable. A step of the algorithm is the decomposition of a graph G� with a wheel
�H; v�. Let v1; . . . ; vn be the neighbors of v in H, appearing in this order when
traversing H, and let Q1; . . . ;Qn be the blocks of this decomposition. The n pairs
of edges viv and vi�1v in each of the blocks Qi are declared linked pairs and will
remain so throughout the algorithm.

Input: A connected TF graph G.

Output: YES if G is odd-signable, NO otherwise.
Step 1: If G has no K1 of K2 cutsets, set L � fGg. Otherwise decompose G

with K1 and K2 cutsets, until no such cutset exists, and let L be the set of blocks
thus obtained.

Step 2: If every graph in L has one or two nodes, is a hole or a cube, return
YES. Otherwise go to Step 3.

Step 3: Remove a graph G� from L which has more than two nodes and is

neither a hole nor a cube. Identify a hole H0 in G�.
If no node has at least 3 neighbors in H0 and H0 has no ear, output NO. If a

node v has at least 3 neighbors in H0, then let (H; v) be a wheel with H � H0.
Otherwise, let P be an ear of H0. Let H be the hole obtained by augmenting H0

with P and let fvg � V�H0�nV�H�. If (H; v) is not a wheel then output NO.
Let v1; . . . ; vn; n � 3, be the neighbors of v in H, appearing in this order when

traversing H.
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If G� cannot be decomposed with wheel (H; v), output NO. Otherwise let
Q1; . . . ;Qn be the blocks of this decomposition. If one of the following three

alternatives occurs:
(a) n is even,

(b) a block Qi is a cube,
(c) a linked pair is separated in the decomposition of G� with (H; v),

then output NO. Otherwise declare all pairs vvi; vvi�1 linked, add the n blocks of
the decomposition to L and go to Step 2.

Theorem 4.1. The above algorithm correctly tests in polytime whether a TF

graph is odd-signable.

Proof. We ®rst prove the correctness of the above algorithm. Corollary 1.2
shows that if G� contains a K1 or a K2 cutset, then G� is odd-signable if and only
if all the blocks are. When a wheel decomposition of G� is found in Step 3,
Lemma 2.15 shows that no block of this decomposition contains a K1 or a K2

cutset.
Corollary 2.8 shows that, in Step 3, if no node has at least 3 neighbors in H0

and H0 contains no ear, then G� is correctly rejected. If H is obtained by
augmenting H0 with P, and (H; v) is not a wheel, then by Remark 2.2, G is
correctly rejected. Theorem 2.11 shows that if G� cannot be decomposed with
wheel (H; v) in Step 3, then G� is not odd-signable. If n is even, (H; v) is an even
wheel and G� is safely rejected in (a). If some Qi is a cube, G� is correctly
rejected in (b) by Theorem 2.4.

Assume a linked pair uu1 and uu2 is separated in the decomposition of G� with
(H; v) and G is TF odd-signable. Then there exists a wheel (C,u) in G such that u1

and u2 are consecutive neighbors of u in C and we can assume w.l.o.g. that G has
been decomposed in Step 3 with wheel (C, u) at a previous stage. Let u1; . . . ; um

be the neighbors of u in C, let U1; . . . ;Um be the blocks of the decomposition
of G with �C; u�. Let S1 be the sector of �C; u� with endnodes u1 and u2. Since
the decomposition of G� with wheel (H; v) separates u1u; u2u, either u and v
coincide or u is a neighbor of v in H, say v1. The ®rst case is not possible, since
U1 contains a path, namely S1 connecting u1 and u2, not containing a neighbor
of u � v. In the second case, v must be adjacent to a node of S1. Then v is
strongly adjacent to the hole H1 induced by V�S1� [ fug and Remark 2.2
shows that (H1; v) is a wheel. Now in the decomposition of G with �C; u�,
Condition (2) (ii) of Theorem 3.1 is contradicted by block U1. This proves the
validity of (c).

To complete the correctness proof of the algorithm, it only remains to show
that if G is accepted in Step 2, then G is a TF odd-signable graph. Let G� be a TF
graph that is decomposed in Step 3 with wheel (H; v). Assume G� is not odd-
signable while all the blocks Qi are odd-signable. Theorem 3.1 (2) shows that a
block, say Q1, either contains a wheel �C; v� and v1; v2 are neighbors of v in C or
Q1 contains a wheel �C; u�, where v1; v; v2 are consecutive in C and v is a
neighbor of u.
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In the ®rst case, since Q1 is a TF odd-signable graph, Corollary 2.12 applied to
the decomposition of Q1 with the wheel (C; v) shows that when removing nodes
v1; v; v2 the two v1v2-subpaths of C are separated. Therefore, G�nfv; v1; . . . ; vng
contains at least two components that have nodes adjacent to v1 and v2. But then
G�nfv; v1; . . . ; vng has at least n� 1 connected components, which contradicts
the assumption that G� can be decomposed with the wheel (H; v).

In the second case, let C0 be the smallest hole in Q1 containing the path
v1; v; v2. By Theorem 2.11, in the decomposition of Q1 with the wheel (C; u�; v1

and v2 are separated. So u must be strongly adjacent to C0 and hence by Remark
2.2, �C0; u� is a wheel in Q1. We now show that in all further decompositions of
Q1 by the algorithm, (C0; u) is contained in some block, which contradicts the
assumption that the graphs in L are decomposed until all blocks are holes.

Suppose that C0 is separated in a decomposition by a wheel (H0;w). Then w is
not a node of C0 and at least two neighbors of w in H0 belong to C0. So, by
Remark 2.2 applied to Q1; �C0;w� is a wheel. If w is not adjacent to v, then there
exists a smaller hole than C0 that contains the path v1; v; v2 and the node w. By the
choice of C0 this is not possible, and hence w is adjacent to v. Let w1 (respectively
w2) be a neighbor of w in V�C0� \ V�H0� such that w1v-subpath (respectively
w2v-subpath) of C0 that contains v1 (respectively v2) has no intermediate node in
N�w� \ V�C0� \ V�H0�. Let P be the w1w2-subpath of C0 that contains v. Since
the linked pair v1v; v2v is not separated in the decomposition by (H0;w), P is
contained in some block. But then, since w is adjacent to v, Theorem 3.1 (3) is
contradicted. Hence C0 is not separated by any further decomposition of Q1. Since
u has at least three neighbors in C0, in a decomposition by a wheel (H0;w), the
block that contains C0 also contains u, and the proof of the correctness of the
algorithm is complete.

To prove polynomiality of the above procedure, observe that when
decomposing G with either a K1 or K2 cutset or a wheel (H; v) the total number
of nonadjacent pairs of nodes within connected components strictly decreases.
This is due to the fact that at least one such pair is separated and no new pair is
created. (This idea is borrowed from [2].) &

5. FINDING AN EVEN HOLE IN A TF GRAPH

We show how the algorithm from the previous section can be used to check in
polytime whether a TF graph contains a hole of even cardinality and, in fact, how
to ®nd such a hole if one exists.

As a ®rst step, we show that, if we can check whether a graph is odd-signable,
then we can also check whether a signed graph is odd-signed.

Let G be a connected signed graph and let G0 be a signed graph obtained from
G by switching labels on all the edges of a cut of G. Since cuts and cycles of G
have even intersections, it follows that the cycles of G have the same parity in G
and G0. So G is odd-signed if and only if G0 is odd-signed. Since every edge of a
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spanning tree T of G is contained in a cut of G that does not contain any other
edge of T, then, if there exists an odd-signing of G, there exists one in which the
edges of T have any speci®ed (arbitrary) signing.

This implies that, if a connected graph G is odd-signable, one can produce
such a signing as follows.

Signing Algorithm
Input: A connected odd-signable graph G, a spanning tree T, and an

arbitrary signing of the edges of T.
Output: The unique odd-signing of G such that the edges of T are signed as

speci®ed in the input.

Index the edges of G e1; . . . ; en, so that the edges of T are the ®rst jV�G�j ÿ 1,
and every edge ej; j � jV�G�j, together with edges having smaller indices,

closes a chordless cycle Hj of G. For j � jV�G�j; . . . ; n, sign ej so that Hj is
odd-signed.

The fact that there exists an indexing of the edges of G as required in the
signing algorithm follows from the following observation. For j � jV�G�j, we
can select ej so that the path connecting the endnodes of ej in the subgraph
�V�G�; fe1; . . . ; ejÿ1g� is the shortest possible. The chordless cycle Hj identi®ed
this way is also a chordless cycle in G. This forces the signing of ej, since all the
other edges of Hj are signed already. So, once the (arbitrary) signing of T has been
chosen, the signing of G is unique.

Assume that we have an algorithm to check odd-signability. Then, given a
connected signed graph G, we can check whether G is odd-signed as follows. Let
G0 be an unsigned copy of G. Test whether G0 is odd-signable. If it is not, then G

is not odd-signed. Otherwise, let T be a spanning tree of G0. Run the signing
algorithm on G0 with the edges of T signed as they are in G. Then G is odd-signed
if and only if the signing of G0 equals the signing of G.

Now, using the result of Section 4, it follows that we can decide in polytime
whether a signed TF graph is odd-signed. As a special case, consider a TF graph
with all edges signed odd: this yields a polytime algorithm for deciding whether
G has a hole of even cardinality.

To actually ®nd a hole of even cardinality in G when one exists, let v1; . . . ; vn

denote the nodes of G and let H � G. In iteration i, test whether Hnvi contains a
hole of even cardinality. If the answer is yes, set H � Hnvi and otherwise keep H
unchanged. Perform n iterations. At termination, the graph H is the desired hole
of even cardinality.

6. CONSTRUCTING ALL TF ODD-SIGNABLE GRAPHS

In this section, we give a procedure to construct all TF odd-signable graphs.
Starting with a hole, we obtain every connected TF odd-signable graph that is
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not a cube and contains no K1 of K2 cutset, by a sequence of `̀ good ear
additions.''

De®nition 6.1. A graph G is said to be obtained from a graph G0 by an ear
addition if the nodes of GnG0 are the intermediate nodes of an ear of some hole H

in G0, say an ear P with attachments x and z, and the graph G contains no edge
connecting a node of V�P�nfx; zg to a node of V�G0�nfx; y; zg, where y 2 V�H� is

adjacent to x and z. An ear addition is said to be good if
* y has an odd number of neighbors in P,
* G0 contains no wheel (H1; v) where x; y; z 2 V�H1� and v is adjacent to y,

and
* G0 contains no wheel (H2; y), where x,z are neighbors of y in H2.

Remark 6.2. Assume G is a connected TF graph obtained from G0 by an ear

addition P. Then G can be decomposed with a wheel (H0; y) such that G0 is a block
of this decomposition and the other blocks are all the distinct holes in the

subgraph induced by V�P� [ fyg.
Lemma 6.3. Let G be a TF graph obtained from a connected TF odd-signable

graph G0 by an ear addition. Then G is odd-signable if and only if the ear
addition is good.

Proof. Let H � x; y; z; . . . ; x be a hole of G0 such that P � x; u1; . . . ; uk; z
is an ear of H. Suppose ®rst that y has an even number of neighbors in P. In
this case, the ear addition is not good. Furthermore, either V�P� [ V�H� induces
a 3PC(x,z) or an even wheel, and G is not TF odd-signable by Theorem 1.1.
So the lemma holds in this case. Suppose now that y has an odd number of
neighbors in P. Let Q1 � G0 and let Q2; . . . ;Qn; n � 3 odd, denote the distinct
holes in the subgraph induced by V�P� [ fyg. The conditions of Theorem 3.1
hold since the required xz-path P1 can be taken as the xz-subpath of H avoid-
ing node y. Now the lemma follows from the equivalence of (1) and (2) in
Theorem 3.1. &

Theorem 6.4. Let G be a connected TF graph with at least three nodes which is

not a cube and contains no K1 or K2 cutset. Then, G is odd-signable if and only if
G can be obtained, starting from a hole, by a sequence of good ear additions.

Proof. By Lemma 6.3, if G is obtained from a hole by a sequence of good ear
additions, then G is TF odd-signable. To prove the converse it is enough to show,
by Lemma 6.3, that, if G is not a hole, then it is obtained from some graph G0 by
an ear addition, where G0 has no K1 or K2 cutset. By Theorem 2.11, G contains a
wheel (H; v).

Claim. Let Q1 be a block of a decomposition of G with �H; v�. Let �C; u�
�possibly u � v� be a wheel of Q1 and let W1

1 ; . . . ;W1
m and W2

1 ; . . . ;W2
m be the
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blocks of the decomposition of Q1 and G with �C; u�, respectively, such that ui

and ui�1 belong to both W1
i and W2

i . Then for some j 2 f1; . . . ;mg;W1
j � W2

j and

W1
i � W2

i whenever i 6� j.

Proof of Claim. Assume that G is decomposed with wheel (H; v) using the
algorithm of Section 4. Then vv1 and vv2 are declared a linked pair and Theorem
4.1 shows that this pair is not separated in the decomposition of Q1 with (C,u).
Let W1

1 be the block of such a decomposition, containing the linked pair vv1; vv2.
Every node of V�G�nV�Q1� is connected to v1 and v2 by paths not containing
nodes of Q1 and, therefore, these paths do not contain u or a neighbor of u in C.
Therefore, all these nodes belong to the same block of the decomposition of G

with (C,u). So j � 1;W1
1 � W2

1 and W1
i � W2

i whenever i 6� 1. This completes the
proof of the claim.

Choose the wheel �H; v) so that, among all decompositions of G with wheels,
the largest block of the decomposition (in terms of number of nodes) is largest for
the decomposition with �H; v�. Let the blocks of the decomposition of G with
�H; v� be U1; . . . ;Un with block U1 being the largest. By the claim and the choice
of �H; v�, none of the blocks Ui; i 6� 1, contains a wheel. By Lemma 2.15, none of
the blocks Ui contains a K1 or K2 cutset and Corollary 2.8 shows that all the
blocks Ui; i 6� 1 are in fact holes. The theorem now follows by choosing G0 � U1.

&

It follows that every connected TF odd-signable graph with more than one
node can be obtained starting from cubes, edges, and graphs constructed
according to Theorem 6.4 by recursively identifying nodes or edges, thus creating
K1 or K2 cutsets. Initially we thought all TF odd-signable graphs were planar.
This is false as shown by the graph in Fig. 1.

Figure 1. Non-planar TF odd-signable graph.
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