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Abstract

In this paper we consider the class of simple graphs defined by excluding, as induced
subgraphs, even holes (i.e. chordless cycles of even length). These graphs are known as
even-hole-free graphs. We prove a decomposition theorem for even-hole-free graphs, that
uses star cutsets and 2-joins. This is a significant strengthening of the only other pre-
viously known decomposition of even-hole-free graphs, by Conforti, Cornuéjols, Kapoor
and Vuskovi¢, that uses 2-joins and star, double star and triple star cutsets. It is also
analogous to the decomposition of Berge (i.e. perfect) graphs with skew cutsets, 2-joins
and their complements, by Chudnovsky, Robertson, Seymour and Thomas. The similar-
ity between even-hole-free graphs and Berge graphs is higher than the similarity between
even-hole-free graphs and simply odd-hole-free graphs, since excluding a 4-hole, auto-
matically excludes all antiholes of length at least 6. In a graph that does not contain a
4-hole, a skew cutset reduces to a star cutset, and a 2-join in the complement implies a
star cutset, so in a way it was expected that even-hole-free graphs can be decomposed
with just the star cutsets and 2-joins.

A consequence of this decomposition theorem is an O(n'?) recognition algorithm for
even-hole-free graphs. The recognition of even-hole-free graphs was first shown to be poly-
nomial by Conforti, Cornuéjols, Kapoor and Vuskovi¢. They obtained an algorithm of
complexity of about O(n4?) by first preprocessing the input graph using a certain “clean-
ing” procedure, and then constructing a decomposition based recognition algorithm. The
cleaning procedure was also the key to constructing a polynomial time recognition al-
gorithm for Berge graphs. At that time it was observed by Chudnovsky and Seymour
that once the cleaning is performed, one does not need a decomposition based algorithm,
one can instead just look for the “bad structure” directly. Using this idea, as opposed
to using the decomposition based approach, one gets significantly faster recognition algo-
rithms for Berge graphs and balanced 0, +1 matrices. However, this approach yields an
O(n?!) recognition algorithm for even-hole-free graphs. So this is the first example of a
decomposition based algorithm being significantly faster than the Chudnovsky/Seymour
style algorithm. None of these algorithms are of any practical use, but they are interesting
from a theoretical perspective.
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1 Introduction

All graphs in this paper are finite, simple and undirected. We say that a graph G contains
a graph F, if F' is isomorphic to an induced subgraph of G. A graph G is F'-free if it does
not contain F. Let F be a (possibly infinite) family of graphs. A graph G is F-free if it is
F-free, for every F' € F.

A hole is a chordless cycle of length at least four. A hole is even (resp. odd) if it contains
even (resp. odd) number of nodes. A hole of length n is also called an n-hole. In this paper
we study the class of even-hole-free graphs, i.e. graphs that are F-free where F denotes the
family of all even holes. In this paper we prove a decomposition theorem for even-hole-free
graphs using star cutsets and 2-joins, and we show how it leads to a fastest known recognition
algorithm for even-hole-free graphs. None of these algorithms are of any real use, but they
are interesting from a theoretical perspective.

Many interesting classes of graphs can be characterized as being F-free, for some family
F. The most famous such example is the class of perfect graphs. A graph G is perfect if for
every induced subgraph H of G, x(H) = w(H), where x(H) denotes the chromatic number
of H, i.e. the minimum number of colors needed to color the vertices of H so that no two
adjacent vertices receive the same color, and w(H) denotes the size of a largest clique, where
a clique is a graph in which every pair of vertices are adjacent. The famous Strong Perfect
Graph Theorem (conjectured by Berge [2], and proved by Chudnovsky, Robertson, Seymour
and Thomas [6]) states that a graph is perfect if and only if it does not contain an odd hole
nor an odd antihole (where an antihole is a complement of a hole). The graphs that do not
contain an odd hole nor an odd antihole are known as Berge graphs.

The structure of even-hole-free graphs was first studied by Conforti, Cornuéjols, Kapoor
and Vuskovi¢ in [11] and [12]. They were focused on showing that even-hole-free graphs can
be recognized in polynomial time (a problem that at that time was not even known to be
in NP), and their primary motivation was to develop techniques which can then be used in
the study of perfect graphs. In [11] they obtained a decomposition theorem for even-hole-
free graphs that uses 2-joins and star, double star and triple star cutsets (all these cutsets
are defined in Section 1.3), and in [12] they used it to obtain a polynomial time recognition
algorithm for even-hole-free graphs. This is the same paradigm that was used to obtain
recognition algorithms for balanced matrices [9, 13]. All these algorithms use “cleaning”, a
technique first developed by Conforti and Rao [14] to recognize linear balanced matrices. This
technique was invented to make use of strong cutsets, such as star cutsets, in a decomposition
based recognition algorithm. If one is able to clean the graph for the even-hole-free graph
recognition problem, one can then make use of not only star cutsets, but also double star and
triple star cutsets, and for that reason all these cutsets were used in the decomposition of
even-hole-free graphs in [11]. That decomposition gave the first known recognition algorithm
for even-hole-free graphs, but it was always clear that a stronger decomposition theorem was
possible. At that time that problem was put aside, since the focus now was on perefect
graphs, trying to prove the Strong Perfect Graph Conjecture and obtain a polynomial time
recognition algorithm for Berge graphs.

Strong Perfect Graph Conjecture was proved by Chudnovsky, Robertson, Seymour and
Thomas in [6], by decomposing Berge graphs using skew cutsets, 2-joins and their comple-
ments. Soon after, the recognition of Berge graphs was shown to be polynomial by Chud-



novsky, Cornuéjols, Liu, Seymour and Vuskovié in [3].

Note that by excluding the 4-hole, one also excludes all antiholes of length at least 6.
So if we switch parity, the analogous class to even-hole-free graphs are the Berge graphs,
rather than just the odd-hole-free graphs. In a graph that does not contain a 4-hole, a skew
cutset reduces to a star cutset, and a 2-join in the complement implies the star cutset. The
decomposition of Berge graphs with skew cutsets, 2-joins and their complements [6] provided
a motivation to believe that it is also possible to decompose even-hole-free graphs with just
the star cutsets and 2-joins.

As expected, the key to obtaining a polynomial time recognition algorithm for Berge
graphs [3] was the cleaning. What was surprising, as Chudnovsky and Seymour observed, was
that once the cleaning is performed, one does not need the decomposition based recognition
algorithm, one can simply look for the “bad structure” (in this case an odd hole) directly. So
in [3] two recognition algorithms for Berge graphs are given: an O(n?) Chudnovsky/Seymour
style (that uses the direct method) algorithm, and an O(n'®) decomposition based recognition
algorithm. (The high complexity of all of these algorithms is primarily due to cleaning). Then
Zambelli [26] showed that by using the cleaning with the direct method, the complexity of
the recognition algorithm for balanced 0, +1 matrices dramatically drops, in comparison with
their original recognition [9] based on the decomposition method.

Another twist in the story is the case of the recognition algorithm for even-hole-free
graphs. The original algorithm from [12] is of complexity of about O(n?). In [5] Chud-
novsky, Kawarabayashi and Seymour obtain an O(n3!) recognition algorithm for even-hole-
free graphs, using cleaning with the direct method. In the same paper they sketch another
more complicated algorithm that, they claim, runs in time O(n'®). This algorithm first needs
to test for thetas and prisms in that time (thetas and prisms are defined in Section 1.2). It
turns out that testing for thetas can be done in time O(n'!) [7]. Detecting a prism is NP-
complete in general [21]. In [5] it is claimed that under the assumption that the graph does
not contain a theta one can use cleaning to test for prisms in time O(n!®). This turns out to
be false. Detecting a theta or a prism using the outlined method ends up being of complexity
O(n3®) [4]. In this paper we show that our decomposition of even-hole-free graphs yields an
O(n'?) time recognition algorithm. So this is the first example in which a decomposition
based method performs faster.

We note that it is still not known whether it is possible to recognize odd-hole-free graphs
in polynomial time. Finding a maximum clique, a maximum independent set and an optimal
coloring are all known to be polynomial for perefect graphs [17, 18]. The complexities of
finding a maximum independent set and an optimal coloring are not known for even-hole-free
graphs nor for the odd-hole-free graphs. Finding a maximum clique for odd-hole-free graphs
is NP-complete (follows from 2-subdivision [23]). One can find a maximum clique of an even-
hole-free graph in polynomial time, since as observed by Farber [15] 4-hole-free graphs have
O(n?) maximal cliques and hence one can list them all in polynomial time. In [24] da Silva
and Vuskovi¢ show that every even-hole-free graph contains a vertex whose neighborhood is
triangulated (i.e. does not contain a hole). This characterization leads to a faster algorithm
for computing a maximum clique in an even-hole-free graph.

More recently, Addario-Berry, Chudnovsky, Havet, Reed and Seymour [1], settle a con-
jecture of Reed, by proving that every even-hole-free graph contains a bisimplicial vertex (a
vertex whose set of neighbors induces a graph that is a union of two cliques). This imme-



diately implies that if G is an even-hole-free graph, then x(G) < 2w(G) — 1 (observe that
if v is a bisimplicial vertex of G, then its degree is at most 2w(G) — 2, and hence G can be
colored with at most 2w(G) — 1 colors). It is interesting that this result is also obtained us-
ing decomposition, although in [1] not all even-hole-free graphs are decomposed, but enough
structures are decomposed using special double star cutsets to obtain the desired result.

Another motivation for the study of even-hole-free graphs is their connection to S-perfect
graphs introduced by Markossian, Gasparian and Reed [22]. For a graph G, let 6(G) be
the minimum degree of a vertex in G. Consider the following total order on V(G): order
the vertices by repeatedly removing a vertex of minimum degree in the subgraph of vertices
not yet chosen and placing it after all the remaining vertices but before all the vertices
already removed. Coloring greedily on this order gives the upper bound x(G) < (G), where
B(G) =max{6(G’") + 1 : G’ is an induced subgraph of G}. A graph is 3-perfect if for each
induced subgraph H of G, x(H) = f(H).

It is easy to see that (-perfect graphs belong to the class of even-hole-free graphs, and
that this containment is proper. A diamond is a cycle of length 4 that has exactly one
chord. A cap is a cycle of length greater than four that has exactly one chord, and this chord
forms a triangle with two edges of the cycle. In [22] it is shown that (even-hole, diamond,
cap)-free graphs are (-perfect, and in [16] de Figueiredo and Vuskovi¢ show that (even-hole,
diamond, cap-on-6-vertices)-free graphs are g-perfect. Recently these results were extended
by Kloks, Miiller and Vuskovi¢ who show in [20] that (even-hole, diamond)-free graphs are
[-perfect (implying that this class of graphs can be colored in polynomial time, by coloring
greedily on a particular easily constructable ordering of vertices). This result is obtained by
proving that every (even-hole, diamond)-free graph contains a simplicial extreme (where a
vertex is simplicial if its neighborhood set induces a clique, and it is a simplicial extreme if
it is either simplicial or of degree 2). And the existence of simplicial extremes is obtained
as a consequence of a decomposition of (even-hole, diamond)-free graphs in [20] that uses
2-joins, clique cutsets and bisimplicial cutsets (a special type of a star cutset). We note that
the decomposition theorem for even-hole-free graphs in this paper uses the one in [20] by
reducing the problem to the diamond-free case.

The fact that (even-hole, diamond)-free graphs have simplicial extremes implies that for
such a graph G, x(G) < w(G) + 1 (observe that if v is a simplicial extreme of G, then its
degree is at most w(G), and hence G can be colored with at most w(G) 4 1 colors). So this
class of graphs, as well as the class of even-hole-free graphs by the result in [1], belong to the
family of y-bounded graphs, introduced by Gyérfas [19] as a natural extension of the family
of perfect graphs: a family of graphs G is x-bounded with y-binding function f if, for every
induced subgraph G’ of G € G, x(G') < f(w(G")). Note that perfect graphs are a y-bounded
family of graphs with the y-binding function f(x) = z.

The essence of even-hole-free graphs is actually captured by their generalization to signed
graphs, called the odd-signable graphs, and in fact the decomposition theorem that we prove
in this paper is for the class of graphs that are 4-hole-free odd-signable. Odd-signable graphs
are introduced in Section 1.2, and the decomposition theorem is described in Section 1.3.
In Section 1.1 we introduce the terminology and notation that will be used throughout the
paper. The proof of the main decomposition theorem is given in Sections 2 to 9, and the
recognition algorithm is given in Section 10.



1.1 Terminology and notation

For S C V(G) and A C E(G), we denote by G\ (S U A) the subgraph of G obtained by
removing the nodes of S (and all edges with at least one endnode in S) and the edges of A.
SUA is a cutset if G\ (SU A) contains more connected components than G. For an induced
subgraph H of G, we say that a cutset S of G separates H if there are nodes of H in different
components of G\ S.

For S C V(G), N(S) denotes the set of nodes in V(G) \ S with at least one neighbor in S
and N[S] denotes N(S)US. For x € V(G), we also use the following notation: N(z) = N({z})
and N[z] = N[{z}]. For V' C V(G), G[V'] denotes the subgraph of G induced by V’. For
x € V(G), the graph G[N(z)] is called the neighborhood of .

Let S C V(G) and =z € V(G). Node z is adjacent to S, if = is adjacent to some node
of S. Node z is strongly adjacent to S, if z is adjacent to at least two nodes of S. For an
induced subgraph H of G, a node v € V(G) \ V(H) is a twin of a node x € V(H) w.r.t. H,
if N(v)NV(H) = N[z]|NV(H).

A path P is a sequence of distinct nodes x1, ..., Z,, n > 1, such that z;x;y1 is an edge, for
all 1 < i < n. These are called the edges of a path P. Nodes x; and x, are the endnodes
of the path. The nodes of V(P) that are not endnodes are called the intermediate nodes of
P. Let x; and z; be two nodes of P, such that | > ¢. The path x;,z;11,...,z; is called the
x;x-subpath of P. Let @ be the x;x;-subpath of P. We write P = 21, ..., %j—1, @, {41, ---, Tn.
A cycle C is a sequence of nodes x1, ..., X, x1, n > 3, such that nodes z1, ..., x, form a path
and x1x, is an edge. The edges of the of the path x1, ..., x, together with the edge zix,, are
called the edges of C. The length of a path P (resp. cycle C) is the number of edges in P
(resp. C).

Given a path or a cycle Q in a graph G, any edge of G between nodes of () that is not an
edge of Q) is called a chord of Q. @) is chordless if no edge of G is a chord of (). As mentioned
earlier a hole is a chordless cycle of length at least 4. It is called a k-hole if it has k edges. A
k-hole is even if k is even, and it is odd otherwise.

Let A, B be two disjoint node sets such that no node of A is adjacent to a node of B. A
path P = x1,...,x, connects A and B if either n = 1 and x; has a neighbor in A and B, or
n > 1 and one of the two endnodes of P is adjacent to at least one node in A and the other
is adjacent to at least one node in B. The path P is a direct connection between A and B if
in G[V(P)U AU B] no path connecting A and B is shorter than P. The direct connection P
is said to be from A to B if x1 is adjacent to a node in A and x,, is adjacent to a node in B.

In figures, solid lines represent edges and dotted lines represent paths of length at least
one.

A note on notation: For a graph G, let V(G) denote its node set. For simplicity of notation
we will sometimes write G instead of V(G), when it is clear from the context that we want
to refer to the node set of G. We will not distinguish between a node set and the graph
induced by that node set. Also a singleton set {x} will sometimes be denoted with just x.
For example, instead of “u € V(G) \ {z}”, we will write “u € G \ 2”. These simplifications
of notation will take place in the proofs, whereas the statements of results will use proper
notation.



1.2 Odd-signable graphs

We sign a graph by assigning 0, 1 weights to its edges. A graph is odd-signable if there exists
a signing that makes every triangle odd weight and every hole odd weight. To charcterize
odd-signable graphs in terms of excluded induced subgraphs, we now introduce two types of
3-path configurations (3PC’s) and even wheels.

Let x,y be two distinct nodes of G. A 3PC/(x,y) is a graph induced by three chordless zy-
paths, such that any two of them induce a hole. We say that a graph G contains a 3PC(-, )
if it contains a 3PC(z,y) for some x,y € V(G). 3PC(-,-)’s are also known as thetas, as in
[4].

Let z1,x9,x3,Y1, Y2, y3 be six distinct nodes of G such that {x1,z9, 23} and {y1,y2,y3}
induce triangles. A 3PC(x1x2x3,y1y2y3) is a graph induced by three chordless paths P, =
Tl1,... Y1, Po = x9,...,y2 and P3 = x3,...,¥ys3, such that any two of them induce a hole.
We say that a graph G contains a 3PC(A, A) if it contains a 3PC(x1x9x3, y1y2y3) for some
x1,T2,%3,Y1,Y2,y3 € V(G). 3PC(A,A)’s are also known as prisms, as in [4].

A wheel, denoted by (H,x), is a graph induced by a hole H and a node = ¢ V(H) having
at least three neighbors in H, say x1,...,z,. Such a wheel is also called a n-wheel. Node x
is the center of the wheel. Edges zz;, for i € {1,...,n}, are called spokes of the wheel. A
subpath of H connecting x; and x; is a sector if it contains no intermediate node z;, 1 <1 < n.
A short sector is a sector of length 1, and a long sector is a sector of length greater than 1.
Wheel (H,x) is even if it has an even number of sectors. See figure 1.

It is easy to see that even wheels, 3PC(-,)’s and 3PC(A,A)’s cannot be contained in
even-hole-free graphs. In fact they cannot be contained in odd-signable graphs. The following
characterization of odd-signable graphs states that the converse also holds, and it is an easy
consequence of a theorem of Truemper [25].

Figure 1: 3PC(-,-), 3PC(A,A) and an even wheel.

Theorem 1.1 [10] A graph is odd-signable if and only if it does not contain an even wheel,
a 3PC(-,-) nor a 3PC(A, A).

This characterization of odd-signable graphs will be used throughout the paper.

1.3 Decomposition theorem

A node set S C V(QG) is a k-star cutset of G if S is comprised of a clique C' of size k and
nodes with at least one neighbor in C, i.e. C C S C N[C]. We refer to C as the center of S.



A 1-star is also refered to as a star, a 2-star as a double star, and 3-star as a triple star. If
S = NJ[C], then S is called a full k-star.

A graph G has a 2-join V1|Va, with special sets (A1, As, By, Bs), if the nodes of G can be
partitioned into sets Vi and V5 so that the following hold.

(i) Fori=1,2, A;UB; CV,;, and A; and B; are nonempty and disjoint.

(ii) Every node of A; is adjacent to every node of As, every node of Bj is adjacent to every
node of By, and these are the only adjacencies between V7 and V5.

(iii) For ¢ = 1,2, the graph induced by V;, G[V;], contains a path with one endnode in A;
and the other in B;. Furthermore, G[V;] is not a chordless path.

We now introduce two classes of graphs that have no star cutset nor a 2-join.

Let z1,x9,x3,y be four distinct nodes of G such that xq,x9,z3 induce a triangle. A
3PC(x1x9x3,y) is a graph induced by three chordless paths Py, = x1,...,Yy, Ppy = x2,...,y
and Pp,, = x3,...,y, such that any two of them induce a hole. We say that a graph G contains
a 3PC(A,-) if it contains a 3PC(z1x2x3,y) for some 1,22, 23,y € V(G). Note that in a
Y = 3PC(A,-) at most one of the paths may be of length one. If one of the paths of ¥ is
of length 1, then X is also a wheel that is called a bug. If all of the paths of ¥ are of length
greater than 1, then X is a long 3PC(A,-). 3PC(A,-)’s are also known as pyramids, as in
[3]. See Figure 2.

Figure 2: A long 3PC(A,-) and a bug.

We now define nontrivial basic graphs. Let L be the line graph of a tree. Note that every
edge of L belongs to exactly one maximal clique, and every node of L belongs to at most two
maximal cliques. The nodes of L that belong to exactly one maximal clique are called leaf
nodes. A clique of L is big if it is of size at least 3. In the graph obtained from L by removing
all edges in big cliques, the connected components are chordless paths (possibly of length 0).
Such a path P is an internal segment if it has its endnodes in distinct big cliques (when P is
of length 0, it is called an internal segment when the node of P belongs to two big cliques).
The other paths P are called leaf segments. Note that one of the endnodes of a leaf segment
is a leaf node.

A nontrivial basic graph R is defined as follows: R contains two adjacent nodes x and y,
called the special nodes. The graph L induced by R\ {z,y} is the line graph of a tree and
contains at least two big cliques. In R, each leaf node of L is adjacent to exactly one of the
two special nodes, and no other node of L is adjacent to special nodes. The last condition
for R is that no two leaf segments of L with leaf nodes adjacent to the same special node



have their other endnode in the same big clique. The internal segments of R are the internal
segments of L, and the leaf segments of R are the leaf segments of L together with the node
in {z,y} to which the leaf segment is adjacent to.

Let G be a graph that contains a nontrivial basic graph R with special nodes x and y. R*
is an extended nontrivial basic graph of G if R* consists of R and all nodes u € V(G) \ V(R)
such that for some big clique K of R and for some z € {x,y}, N(u) NV(R) = V(K)U {z}.
We also say that R* is an extension of R. See figure 3.

Figure 3: An extended nontrivial basic graph.

In [11] even-hole-free graphs are decomposed into cliques, holes, long 3PC(A, -) and non-
trivial basic graphs using 2-joins and star, double star and triple star cutsets. We obtain the
following strengthening of that result.

A graph is basic if it is one of the following graphs:

1) a clique,

2) a hole,

(1)
(2)
(3) along 3PC(A,-), or
(4) an extended nontrivial basic graph.

Theorem 1.2 (The Main Decomposition Theorem) A connected j-hole-free odd-
stgnable graph is either basic, or it has a star cutset or a 2-join.

Here is a simple restatement of Theorem 1.2, that will be used in the recognition algorithm
in Section 10. A graph is a clique tree if each of its maximal 2-connected components is a
clique. A graph is an extended clique tree if it can be obtained from a clique tree by adding
at most two vertices.

Corollary 1.3 A connected even-hole-free graph is either an extended clique tree, or it has
a star cutset or a 2-join.

The key difference in the proof of the decomposition theorem in [11] and the one here,
is that in [11] bugs are decomposed with double star cutsets. Since we are using just star
cutsets, it is not possible to decompose all bugs, and hence we needed to enlarge the class of
basic (undecomposable) graphs to include the extend nontrivial basic graphs.

Proof of Theorem 1.2 follows from the following three results.



Theorem 1.4 [20] A connected j-hole-free odd-signable graph that does not contain a dia-
mond is either basic, or it has a star cutset or a 2-join.

We note that the star cutsets used in [20] to prove Theorem 1.4, are of very special type:
they either induce a clique or two cliques with exactly one node in common.

A connected diamond is a pair (2, Q), where ¥ = 3PC(z1x223,y) and Q = q1, ..., @k, k > 2,
is a chordless path disjoint from ¥ such that the only nodes of () that have a neighbor in X
are q; and g. Furthermore |N(q1)NE| = |[N(q1)N{x1, 2,23} = 2, say N(¢1)NE = {x1, 23},
and one of the following holds:

(i) N(gr) NE = {v1,v2} where vjvs is an edge of Py, \ {z2}, or

(i) N(gx) "X = {y,y1,y3} where y; (resp. y3) is the neighbor of y in P,y (resp. Pp.y),
and x1y and x3y are not edges.
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Figure 4: Different types of connected diamonds.

Theorem 1.5 Let G be a connected 4-hole-free odd-signable graph. If G contains a diamond,
then G has a star cutset or G contains a connected diamond.

Theorem 1.6 Let G be a connected 4-hole-free odd-signable graph. If G contains a connected
diamond, then G has a star cutset or a 2-join.

Theorem 1.5 is proved in Section 7 and Theorem 1.6 in Section 9.

2 Appendices to a hole

In this section we assume that G is a 4-hole-free odd-signable graph.
Let H be a hole. A chordless path P = py,...,p; in G\ H is an appendiz of H if no node
of P\ {p1,pr} has a neighbor in H, and one of the following holds:



(i) k=1and (H,p;1) is a bug (N(p1) NV (H) = {u1,u2,u}, such that ujus is an edge), or

(ii) k > 1, py has exactly two neighbors u; and ug in H, ujug is an edge, pi has a single
neighbor u in H, and u & {uy,us}.

Nodes uq,uo,u are called the attachments of appendix P to H. We say that ujug is the
edge-attachment and wu is the node-attachment.

Let H} (resp. H}) be the uju-subpath (resp. usu-subpath) of H that does not contain
ug (resp. uy). Hp and HY, are called the sectors of H w.r.t. P.

Let @ be another appendix of H, with edge attachment viv9 and node-attachment v.
Appendices P and Q are said to be crossing if one sector of H w.r.t. P contains v; and vs,
say Hp does, and v € V(Hp) \ {u}.

Uy U2 U1 U2
/v\ . N
7 AN 7 AN
/ \ / \

/ \ / \
/ b1 \ / b1 \
! \ | | \
| | | | |
| I \ I |
\\ /’ \ I /

\ /

\ / \ pk Vi

\ / \ y
AN 7 N V2
~ 7
\O\O/O/ ~_ _-
U U

Figure 5: An appendix P = p1,...,pr of a hole H, with edge-attachment wujus and node-
attachment w.

Lemma 2.1 Let P = p1,...,pr be an appendixz of a hole H, with edge-attachment uius and
node-attachment w, where p1 is adjacent to uy and up. Let H (resp. HY,) be the sector of
H w.r.t. P that contains uy (resp. ug). Let Q = q1,...,q be a chordless path in G\ H such
that q1 has a neighbor in Hp, q; has a neighbor in HY,, no node of Q\ {q1,q} is adjacent to
a node of H and one of the following holds:

(i) 1 =1, q1 is not adjacent to u, and if uy (resp. ug) is the unique neighbor of q1 in Hp
(resp. H}), then qi is not adjacent to uy (resp. ui) nor p;.

(it) 1 >1, N(g1) N V(H) CV(Hp) \ {u}, N(g)NV(H) CV(HE)\ {u}, ¢1 has a neighbor
in Hp \ {u1}, and q; has a neighbor in H}, \ {us}.

Then Q is also an appendix of H and its node-attachment is adjacent to u. Furthermore, no
node of P is adjacent to or coincident with a node of Q.

Proof: Let u} (resp. uj) be the neighbor of ¢; in H} that is closest to u (resp. up). Let
uf (resp. uj) be the neighbor of ¢; in H}, that is closest to u (resp. ug). Note that either
uy # up or uf # ug. Let S (resp. S5) be the uju-subpath (resp. uhui-subpath) of H}, and
let SY (resp. S%) be the u]u-subpath (resp. ujus-subpath) of HY. Let H' (resp. H") be the
hole induced by Hj, U P (resp. H}, U P).
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First suppose that [ = 1. Note that ¢; cannot be coincident with a node of P. Suppose
q1 has a neighbor in P. Note that ¢; is not adjacent to u, and if ¢; is adjacent to p;, then
u) # up and uf # ug. But then PUS]US] Uq; contains a 3PC(¢1,u). So g1 has no neighbor
in P. Since H U g cannot induce a 3PC(u), uY), ¢1 has at least three neighbors in H. Since
(H,q1) cannot be an even wheel, w.l.o.g. ¢ has an odd number of neighbors in Hj and an
even number of neighbors in H%. Since H” U ¢; cannot induce a 3PC(uf,u3) nor an even
wheel with center ¢, ufuf is an edge. Since H” U S} U ¢y cannot induce an even wheel with
center ug nor a 3PC(pjujug, qruiuy), ub is adjacent to u, and the lemma holds.

Now suppose that [ > 1. So u} # u; and uf # uz. Not both ¢; and ¢; can have a single
neighbor in H, since otherwise H U ) induces a 3PC(u},u}). W.lo.g. uf # uj.

Suppose that ufuf is not an edge. A node of P must be adjacent to or coincident with a
node of @, else H” UQ U S} contains a 3PC/(q;, u). Note that no node of {¢1, ¢} is coincident
with a node of {p1,pr}, and if a node of @ is coincident with a node of P, then a node of
Q is also adjacent to a node of P. Let ¢; be the node of ) with highest index that has a
neighbor in P. (Note that g; is not coincident with a node of P). Let p; be the node of P
with highest index adjacent to ¢;. If j > 1 and ¢ > 1, then HU{p;,...,pk, ¢, ..., q} contains
a 3PC(q,u). If i = 1, then ST U ST UQ U {pj,...,px} induces a 3PC(q1,u). So ¢ > 1, and
hence j = 1. If i <[, then SY USY U P U{qi,...,q} induces a 3PC(p1,q). So i =l. Since
H U q; cannot induce a 3PC(uf,u}), (H,q) is a wheel. But then one of the wheels (H, ;) or
(H",q) must be even. Therefore u{u is an edge.

Suppose that u} # u5. Then by symmetry, uju, is an edge, and hence H U @ induces a
3PC(qruyuly, quiuy). Therefore uj = u}, i.e. @ is an appendix of H. Note that by definition
of Q, u} ¢ {uy,u}.

Suppose that a node of P is adjacent to or coincident with a node of Q). Let ¢; be the
node of ) with highest index adjacent to a node of P, and let p; be the node of P with
lowest index adjacent to ¢;. If ¢ > 1 and j < k, then H U {p1,...,pj,qi,...,q} induces an
even wheel with center ug or a 3PC(prujug, quijuy). If i = 1, then PUQ US| U ST contains
a 3PC(q1,u). Soi > 1, and hence j = k.

If pr has a unique neighbor in @, then Q U S7 U SY U pg induces a 3PC(g;,u). So py has
more than one neighbor in Q.

Suppose that k& = 1. Then either S5 U S) UQ Up; or S7USY UQ Up; induces an even
wheel with center p1. So k > 1.

Let T" (resp. T”) be the hole induced by S U SY U@ (resp. S, U SY UQ). If both
(T',px) and (T",px) are wheels, then one of them is even. So py has exactly two neighbors
in Q. Since T"” Upy cannot induce a 3PC(-,-), N(px) NQ = {¢i,¢i—1}. (Note that ¢;_; is not
coincident with a node of P, since j = k). If no node of P \ p; has a neighbor in @, then
T" U P induces a 3PC(pjujus, ppqiqi—1)- So a node of P\ pi has a neighbor in Q. Let p;
be such a node with lowest index. Let ¢s be the node of @ with highest index adjacent to
pe. Mt #k—1then HY U {p1,...,Pt: Pk, Gs, - -, ¢} induces an even wheel with center ¢; or
a 3PC(quiuly, prqigi—1). Sot =k — 1, i.e. pr and py_; are the only nodes of P that have a
neighbor in Q. If s # 1 then (H \ S5) UPU{qs,...,q} induces an even wheel with center py.
So s =1. If i > 2, then S] U{qi,...,qi—1,pr—1,pr} induces a 3PC(q1,px). So i = 2. Since
there is no 4-hole, uju ¢ E(G). But then H U {q1,p} induces a 3PC(u}, u).

Therefore, no node of P is adjacent to or coincident with a node of Q. If wju is not an
edge, then (H \ S4) U P UQ induces a 3PC(u},u). Therefore uju is an edge. O
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Lemma 2.2 Let P = pq,...,p; be an appendix of a hole H, with edge-attachment uijus and
node-attachment u, with p1 adjacent to uy,us. Let Q = q1,...,q be another appendiz of H,
with edge-attachment vivy and node-attachment v, with q1 adjacent to vi,ve. If P and Q are
crossing, then one of the following holds:

(i) uv is an edge,
(ii) w € {v1,v2} and q1 has a neighbor in P, or
(iii) v € {u1,us} and p1 has a neighbor in Q.

Proof: Let Hp, (resp. HY) be the sector of H w.r.t. P that contains u; (resp. uz). W.lo.g.
{v1,v9} C H}D and v is the neighbor of ¢; in H}D that is closer to u;. Assume v is not an
edge.

By Lemma 2.1 either v = u or ug = v. W.lo.g. assume that v = u. Let S; (resp.
S2) be the uv-subpath (resp. ugv-subpath) of H%. A node of P must be coincident with or
adjacent to a node of @, else H, U SoUPUQ induces a 3PC(pijujug, giv1u) or an even wheel
with center uy. Note that no node of {q1, ¢} is coincident with a node of {p1,px}. Let ¢; be
the node of @ with lowest index adjacent to P. (So ¢; is not coincident with a node of P).
Let p; be the node of P with lowest index adjacent to ¢;. If i = 1, then (ii) holds. So assume
that ¢ > 1.

If j < kandi </, then HU{p1,...,pj,q1,...,¢} induces a 3PC(p1uiuz, q1viu) or an
even wheel with center u;. So either j =k or i = 1.

Suppose that j = k. If N(pp) N Q = ¢;, then S; U Q U py induces a 3PC(u,q;). So py
has more than one neighbor in Q. Let 7" (resp. T") be the hole induced by S; U @ (resp.
(H\ (S1\v))UQ). Note that (T",pg) is a wheel. If (T"”,py) is also a wheel, then one of
these two wheels must be even. So (T”,px) is not a wheel, and hence k > 1 and p; has
exactly two neighbors in Q. N(px) N Q = {¢;,qi+1}, else T” U py induces a 3PC(+,-). But
then Hp U So U QU py, induces a 3PC(qiv1u, prqigi+1)-

So j < k, and hence ¢ = [. In particular, ¢; is the only node of ) that has a neighbor in
P. If either j > 1 or v # ug, then S1 UQ U {pj,...,p;} contains a 3PC(u,q). So j =1 and
v = ug, and hence (iii) holds. O

3 Proper wheels

A bug is a wheel with three sectors, exactly one of which is short. A twin wheel is a wheel
with exactly two short sectors and one long sector. A proper wheel is a wheel that is neither
a bug nor a twin wheel. A wheel (H,x) is a universal wheel, if z is adjacent to all nodes of
H. See figure 6.

Theorem 3.1 [2/] Let G be a 4-hole-free odd-signable graph. If G contains a universal wheel,
then G has a star cutset.

Theorem 3.2 [1] Let G be a 4-hole-free odd-signable graph. If G contains a proper wheel
that is not a universal wheel, then G has a star cutset.
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Figure 6: A bug, a twin wheel and a universal wheel with center x.

Theorem 3.2 was proved by us and in [1] independently and at the same time. Since [1] is
about to be published, we do not include our proof of Theorem 3.2 here. We also note that
in [1], the statement of Theorem 3.2 is for even-hole-free graphs, but since in their proof, to
obtain the decomposition they only use the exclusion of 4-holes, even-wheels, 3PC(.,.)’s and
3PC(A,A)’s, they actually prove the above stated version.

These two theorems imply the following result.

Theorem 3.3 Let G be a 4-hole-free odd-signable graph. If G contains a proper wheel, then
G has a star cutset.

4 Nodes adjacent to a 3PC(A,-) and crossings

Throughout this section ¥ denotes a 3PC(z1x223,y). The three paths of ¥ are denoted by
Py, Pp,y and Py, (where Py, is the path that contains x;). Note that at most one of the
paths of ¥ is of length 1. For ¢ = 1,2,3, we denote the neighbor of y in P,,, by y;. Also let
X ={z1, 29,23}

Lemma 4.1 Let G be a 4-hole-free odd-signable graph that does mot contain a proper wheel.
If u e V(G) \ V(X) has a neighbor in ¥, then u is one of the following types.

pi for i=1,2,3 : For some path P of ¥, N(u) NV (X) C P and |[N(u) NV (X)| = .
Furthermore, if i > 2, then u has two adjacent neighbors in 3.

crosspath : Node u has exactly three neighbors in 3. For some i € {1,2,3}, u is
adjacent to y;, and the other two neighbors of u in X are contained in
Pyy, for some j € {1,2,3}\{i}. Furthermore, V (Py,,)UV (Py;y)U{u}
induces a bug with center u.

2 : Nu)nV(E)CX and |[N(u) NV (E)| =2.

t3 ; N@nV(E)=X.
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d : For somei,j € {1,2,3}, i # j, N(u)NV(Z) ={y, i, y;}-

pseudo-twin of a :  We define a pseudo-twin of x1: N(u) NV (X) = {x2, x3,v1,v2}, where

node of X v1 and vy are nodes of Py,. Furthermore, if {z1,y} = {v1,v2} then
xoy and x3y are not edges. Also if x1 ¢ {v1,v9} then vivy is an edge,
and either y ¢ {vi,ve} or xoy and x3y are not edges. Pseudo-twins
of To and x3 are defined symmetrically.

pseudo-twin of y : N(u)NV(X) = {y,v1,v2,v3}, where for i = 1,2,3 v; is a node of
Py \{y}, at least two of yv1, yva, yvs are edges, and |N(u)NX| < 1.

sl ;X is a bug, where say x;y is an edge. Node u is adjacent to x;, and for
some j € {1,2,3}\{i}, the nodes of N(u)N(V (X)\{x;}) are contained
in Pyy \{y}. Furthermore, V(Pyy) UV (Py,y) U{u} induces a twin
wheel.

82 : For distinct i,7,k € {1,2,3}, ¥ is a bug such that x;y is an edge, and

Proof: For i,j € {1,2,3}, i # j, let H;; be the hole induced by P, U P,;,. We now consider
the following three cases.

Case 1: |[N(u)NX| <1

If for some i € {1,2,3}, N(u) N X C P,,y, then u is of type pl, p2 or p3, else there is
a 3PC(-,-) or a proper wheel. So assume w.l.o.g that u has neighbors in both P, , \ y and
Pp,y \ y, and that it is not adjacent to xs.

Suppose u is not adjacent to y. Note that P,,, is an appendix of Hi2. By Lemma 2.1
applied to Hia, P,y and u, node u is also an appendix of Hyo and its node-attachment is
w.l.o.g. y1. Furthermore, no node of P,,, is adjacent to u, and hence u is a crosspath of 3.

Now assume that u is adjacent to y. Then (Hi2,u) must be a bug or a twin wheel. Suppose
(Hi2,u) is a twin wheel. If u has no neighbor in P, \ y, then u is of type d. So assume u
has a neighbor in Py, \ y. Then (Ha3,u) is either a bug or a twin wheel, and hence u is a
pseudo-twin of y w.r.t. X. Suppose now that (Hjz,u) is a bug. W.lLo.g N(u)N Py = {y,y1}
and N(u) N Pyyy = {y, u1}, where yu; is not an edge. If u has no neighbor in P, \ y, then
Hyz U induces a 3PC(y,u1). So u has a neighbor in Py, \ y. If N(u) N Py # {y,y3}, then
(Ha23,u) is a proper wheel. So N(u) N Py, = {y,y3}, and hence u is a pseudo-twin of y w.r.t.
>

Case 2: |N(u)NX| = 2.

W.lo.g. N(u)NX = {x1,22}. Assume u is not of type t2. Then u has a neighbor in
Y\ X. First suppose that u does not have a neighbor in Hq\{z1,22}. Then u has a neighbor
in P,y \ {z3,y}. Since Hi3 Uwu cannot induce a 3PC(-,-), u has at least two neighbors in
Py \{z3,y}. Then (H;3,u) is a wheel, and hence it must be a bug, and so  is a pseudo-twin
of r3 w.r.t. X.
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Now we may assume that u has a neighbor in His \ {z1,22}. Then (Hj2,u) is a twin
wheel or a bug. In particular, N(u)NHiz = {21, z2,u1}. W.lo.g. assume that u; € Py, \ 1.
Suppose u; # y. Then u cannot have a neighbor in P,.,, since otherwise (X \ {z1,23}) Uu
contains a 3PC(u,y). If xoy is not an edge, then (X \ z1) Uu contains a 3PC(z2,y). So xay
is an edge. If zqu; is not an edge, then Hy3 U u induces a 3PC/(x1,u1). So zqu; is an edge,
and hence u is of type sl.

We may now assume that u; = y. Note that at least one of x1y or zsy is not an
edge. W.lo.g. xoy is not an edge. Node u must have a neighbor in Py, \ y, else Haz U u
induces a 3PC(z2,y). So (Has,u) is a wheel, and hence it must be a bug. In particular,
N(u) N Ppyy = {y,y3}, and so u is of type s2 or it is a pseudo-twin of z3 w.r.t. X.

Case 3: N(u)NnX = X.

Assume u is not of type t3. Then u has a neighbor u; in w.lo.g. Py, \ 1. So (Hi2,u)
is a twin wheel or a bug. Similarly, (Hi3,u) is a twin wheel or a bug. So N(u) NV (¥) =
{z1,29,23,u1}. If ug # y or x9y and x3y are not edges, then u is a pseudo-twin of x; w.r.t.

Y. So assume that u1 = y and w.l.o.g. z9y is an edge. Then u is a pseudo-twin of x5 w.r.t.
>, O

Remark 4.2 If a node u is a pseudo-twin of a node of X, say x1, w.rt a X =
3PC(z1woxs,y), then (X \ {z1}) U {u} contains a ¥/ = 3PC(uxsx3,y). If a node u is a
pseudo-twin of y w.r.t. X, then (X \ {y}) U{u} contains a ¥/ = 3PC(x1x2x3,u). If a node
u is of type p3 w.r.t. ¥, then ¥ U {u} contains a ¥’ = 3PC(x1x9x3,y) that contains u. We
say that in all these cases Y is obtained by substituting u into 3.

A node u adjacent to X is further classified as follows.

Type p : Node u is of type pl, p2 or p3 w.r.t. X.

Type p3t  : Node u is of type p3 w.r.t. ¥ and N(u) NV (X) induces a path of length 2.

Type p3b  : Node u is of type p3 w.r.t. ¥ and N(u) NV(X) does not induce a path of
length 2.

Type dd : Node u is of type d w.r.t. 3 such that if ¥ is a bug, then u is not adjacent

to its center.

Type dc : Node u is of type d w.r.t. X, where ¥ is a bug and w is adjacent to its
center.

A crossing of ¥ is a chordless path P = pq,...,p, in G\ X such that either £ = 1 and
p1 is a crosspath w.r.t. X; or kK = 1, X is a bug and p;y is of type sl w.r.t. ¥; or £ > 1 and
for some i,j € {1,2,3}, i # j, N(p1) N V() C V(Pry), N(px) N V() € V(Py,y), p1 has a
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Figure 7: Different types of nodes adjacent to a 3PC(x1x2x3,y).
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Figure 8: Different versions of a type d node w.r.t a 3PC(A,-).

neighbor in V(Py,y) \ {y}, pr has a neighbor in V(P ) \ {y}, and no node of P\ {p1,px}
has a neighbor in X.

We now define three special types of crossings.

A crossing P = p1,...,pr of X is called a hat if kK > 1, p; and pj are both of type pl w.r.t.
Y. adjacent to different nodes of {z1,x2, x3}.

Let P =p1,...,pr be a crossing of ¥ such that one of the following holds:

(i) k=1 and p; is a crosspath w.r.t. X, say p; is adjacent to y; for some i € {1,2,3}, and
it has two more neighbors in Py, \ {y}, for some j € {1,2,3} \ {i}.

(ii) k=1, ¥ is a bug and p; is of type sl w.r.t. X, such that for some i € {1,2,3} and for
some j € {1,2,3} \ {i}, x;y is an edge and N(p1) N {z1, 22, x3} = {z;, x;}.

(iii) k> 1, p; is of type pl and py is of type p2 w.r.t. X, for some i € {1,2,3}, p; is adjacent
to y;, and for some j € {1,2,3} \ {i}, N(px) NV (X) C V(Pr;y) \ {y}-

Such a path P is called a y;-crosspath of . We also say that P is a crosspath from y; to
Pyy. If say x3y is an edge, then ¥ induces a bug (H,z), where z = 3 = y3. In this case,
the ys-crosspath (or z-crosspath) of X, is also called the center-crosspath of the bug (H,x).

Suppose that ¥ is a bug. A crossing P of ¥ is an ear if £ > 1, p; is of type pl w.r.t. ¥
adjacent to the center of bug X, and p; is of type p2 w.r.t. ¥ adjacent to y.

We next prove the following sequence of decompositions. The order in which these de-
compositions are obtained is of crucial importance.

Theorem 4.3 Let G be a 4-hole-free odd-signable graph. If G contains a bug with a center-
crosspath then G has a star cutset. In particular, if G has no star cutset, then no node is of
type s1 w.r.t. a 3PC(A,-).
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Figure 10: A y;-crosspath P of a 3PC(z1x2x3,y). When 1 =y, P is also a center-crosspath
of a bug.

Theorem 4.4 Let G be a 4-hole-free odd-signable graph. If G contains a 3PC(A,-) with a
hat, then G has a star cutset.

Theorem 4.5 Let G be a 4-hole-free odd-signable graph. If G contains a bug with an ear,
then G has a star cutset.

Theorem 4.6 Let G be a 4-hole-free odd-signable graph. If G contains a bug with a type s2
node, then G has a star cutset.

We prove Theorems 4.3, 4.5 and 4.6 in Section 5. We close this section by proving Theorem
4.4 (assuming Theorem 4.3 to be true). But first we prove a useful lemma about crosspaths.

Lemma 4.7 Let G be a 4-hole-free odd-signable graph that does mot contain a proper wheel.
Y =3PC(x1z23,y) of G can have a crosspath from at most one of the nodes y1,y2, ys.

Proof: Suppose not and let P = uq,...,u, be a yj-crosspath and Q = vi,...,0m a Y-
crosspath. Let v/, u” (resp. v',v") be adjacent neighbors of u,, (resp. v,,) in X. Note that by
definition of a crosspath, y does not coincide with any of the nodes v/, u”,v’,v”. It suffices
to consider the following three cases.

Case 1: v/,u" € P,,, and v',v" € P,,,.
Note that in this case neither xiy nor xoy can be an edge and hence neither u; nor v
can be of type sl w.r.t ¥. Let H be the hole induced by P,,, U Py,,. Then P and @ are
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crossing appendices of H and their node-attachments are not adjacent. So by Lemma 2.2,
w.lo.g. y; € {v/,v"} and v, has a neighbor in P.

W.lo.g. « is the neighbor of u, in P,,, that is closer to z2. Let R’ (resp. R”) be the
subpath of P,,, with endnodes ' (resp. u”) and x2 (resp. y). Since there is no 4-hole, m > 1.
Node vy, has a unique neighbor in P, else (Py,, \ y) U P U R' U v, induces a proper wheel
with center v,,. The neighbor of v, in P is uj, else P U R” U {y1, v, } induces a 3PC(y1,-).
But then Py, U P,y U R” U P Uuw,, induces an even wheel with center y;.

Case 2: v/,u" € Py, and v/, 0" € P,,.

Note that x3y is not an edge, and at most one of x1y, xoy is an edge. Suppose there exists
a path from y; to y2 in PU QU (Pyyy \ {23,y3,9}) U{y1,y2}, and let R be a shortest such
path. Then P, , U P,,, U R induces a 3PC(y1,y2). So no such path exists. In particular,
no node of P is adjacent or coincident with a node of (), and x3ys is an edge. In particular,
since there is no 4-hole, ¥ cannot be a bug. But then (XU PUQ) \ y induces a proper wheel
with center z3.

Case 3: v/, u" € P,y and v',v" € Py,y.

Note that z1y is not an edge and hence u; is not of type sl w.r.t. 3. Let H be the hole
induced by Py, U Py,y. Let P’ be the shortest path between y; and x5 in PU (Py,y \ y) Uys.
Suppose that vy is of type sl w.r.t. ¥. Then xoy is an edge. If v; has no neighbor in P, then
P'U(Py,y\y)U{z2,v:} induces an even wheel with center z1. So v; has a neighbor in P and let
u; be such a neighbor with lowest index. Note that since {1, y1, z2,y} cannot induce a 4-hole,
v is not adjacent to y1. But then (H \ z1) U {v1,uq,...,u;} induces a 3PC(yy,v1). Therefore
v1 is not of type sl w.r.t. X, and hence P’ and Q are crossing appendices of H. Since x3
does not have a neighbor in @, by Lemma 2.2 applied to H, Q and P’, y; € {v/,v"} and vy,
has a neighbor in P. Let H' be the hole induced by P’ U P, \ y. Then (H',v,,) is a wheel,
and hence it is a twin wheel or a bug. If (H’,v,,) is a bug, then P U (Pyyy \ 23) U{y1,y, v}
contains a 3PC(y1,-). So (H',v,,) is a twin wheel. In particular, u; is the unique neighbor
of vy, in P. Since {vy,y1,y,y2} cannot induce a 4-hole, m > 1. But then (X \ z3) U P Uy,
contains an even wheel with center y;. O

Proof of Theorem 4.4: Assume G contains a ¥ = 3PC(z1x9x3,y) with a hat P = py, ..., px,
but G does not have a star cutset. By Theorems 3.3 and 4.3, G does not contain a proper
wheel nor a bug with center-crosspath. For i = 1,2, 3, let 2} be the neighbor of z; in P,,,.
W.lo.g. pi is adjacent to x1 and pg to x9. Since S = N[xi|\ {p1,2}} is not a star cutset,
there exists a direct connection @ = qi,...,q; from P to ¥\ S in G\ S. We may assume
w.l.o.g. that P and @ are chosen so that |P U @] is minimized.

By Lemma 4.1 and definition of ), and since G does not contain a bug with a center-
crosspath, ¢ is of type p, d, s2 or crosspath w.r.t. ¥ or it is a pseudo-twin of x; or y w.r.t.
3.

Let p; (resp. p;j) be the node of P with lowest (resp. highest) index adjacent to ¢;. Note
that 1 has no neighbor in @, ¢; has a neighbor in ¥ \ {z1, 22,23}, and the only nodes of
Y. that may have a neighbor in @ \ ¢; are x2 and x3. If 25 or x3 has a neighbor in @ \ ¢,
then let ¢; be such a neighbor with lowest index. Let R be a chordless path from x; to ¢; in
G[(2\ {x2,73}) Uq] (note that such a path exists since ¢; has a neighbor in ¥\ {z1, z9, z3}).
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Case 1: i = k.

Let H be the hole induced by RUPUQ. Since HUxy cannot induce a 3PC(z1, py) nor a
proper wheel, (H,z9) must be a bug. In particular, N(z2) N Q = ¢; and R does not contain
xh. Node z3 cannot have a neighbor in @, since otherwise Q U P U {z1, z2, 23} would contain
a 4-wheel with center xo. In particular, ¢; is not of type s2 w.r.t. X nor is it a pseudo-twin
of 1 wr.t. X. If ¢ has a neighbor in P, \ y, then (Py,, \ y) UPUQ U{z1, 22,23} contains
a 4-wheel with center z3. So ¢; does not have a neighbor in P,,, \ y. In particular, ¢; is not
a pseudo-twin of y w.r.t. 3. Suppose that q; is of type d or crosspath w.r.t. ». Then ¢
has a neighbor in P, , \ vy and a neighbor in P,,, \ y. Hence z1y is not an edge, since by
definition of @), x1 cannot be adjacent to ¢;. Let R’ be the chordless path from ¢; to z3 in
G\ {z1,2),22) Uq]. Then PUQU R U {x1,22} induces a proper wheel with center x5.
So ¢; is not of type d or crosspath w.r.t. X, and hence ¢; is of type p w.r.t. X.

Suppose that z1y is an edge. Then the neighbors of ¢; in ¥ are contained in P,,,. Since
R does not contain xf, ¢; has a neighbor in P,,, \ {z2,z4}. Let P’ be the chordless path from
x to y in G[(Py,y \ 25) UQ]. Then P’ U P,,, Uz induces a bug with center x;, and P is its
center-crosspath, a contradiction. Therefore z1y is not an edge.

If N(¢1) "X = 2, then P, , U P,,, UQ induces a 3PC(z),z2). So ¢ has a neighbor in
Y\ {z1,2]}. Let P’ be the chordless path from ¢; to x5 in G[(X \ {z1,22,2]}) Uq]. Then
P U P'U{z1,x9,x3} induces a 4-wheel with center x;.

Case 2: i < k.

First note that if [ > 1, then either ¢ = j or j =i + 1, since otherwise the chordless path
from py to pg in (P \ pi+1) Uq1 and @ \ ¢1 contradict the minimality of |P U @Q|. Let H be
the hole induced by RU QU {p1, ..., pi }-

Suppose that 5 has a neighbor in @. Since H Uz cannot induce a 3PC(+, ) nor a proper
wheel, (H,z2) is a bug. In particular, either I > 1 or {z9,z5} C N(q) NX C {za, x5, x3}.
If j =i+ 1, then pj,...,py is a center-crosspath of (H,z2). So j # i+ 1. If i = j, then
PUQU{x1,x9} contains a 3PC(x2,p;). So j > i+ 1. But then I = 1, and hence {za, x5} C
N(q)NXE C {xg, 2, z3}. By Lemma 4.1 and Theorem 4.3, N(q) N X = {za,25}. If 21y is
not an edge, then Py, U Py, U{x1,q1,p1,...,p;} induces a 4-wheel with center z2. So z1y is
an edge. But then ¥ is a bug and pq, ..., p;, q1 is its center-crosspath. Therefore xo does not
have a neighbor in ). In particular, ¢; is not of type s2 w.r.t. X, nor a pseudo-twin of z;
w.r.t. X.

Suppose that x3 has a neighbor in @ \ ¢;. Then paths p1,...,pi,q1, ..., q¢ and g1, ..., @
contradict the minimality of |P U @Q|. So x3 does not have a neighbor in @ \ ¢;.

Suppose that j = i+ 1. If ¢; has a neighbor in ¥\ {z1, 2}, x2, 24}, then (X\{z], 25})UPUQ
contains a 3PC(q1pipi+1, T12223). So g does not have a neighbor in ¥\ {x1, 2}, 22, 24 }. Since
¢ is not adjacent to 1 nor z9, N(g) N X C {z},25}. If N(¢) N X = %, then Py, U P,y U
QU{p1,...,p;} induces a 3PC(z1,25). If N(¢;)NE =, then Py y U Pryy UQU{pit1, ..., Pk}
induces a 3PC(z2,}). So N(q) NX = {z,z4}. By Lemma 4.1, ¢, must be of type p2 w.r.t.
¥, and hence either 2}, = y or 2} = y. But then {z1, z2, 2], z}} induces a 4-hole. So j # i+ 1.

Suppose that ¢ = j. If ¢ has a neighbor in ¥\ {z1, 22, 23,2}, then (X \ {2}, z3}) U
P U Q contains a 3PC(p;,x2). So ¢ is adjacent to 2} and it does not have a neighbor in
Y\ {z1, 2, 3,2, }. Since {z1, ), z3, ¢} cannot induce a 4-hole, N(¢;)NYE = zf. If i # 1, then
PriyU Py UQU{pi, ...,pr} induces a 3PC(z2,2)). So i =1. But then P, U Py UPUQ
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induces a proper wheel with center z1. So i # j. Therefore j > ¢+ 1, and hence [ = 1.

If ¢; has a neighbor in ¥\ {z9, x4, x5}, then (3\{z5, z3})U{p1, ..., pi, Pj, ---, Pk, 1 } contains
a 3PC(q1,z1). So ¢ is adjacent to x4, and it has no neighbor in ¥\ {z,,z3}. But then
{x1, 22,25, 01, ., iy Djs s P, 1 } induces a 3PC(q1,x2). O

5 Bugs

For a bug (H,z) we use the following notation in this section. Let x1,x2,y be the neighbors
of z in H, such that x1x5 is an edge. Let H;y (resp. Hs) be the sector of (H,z) that contains
y and x1 (resp. z2). Let y1 (resp. y2) be the neighbor of y in Hy (resp. Ha).

Proof of Theorem 4.3: By Theorem 3.3 we may assume that G does not contain a proper
wheel. Choose a bug (H,z) and its center-crosspath P = pi,...,pr so that |H U P| is
minimized.

W.lo.g. py is adjacent to x, and let u1, us be the neighbors of p; in H. W.l.o.g. uy,us €
Hy\ y, and uy is the neighbor of py in Hs that is closer to y. We now show that S = N[z] is
a star cutset separating H; from Hs.

Assume not and let Q = ¢1,...,q be a direct connection from H; to Hy in G\ S. Note
that no node of @) is adjacent to . So no node of @ is of type t3, sl, s2 nor a pseudo-twin
of x1, w9, x or y w.r.t. (H,z). Also by Lemma 4.7, no node of @ is of type crosspath w.r.t.
(H,z). Hence by Lemma 4.1, either (i) [ > 1, and ¢; and ¢; are of type p, or (ii) [ = 1 and
q1 is of type d. Suppose (ii) holds. Note that ¢; cannot be coincident with a node of P. If
¢1 does not have a neighbor in P, then (H \ x2) U P U {x, ¢} contains a 4-wheel with center
y. So N(q1) N P # @. If ¢; has more than one neighbor in P, then (Hy \ x2) U P U {z, ¢}
contains a proper wheel with center ¢;. So ¢; has a unique neighbor p; in P. Since there
is no 4-hole, ¢ > 1. But then Hy U {z,q1,p;, ..., pr} induces either a 3PC(q1yys2, pruiuz) or
a 4-wheel with center yo. So (i) holds. Furthermore, ¢; has a neighbor in H; \ {z1,y} and
q; has a neighbor in Hy \ {x2,y}. Also, the only nodes of H that may have a neighbor in
Q\{q1,q} are x1,x9,y. Since there is no 4-hole, every node of @ \ {¢1, ¢} has a neighbor in
at most one of the sets {x1,x2}, {y}.

Claim 1: At most one of the sets {x1,x2} or {y} may have a neighbor in Q \ {q1,q}.

Proof of Claim 1: Assume not. Then there is a subpath @' of @ \ {¢1,¢;} such that one
endnode of Q' is adjacent to y, the other is adjacent to a node of {x1, 25}, say to z1, and no
intermediate node of @’ has a neighbor in H. Then H; U Q' Uz induces a 3PC(x1,y). This
completes the proof of Claim 1.

Claim 2: ¢; is not of type p3b.

Proof of Claim 2: Assume ¢ is of type p3b, and let H' be the hole of H U ¢; that contains
q1,%1,x2,y. Then (H' x) is a bug. If ¢; is not adjacent to a node of P, then (H',z) and P
contradict the minimality of |H U P|. So ¢; is adjacent to a node of P. Let p; be the node of
P with lowest index adjacent to ¢;. Then HyU{z,q1,p1,...,p;} contains a 3PC(q1,z). This
completes the proof of Claim 2.
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Let H (resp. H)) be the subpath of H; (resp. Hz) whose one endnode is x; (resp. z2),
the other endnode is adjacent to ¢1 (resp. g;), and no intemediate node of Hj (resp. Hy) is
adjacent to g1 (resp. q;). Let vy (resp. vg2) be the neighbor of ¢; in H; that is closest to x;
(resp. y).

By Lemma 2.1 applied to H, x and ) and Lemma 4.7, either y has a neighbor in @, or a
node of {x1, 22} has a neighbor in @ \ {¢1, ¢}. We now consider the following two cases.

Case 1: No node of {x1,z2} has a neighbor in Q \ {q1, ¢}
Then y has a neighbor in Q. Let ¢; be the node of () with lowest index adjacent to y. By
Claim 2, q; is of type pl, p2 or p3t. We now consider the following two cases.

Case 1.1: No node of P is adjacent to or coincident with a node of Q).

Let R be a chordless path from ¢; to  in (Hs \ {z2,y}) UP U {x,q}.

First suppose that ¢; is of type p3t. If t # 1, then H1U{q, ..., ¢, x} contains a 3PC(q1,y).
So t = 1 and consequently vo = y. Suppose ¢; is the unique node of ) adjacent to y. If
N(q;) N Hy # {y2}, then ¢ has a neighbor in Hs \ {x2,y,y2} (since x2y, is not an edge,
else {x,y,z2,y2} induces a 4-hole) and hence Q U R U H| Uy induces a 3PC(q1,x). So
N(q) N Hy = {y2}. But then (H \ y1) UQ induces a 3PC(q1,y2). So N(y)N(Q\ q1) # @. If
Ny)N(Q\q1) # {g2} or N(q;))NH C {y,y2}, then QURUH]U{z,y} induces a proper wheel
with center y. So ¢y is the unique neighbor of y in @ \ ¢1 and N(¢;) N H is not contained in
the node set {y,y2}. But then Q U H), U H{ U {z,y} induces a 3PC(z1x2, q1q2Y)-

So ¢ is of type pl or p2. Suppose that g; is of type pl. Then, t > 1. Node vy is adjacent
to y, else Hy U{z,q1,...,q} induces a 3PC(v1,y). But then H; U@ U R induces a proper
wheel with center y. Therefore, ¢g; must be of type p2.

Suppose that ¢; is adjacent to y. Then H; U@ U R must induce a bug with center y, and
hence y2 € R and N(y) N Q = ¢1. In particular, yo ¢ Hj. But then H; U H) U Q U z induces
a 3PC(z1x22,q1yy1). Therefore, g is not adjacent to y.

Since Hj UQ U R Uy cannot induce a 3PC(x, ¢), it must induce a bug, and hence either
(i) y2 ¢ Rand N(y) N Q = {qt,qe+1}, or (ii) y2 € R and t = [. If (i) holds, then yo & HJ,
and hence Hy U H) U @ induces a 3PC(yqiqi+1, 1v1v2). So (ii) holds. So ¢ is adjacent to
y and yo. Since there is no 4-hole, ¢; is not adjacent to xo. If ¢; is of type p3, then there
exists a chordless path from ¢; to = in (Hs \ {z2,y}) U P U {xz, ¢} that does not contain ys,
contradicting the analysis thus far (that shows that yo, € R). So ¢; is of type p2, and hence
H U Q@ induces a 3PC(q1v1v2, qyy2).

Case 1.2: A node of P is adjacent to or coincident with a node of Q).

Let g; be the node of @ with lowest index adjacent to a node of P, and let p; (resp. pj;)
be the node of P with highest (resp. lowest) index adjacent to ¢;. If i < ¢, then by Lemma
2.1, ¢1,...,G,Dpj,---, Dk is a crosspath, contradicting Lemma 4.7. So 7 > t.

Suppose t = 1. Then, by Claim 2, ¢; is of type p2 or p3t. Suppose ¢ is of type
p2. Since Hy U{z,y,q1,.-.,¢,P1,---,pj} cannot induce a proper wheel with center y, ¢;
is the unique neighbor of y in ¢i,...,¢;. But then H U {q1,...,qi,pj,...,px} induces a
3PC(A,A). So q; is of type p3t. If ¢; is the unique neighbor of y in {q1,...,¢}, then H] U
{a1, .14, p1, ..., pj,y} induces a 3PC(qq,x). So y has a neighbor in {¢2,...,¢;}, and hence
Hi U{q1,.--,qi,p1,...,pj,y} induces a bug with center y. In particular N(y) N {q1,...,qi} =
{q1,q2}. Let R be an xaus-subpath of Hs. Since P is a crosspath, yuy is not an edge, and
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hence Hy U RU{qu, ..., ¢, pj, ..., pr } induces an even wheel with center g;. So ¢t > 1.

HiU{z,y,q1,-..,4,p1,-..,p;s} must induce a bug with center y (since it cannot induce
a 3PC(q, x) nor a proper wheel, and it cannot induce a twin wheel because y is not adjacent
to any node of PUx1), and hence y1 ¢ Hf and N(y)N{q1,...,q} = {@, q+1}. If ¢1 is of type
pl or p3, then HyU{x,q,...,q:} either induces a 3PC(v1,y) or contains a 3PC(q1,y). So ¢1
is of type p2. If i <! then (H \ y2) U{q1,...,¢,pj,...,pr} contains a 3PC(q1v1v2, YqtGr+1)
(recall that since P is a crosspath, py has a neighbor in Hs \ {y,42}). So i = 1. If ¢; has a
neighbor in Hy \ {y,y2}, then (H \ y2) U@ contains a 3PC(q1v1v2, Yqrqi+1)- So q; does not
have a neighbor in Hs \ {y,y2}. Suppose t +1 = 1. Let H' be the hole induced by P Uz and
the yuj-subpath of Hy. Since (H’,q;) cannot be a proper wheel, ;' = j. Since there is no
4-hole, j > 1. But then (Hz \ y2) U P U q contains a 3PC(p;,x). So t +1 < l. In particular
N(q)NH = ys.

Suppose j' = k and py, is adjacent to yo. If k = 1, then {x,pk,y, y2} induces a 4-hole. So
k > 1. But then Ho U {z,qt11,-..,q, pr} induces a 4-wheel center y,. So either j' # k or py
is not adjacent to ys. But then {z,y,y2,q1+1,...,q,Dp1,-- .pj/} induces a 3PC(y, q).

Case 2: A node of {x1, 22} has a neighbor in Q \ {q1, ¢}

By Claim 1, y has no neighbor in @ \ {q1,¢}. Let g; be the node of Q \ ¢1 with lowest
index adjacent to a node of {x1,x2}. Note that i < [.

Suppose that ¢; is not adjacent to x1. If g1 is of type pl or p3t, then H U {q1,...,q¢}
either induces a 3PC'(x2,-) or contains a 3PC(x3,q1). So ¢ is of type p2. But then z and
q1,-..,q; are crossing appendices of H, and since zoy is not an edge and N(z) N Q = &,
Lemma 2.2 is contradicted. Therefore, ¢; is adjacent to 1.

Let g; be the node of () with highest index adjacent to z1. Let R be the chordless path
from ¢q; to y in Ho U ¢;. Note that R does not contain xo, since by definition of (), g; has a
neighbor in Hy \ {z2,y}. Let H' be the hole induced by H; U RU {gj,...,q}. Then H' Uz
induces a 3PC(z1,y). O

Lemma 5.1 Let G be a 4-hole-free odd-signable graph. If G contains a bug (H,z) and has
no star cutset, then G has a path P = py,...,px disjoint from V(H) U {xz} such that no node
of P is adjacent to x, no node of H\ {y} has a neighbor in P\ {p1,px}, p1 has a neighbor in
Hy \ {z1,y}, px has a neighbor in Hy \ {x2,y} and P is one of the following types.

A: P and x are crossing appendices of H. Node vy is adjacent to the node-attachment of P
in H and N(y)N P = .

D: k=1 and py is a node of type dd w.r.t. (H,zx).
C: k> 1 and one of the following holds.

(i) P is of type C1: nodes p1,pi are of type p2 not adjacent to y, node y has precisely
one neighbor in P, and that neighbor lies in P\ {p1,pk}.

(ii) P is of type C2: nodes p1,py, are of type p2, exactly one of them, say p1, is adjacent
toy, and N(y) NP = {p1,p2}.

(iii) P is of type C3: one of {p1,px} is of type p3t adjacent to y and the other is of
type p2. Say p1 is of type p3t. Then N(y)N P =p;.
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(iv) P is of type C4: k =2, one of {p1,pr}, is of type pS3t and the other is of type p2.
Both p1,pr are adjacent to y.

(v) P is of type C5: k = 2; one of {p1,pr} is of type p3b and the other is of type p2.
Both p1, p are adjacent to y, say p1 is of type p3b. The node-attachment of p1 in
H isy.

T: Node y has exactly 3 neighbors in P, that are furthermore consecutive in P. Nodes p;
and py are of type p2 or p3 w.r.t. (H,x). If p1 (resp. px) is of type p3, then it is
adjacent to y. If p1 (resp. px) is of type p2, then it is not adjacent to y.

Furthermore, any direct connection from Hi to Hy in G\ Nlx]| is of type A,D,C or T.

Proof: By Theorems 3.3 and 4.3 we may assume that G does not contain a proper wheel
nor a bug with a center-crosspath. Since N[z] is not a star cutset separating H; from Ho,
let P = py,...,pr be a direct connection from H; to Hs in G \ N[z]. So no node of P is
adjacent to x and hence no node of P is of type t3, sl, s2, dc w.r.t. (H,z) nor a pseudo-twin
of z1,x9,2 or y wr.t. (H,z). By Theorem 4.3, no node of G is of type sl w.r.t (H,z). If
k =1, then, by Lemma 4.1, p; is either of type crosspath w.r.t. (H,z) not adjacent to = or
of type dd w.r.t. (H,x). So P is either of type A or D w.r.t. (H,z). So assume that k > 1.

By Lemma 4.1, p; and py, are of type p w.r.t. (H,z). Note that the only nodes of H that
may have a neighbor in P\ {p1,pr} are x1,x2,y . Also p; has a neighbor in H; \ {z1,y} and
pk has a neighbor in Hs \ {z2,y}.

Claim 1: At most one of the sets {x1,z2} or {y} may have a neighbor in P\ {p1,pr}-

Proof of Claim 1: Assume not and let P’ be a shortest subpath of P\ {p1,pr} with the
property that one endnode of P’ is adjacent to y and the other endnode of P’ is adjacent to
a node of {z1,z2}. W.lo.g. z; is adjacent to an endnode of P’ . Then H; U P’ Uz induces a
3PC(x1,y). This completes the proof of Claim 1.

Claim 2: No node of {x1,x2} has a neighbor in P\ {p1,pr}-

Proof of Claim 2: Assume not. By symmetry, w.l.o.g we may assume that xo has a
neighbor in P\ {p1,pr}. Let p; be such a neighbor with lowest index. By Claim 1,
y does not have a neighbor in P \ {p1,pr}. Let R be the subpath of H; whose one
endnode is y, the other endnode is adjacent to p1, and no intermediate node of R is adjacent
to p1. Then HoURU{z,p1,...,p;} induces a 3PC(z2,y). This completes the proof of Claim 2.

So by Claim 2, no node of H \ y has a neighbor in P\ {p1,pr}. If N(y) N P = &, then
by Lemma 2.1, P is of type A. So we may assume that N(y) N P # @. Let p; (resp. p;) be
the node of N(y) N P with lowest (resp. highest) index. Let v; (resp. v2) be the neighbor of
p1 in Hy that is closest to 21 (resp. y). Let v} (resp. v}) be the neighbor of py in Hy that is
closest to xa (resp. y). Let H{ (resp. H)) be the xzjvi-subpath (resp. zov}-subpath) of H;
(resp. Hg). Let H' be the hole induced by Hj U Hj U P.

Claim 3: p; and pg are not of type pl.
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Proof of Claim 3: Suppose p; is of type pl. If vyy is not an edge, then Hy U {z,p1,...,p;}
induces a 3PC(v1,y). So v1y is an edge. Suppose i # j. Since there is no proper wheel and
p1 is of type pl, (H',y) must induce a bug. But then xz is its center-crosspath. So i = j.
Note that v} # y. If v] = yo, then (H',y) is either a proper wheel or a bug that has a
center-crosspath z. So v} # yo. But then H' Uy induces a 3PC(v1,p;). So p; is not of type
pl, and by symmetry neither is p,. This completes the proof of Claim 3.

By Claim 3 it suffices to consider the following two cases.

Case 1: At least one of {p1,pr} is of type p3.

Assume w.l.0.g. that pj is of type p3. If vo # y, then Hy U {x,p1,...,p;} contains a
3PC(p1,y). So ve =y.

Suppose that pg is not of type p2. So, by Claim 3, pg is of type p3. Then by symmetry
vh = y. If k = 2, then Hy U H, U P induces a 4-wheel with center p;. So k > 2. If
N(y) N (P\{p1,px}) = @, then H' Uy induces a 3PC(p1,px). So N(y) N (P \ {p1,px}) # 2.
Since there is no proper wheel, (H',y) is either a bug or a twin wheel. If (H',y) is a bug,
then x is its center-crosspath. So (H’,y) is a twin wheel and hence P is of type T.

So we may assume that pg is of type p2.

Suppose that p; is of type p3b. If N(y)N (P \p1) = &, then (H,p;1) is a bug and P\ p; is
its center-crosspath. So N(y) N (P \p1) # @. If k = 2, then either P is of type C5 or (H,p1)
is a bug with a center-crosspath ps. So k > 2. Since vy = y and N(y) N (P \ p1) # &, y has
at least two neighbors in H’. In particular, j > 2. Suppose |N(y) N H'| = 2. If j = 2, then
H{UH,U P induces a 3PC(p1p2y, viv4pi). So j > 2. But then H' Uy induces a 3PC(p1, pj).
So |N(y) N H'| > 2. Since there is no proper wheel and k& > 2, (H',y) must be a bug or a
twin wheel. If (H',y) is a bug, then z is its center-crosspath. So (H’,y) is a twin wheel, and
hence P is of type T.

So we may assume that p; is of type p3t. Suppose v = y. If k = 2, then P is of type
C4. So assume k > 2. Since (H',y) cannot be a proper wheel, (H',y) is a bug. But then
x is its center-crosspath. So we may assume that v}, # y. If p; is the unique neighbor of y
in P, then P is of type C3. So we may assume that j > 1. If p; is the unique neighbor of
y in P\ p1, then either H' Uy induces a 3PC(p1,p;) (if j > 2) or H] U Hy U P induces a
3PC(p1pay, vivhpy) (if 7 = 2). So y has at least three neighbors in H'. Since (H',y) is not a
proper wheel nor a bug that has a center-crosspath z, (H',y) is a twin wheel, and hence P
is of type T.

Case 2: p; and pg are both of type p2.

Suppose that p1,pg are not adjacent to y. So i # 1 and j # k. If i = j, then P is of type
Cl. Soi < j. If p;pj is an edge, then H'U{x,y} induces a 3PC(x1z2z, pip;y). So p;p; is not
an edge. If p;, p; are the only two neighbors of y in P, then H' Uy induces a 3PC(p;,p;). So
y has at least three neighbors in H’. Since (H',y) cannot be a proper wheel or a bug that
has a center-crosspath z, (H',y) is a twin wheel, and hence P is of type T.

Suppose now w.l.o.g that p; is adjacent to y. Node p is not adjacent to y, since otherwise
(H',y) is a proper wheel. If N(y) N P = p;, then H U P induces a 3PC(vivap1, v]vhp).
Therefore, since (H',y) is not a proper wheel nor a bug that has a center-crosspath z, (H',y)
is a twin wheel and hence N(y) N P = {p1,p2}. So P is of type C2. O
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A path described in Lemma 5.1 is called a bridge of (H,x).

Proof of Theorem 4.5: Assume G does not have a star cutset. Then by Theorems 3.3, 4.3
and 4.4, G does not contain a proper wheel, a bug with center-crosspath nor a 3PC(A,-)
with a hat.

Let (H,z) be a bug and P = py, ..., py its ear. W.lo.g. N(px) N H = {y,y2}. Let H' be
the hole induced by (Hs \ y) U PUz. Then (H',y) is a bug and H; \ y its ear.

Claim 1: Ifu is a node of type p2 or p3 w.r.t. (H,x) such that {y} C N(u)N(HUz) C Hy,
then u does not have a neighbor in P. Furthermore, if N(u) N (H Uz) = {y}, then u does
not have a neighbor in P\ p.

Proof of Claim 1: Let uw be one of the types from the statement of the claim. If u has a
neighbor in P\ pg, then by Lemma 4.1 u must be of type sl or crosspath w.r.t. (H',y), and
hence u is a center-crosspath of (H’,y), a contradiction. So u does not have a neighbor in
P \pk.

Suppose that u is of type p2 w.r.t. (H,x) such that N(u) N H = {y,y1}. If v is adjacent
to pk, then Hy U P U{u,x} induces a 4-wheel with center y. So u cannot have a neighbor in
P.

Now suppose that u is of type p3 w.r.t. (H,z) such that {y} C N(u) N (H Uz) C H;.
Suppose u is adjacent to pg. If u is of type p3t w.r.t. (H,z), then (Hy \ y1) U P U {u,x}
induces a bug with center y, and node y; is its center-crosspath. Similarly, if u is of type p3b
w.r.t. (H,x) not adjacent to y;, then Hy U P U {u,x} induces a bug with center y with a
center-crosspath. So we may assume that u is of type p3b w.r.t. (H,z) and u is adjacent to
y1. Then (H,u) is a bug and py, its center-crosspath. This completes the proof of Claim 1.

Claim 2: There ezists a bridge of type D w.r.t. (H,z).

Proof of Claim 2: Assume not. Then by Lemma 5.1 there exists a bridge Q = q1, ..., q w.r.t.
(H,z) of type A, C or T. W.l.o.g. g1 has a neighbor in H; \ y and ¢; in Hy \ y. Note that the
only nodes of p1,pr,q1 and ¢; that may coincide are pg and ¢;.

Case 1: Q is of type A.

Then N(y) NQ = @. First suppose that no node of P is adjacent to or coincident with a
node of Q. If N(q1) N Hy = y1, then (H \ y) U P UQ Uz induces a 3PC(A, A) or a 4-wheel
with center xo. Otherwise, N(q;) N Hy = y2 and hence Hy U P U Q U {x,y2} induces a bug
with center y with a center-crosspath.

So a node of P is adjacent to or coincident with a node of (). Let p; be the node of P
with lowest index adjacent to a node of @), and let ¢; be the node of @ with lowest index
adjacent to p;.

Suppose that i < k. If N(q1) N Hy = 31, then Hy U {x,p1,...,0i,q1,-..,q;} induces a
3PC(y1,x). Otherwise N(q;) N Hy = yo. If j < I, then {p1,...,pi, q1, ..., q;} induces a center-
crosspath of bug (H,z). So j = [. But then ¢ and (H’,y) contradict Lemma 4.1. Therefore
i =k.

If N(q;)NHa = yo, then (H1\y1)UPU{x, q1, ..., q; } contains a 3PC(x,pg). So N(q1)NH; =
y1. If j =1, then Hy U {x, pg, q;} induces a 3PC(A, A) or a 4-wheel with center yo. So j < I.
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Type C5

Type T

Figure 11: Bridges of a bug (H,x).
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But then Hy U P U {z,qi,...,q;} induces a proper wheel with center y.

Case 2: Q is of type C or T.

Then y has a neighbor in ). First suppose that no node of P is adjacent to or coincident
with a node of Q). Let R be the chordless path from ¢; to y2 in (Ha \ {y,z2}) Uq, and let S
be the chordless path from ¢; to 21 in (Hy \ y) Ugi. Then RUSUQ U P U {x,y} induces a
proper wheel with center y.

So a node of P is adjacent to or coincident with a node of (). Let p; be the node of P with
lowest index adjacent to a node of (), and let g; be the node () with lowest index adjacent
to p;. Let H be the subpath of H; whose one endnode is z1, the other is adjacent to ¢; and
no intermediate node of H} is adjacent to ¢;. We now consider the following 2 cases.

Case 2.1: ¢; is of type p3 w.r.t. (H,x).

Then q; is adjacent to y. Suppose that i < k and j < [. If no node of g, ..., g; is adjacent
to y, then (Hy \y1)U{x,p1,....,0:,q1,-..,q; } contains a 3PC(x,q1). So y is adjacent to a node
of g2,...,q;, and hence @ is a bridge of type T. In particular, N(y) N Q = {q1,¢2,q3}. By
Claim 1, j > 3. But then H{ U {z,y,p1,....pi, q1, --.,qj } induces a proper wheel with center
y. So either ¢ = k or j = 1.

Suppose that ¢ = k. By Claim 1, j > 1. But then if j < I, HHUPU{z,y,q1, ..., ¢; } induces
a proper wheel with center y. So j = [. Note that since j > 1, pr and ¢; cannot coincide. If
q; is adjacent to y, then H] U PUQ U {z,y} induces a proper wheel with center y. So ¢ is
not adjacent to y, and hence it is of type p2 w.r.t. (H,x). But then Hy U {x, pg, ¢} induces
a 3PC(A,A) or a 4-wheel with center ys.

So i < k, and hence j = [. Suppose that ¢ is adjacent to y. Then H{UQU{z,y,p1,...,p;i}
induces a wheel with center y. This wheel must be a bug. In particular [ = 2, i.e. @ is
a bridge of type C4 or C5, and hence ¢; is of type p2 w.r.t. (H,z). Let P’ = p1,....pi, q-
Then P’ is an ear of (H,z) and ¢ is of type p3 w.r.t. (H,x) adjacent to y and a node of P,
contradicting Claim 1. So ¢; cannot be adjacent to y. But then |N(y) N Q| =1 or 3, and
hence H{ UQ U {z,y,p1,...,p;} induces a 3PC(qy,x) or a proper wheel with center y.

Case 2.2: g1 is of type p2 w.r.t. (H,x).

First suppose that g; is not adjacent to y. Suppose that ¢ < k and j < [. If no node
of ga,...,q; is adjacent to y, then {pi,...,p;,q1,...,q;} induces a center-crosspath of (H,zx).
So a node of ¢, ...,q; is adjacent to y. If y has a unique neighbor in g¢s, ...,q;, then Hj U
{z,y,p1,...,0i,q1, ..., q; } induces a 3PC(z,-). So y has more than one neighbor in ¢, ..., g;.
In particular, ) is a bridge of type T. By Claim 1 y has three neighbors in g, ..., ¢; and hence
H{U{z,y,p1,...,pi,q1,...,¢; } induces a proper wheel with center y. Therefore, either i = k
or j =1I.

Suppose that ¢ = k and j < I. If nonode of ¢y, ..., ¢; is adjacent to y, then HU{py, q1, ..., q; }
induces a 3PC(A, A). So anode of ga, ..., g; is adjacent to y. So H{UPU{z, g1, ...,q; } induces
a wheel with center y. This wheel must be a bug. But then H; \ (H] Uy) is a center-crosspath
of this bug.

Suppose that ¢ = k and j = [. Then p; and ¢; do not coincide. If g; is not adjacent to
y, then ¢ is of type p2 w.r.t. (H,z) and hence Hy U {x,pk,q} induces a 3PC(A,A) or a
4-wheel with center y2. So ¢; is adjacent to y. Then H{ UPUQU {x,y} induces a wheel with
center y, which must be a bug, and hence Hy \ (Hj Uy) is its center-crosspath.
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Therefore i < k and j = 1. If q; is of type p3 w.r.t. (H,x), then ¢ is adjacent to y and
hence (Hy \ y2) U {z,p1,...,0i,q} contains a 3PC(z,q;). So ¢ is of type p2 w.r.t. (H,x).
If ¢; is not adjacent to y, then py,...,p;, q is a center-crosspath of (H,x). So ¢ is adjacent
to y, and hence @ is a bridge of type C2. In particular, N(y) N Q = {q;,¢;—1}. But then
HiUQU{x,p1,...,p;} induces a bug with center y with a center-crosspath (namely the path
induced by H; \ (H{ Uy)).

Finally we may assume that ¢ is adjacent to y. So @ is a bridge of type C2, C4 or
C5. By Claim 1, ¢; does not have a neighbor in P and hence j > 1. Suppose that ¢; is
of type p3 w.r.t. (H,x). Then @ is a bridge of type C4 or C5, and in particular | = 2
and ¢ is adjacent to y. Note that j = | = 2, and hence H; U Q U {z1,p1,...,p;} induces
a proper wheel with center y. So ¢ must be of type p2 w.r.t. (H,z), and hence @ is a
bridge of type C2. In particular, ¢; is not adjacent to y and N(y) N Q@ = {q1,¢2}. But then
HyU{z,p1,....,pi,q1,-..,q; } induces a proper wheel with center y. This completes the proof
of Claim 2.

By Claim 2, let u be a bridge of (H,x) of type D. Then N(u) N (H Ux) ={y,y1,y2}. By
analogous argument applied to bug (H',y) and its ear H; \ y, (H',y) has a bridge of type
D, say v. So N(v) N (H'Uy) = {x,p1,22}. Node u must have a neighbor in P \ pg, else
Hy UPU{x,y2,u} contains a proper wheel with center y. By symmetry, v has a neighbor
in Hy \ 1. Since {z,y,u,v} cannot induce a 4-hole, uv is not an edge. By Lemma 4.1,
u is a pseudo-twin of px w.r.t. (H’,y), and hence it has two neighbors in P. But then
(Hy \ 1) U PU{u,v} contains a 4-wheel with center u. O

Proof of Theorem 4.6: Assume not. Choose a bug (H,z) and a type s2 node u so that |H| is
minimized. W.l.o.g. u is adjacent to z, x1, vy, yo. By Theorems 3.3 and 4.3 we may assume
that G does not contain a proper wheel nor a bug with a center-crosspath (and in particular
no bug with a type sl node). By Lemma 5.1, there is a direct connection P = py, ..., py from
Hy to Hy in G\ N[z] of type A, D, C or T w.r.t. (H,z). Let v; (resp. v2) be the node of
N(p1) N Hy (resp. N(pg) N Hg) that is closest to x1 (resp. z2). Let Hj (resp. H)) be the
subpath of Hy (resp. Hs) with endnodes x1 (resp. x2) and vy (resp. vy). We now consider
the following cases.

Case 1: P is of type A w.r.t. (H,x).

Suppose that the node-attachment of P in H is y;. Suppose that N(u)N P = &. Then P
and u are crossing appendices of H, and since y;x1 cannot be an edge (otherwise there is a
4-hole), Lemma 2.2 is contradicted. So N(u) N P # &. Let p; be the node of N(u) N P with
lowest index. Then Hy U {p1, ..., p;, u} induces a 3PC(u,y1). So the node-attachment of P in
H is yy. But then H{ U P U {x,u,y,y2} induces a proper wheel with center w.

Case 2: P is type T w.r.t. (H,zx).

Let p;—1,pi,pi+1 be the neighbors of y in P. Let ¥; be the 3PC(xx1x2,y) induced by
Hy U HY U {pit1,...,pr} and Xy be the 3PC(zx122,y) induced by Hj U Hy U {p1,...,pi—1}-
Since u is strongly adjacent to X1, by Lemma 4.1, N(u) N {pit1,..., Pk} = {pi+1}. By Lemma
4.1 applied to o, N(u) N {p1,...,pi—1} = . Let H' be the hole induced by H] U H, U P.
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If up; ¢ E(G), then H' Uw induces a 3PC(x1,pit+1). So up; € E(G) and hence (H',u) is a
bug. If py is of type p3t, then ¢ + 1 = k and y9 is of type s1 w.r.t. (H',u), a contradiction.
Suppose that py is of type p3b w.r.t. (H,z). Then i +1 = k. Let H” be the hole contained
in (H\ y2) Upg. Then (H”,z) and u contradict our choice of (H,z) and u. So py is not of
type p3 w.r.t. (H,x), and hence it is of type p2 w.r.t. (H,x) not adjacent to y. But then
Hy \ (H% Uvy) induces a center-crosspath of bug (H', u).

Case 3: P is of type D w.r.t. (H,x).

So k = 1 and p; is a node of type dd w.r.t. (H,x). If up; is not an edge, then Hy U
{u,p1,y2} induces a 4-wheel with center y. So up; is an edge.

Since (H,u) is a bug and G does not have a star cutset, by Lemma 5.1 there is a path
Q=aq,..,q of type A, D, Cor T w.rt. (H,u). W.lLo.g. ¢ has a neighbor in Hy \ {z1,y}
and ¢ in Hs \ {y2,y}. Note that x is of type s2 w.r.t. (H,u). By symmetry and Cases 1 and
2 applied to (H,u) and @, path @ cannot be of type A or T w.r.t. (H,u).

Suppose that @ is of type D w.r.t. (H,u). If xq; is not an edge, then Hy U {x,x2,q1}
induces a 4-wheel with center z1. So xq; is an edge. Since {q1,p1,2,y} cannot induce a
4-hole, p1q; is not an edge. But then H] U {q1,p1,x,u} induces a 4-wheel with center x;. So
Q@ must be of type C w.r.t. (H,u).

Note that p; cannot be coincident with a node of ). Let H” be the hole induced by
(H\y)Up;. By Lemma 5.1 applied to (H”,u) and @, no node of @\ {¢1,¢;} can be adjacent
to p1. Let Ry (resp. Rs) be the subpath of Hy (resp. Hy) whose one endnode is y, the other
endnode of R; (resp. Ry) is adjacent to ¢; (resp. ¢;), and no intermediate node of Ry (resp.
Rs) is adjacent to ¢p (resp. q).

Suppose N(z) N Q = @. Suppose that ¢ has a neighbor in Hy \ 2. Then ¢; must in
fact have a neighbor in Hs \ {x2,y,y2}, and hence @ is a direct connection from H; to Hs in
G \ N|z], and hence by Lemma 5.1 applied to (H,z) and @, nodes 1 and z3 do not have a
neighbor in @ \ {q1,q}. Since x1 does not have a neighbor in @ \ {q1,q}, and Q is of type
C w.r.t. (H,u), @ must be of type C3, C4 or C5 w.r.t. (H,u). Suppose that @ is of type
C4 or C5 w.r.t. (H,u). Since we are assuming that ¢; has a neighbor in Hs \ z3, it follows
that ¢; is of type p3 w.r.t. (H,u) and hence ¢; is of type p2 w.r.t. (H,u), and both ¢; and
q; are adjacent to x1. But then (H,z) and @ contradict Lemma 5.1. Therefore @) must be of
type C3 w.r.t. (H,u). If g is of type p3t w.r.t. (H,u), then (H,z) and @ contradict Lemma
5.1. So ¢ is of type p2 w.r.t. (H,u) and ¢ is of type p3t w.r.t. (H,u) adjacent to x;. But
then by Lemma 5.1 applied to (H,z) and @, @ is of type C3 w.r.t. (H,x), ¢1 is of type p3t
w.r.t. (H,z) and ¢; is adjacent to y. But then {x1,y,z, ¢} induces a 4-hole. So ¢; does not
have a neighbor in Hs \ x2 and hence @) must be of type C2, C4 or C5 w.r.t. (H,u) and
N(q) N H = {x1,z2}. But then Q U Ry U {x1,x9,x} is a proper wheel with center z;. So
N(z)NnQ # 2.

Suppose that @ is of type C1 or C3 w.r.t. (H,u). Let g; be the neighbor of z; in
(). Suppose that z has a unique neighbor in Q. If ¢; is not adjacent to both x and v,
then @ U Ry U Ry Uz induces a 3PC(y,-). So ¢ is adjacent to both x and y. If i < [, then
HoyU{z1,x,q1,...,q;} induces a 4-wheel with center x. So ¢ = [, and hence ¢; is of type p3t w.r.t.
(H,u) (i.e. ¢ is adjacent to x1,z9 and the neighbor of 25 in Hy). But then Hs U {q;, x1,x}
induces a 4-wheel with center zy. Therefore |N(z) N Q| > 2. If N(x) N {q,...,¢:} # &, then
R1U{q,...,qi,r1,u,z} induces a proper wheel with center z. So N(x)N{q1,...,q;} = &, and
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hence |N(x) N {qi,...,qi}| > 2, But then (R2 \ v) U{q, ..., q, z1,u,x} induces a proper wheel
with center x.

So @ is of type C2, C4 or C5 w.r.t. (H,u). Suppose N(q)NH = {z1,z2}. If N(z)NQ # q,
then Q U Ry U Ry Uz induces a proper wheel with center . So N(x) N Q = ¢;. Note that p;
is not adjacent to g, else {p1, q;, z,y} induces a 4-hole. But then Q U {x1,x,u,p1} U (R \ y)
contains a proper wheel with center z1. So N(q;)NH # {x1,x2}, and hence ¢; has a neighbor
in Hy \ {x2,y} and ¢; is of type p2 w.r.t. (H,u) adjacent to x1. Let ¢; be the neighbor of
x in @ with lowest index. Note that p; cannot be adjacent to qi, else {p1,q1,21,u} induces
a 4-hole. Also p; cannot be adjacent to ¢;, else {p1,¢;, x,u} induces a 4-hole. But then
{q1, -+, i, x1,z,u,p1} U (Ry \ y) induces a proper wheel with center x;.

Case 4: P is of type C w.r.t. (H,zx).

Suppose that P is either of type C1 or C3. Let p; be the neighbor of y in P. Let X
be the 3PC(z1x2x,p;) contained in H U P U x. Note that p; cannot be adjacent to z1, else
{z1,z,y,p;} induces a 4-hole. Similarly p; is not adjacent to z9. In particular ¥ is not a bug,.
But then since node u is strongly adjacent to 3, Lemma 4.1 is contradicted. So P is of type
C2, C4 or C5 w.r.t. (H,x).

Suppose that N(p1) N H = {y,y1} and py has a neighbor in Hs \ {y,y2}. Let R be the
subpath of Hj \ y whose one endnode is ys, the other endnode of R is adjacent to pi, and
no intermediate node of R is adjacent to py (note that possibly R = y2). If N(u) N P = &,
then H; U RU P U w induces a proper wheel with center y. So N(u) N P # &. Let p; be
the node of N(u) N P with lowest index. If i > 1, then Hy U {u,p1,...,p;} induces a 4-wheel
with center y. So ¢ = 1. If p; is the unique neighbor of w in P, then P U R U {y,u} induces
a 4-wheel with center y. So |[N(u) N P| > 2. Let H' be the hole induced by Hj U Hj U P.
Since (H',u) cannot be a proper wheel and y; # x1, (H',u) must be a bug. In particular,
N(u) N P = {p1,p2}. Suppose that py is of type p3b w.r.t. (H,z). Then k = 2. Let H” be
the hole contained in (H \ y2) Upg. Then (H”,z) and u contradict our choice of (H,z) and
u. So pg is not of type p3b w.r.t. (H,x) and hence it is of type p2 or p3t w.r.t. (H,x). But
then R is the center-crosspath of (H', u).

So p1 has a neighbor in Hy \ {y,y1} and N(px) N H = {y,y2}. If N(u) N P = &, then
H{UPU{u,y,y2} induces a 4-wheel with center y. So N(u) N P # @&. Let H' be the hole
induced by H{ U H, U P. Since (H',u) cannot be a proper wheel and yy # x2, (H',u) must
be a bug. So N(u) N P = {pg}.

Since (H,u) is a bug, and G has no star cutset, and x is a node of type s2 w.r.t. (H,u),
by Lemma 5.1 and by symmetry, there is a path Q = ¢y, ..., q of type C2, C4 or C5 w.r.t.
(H,u), such that N(g) N H = {x1,22}, N(z) N Q = {q}, ¢1 has a neighbor in Hy \ {z1,2]}
(where 2} is the neighbor of x; in H;) and no neighbor in Hy \ y. Note that since p; is of
type p2 or p3 w.r.t. (H,x), p1 has a neighbor in H; \ {z1,y}. Similarly, ¢g; has a neighbor
in Hy \ {x1,y}. Let R be the shortest path from ¢; to px in PUQ U (Hy \ {z1,y}). Then
RU (Hz \ y) U {z,u} induces a 3PC(qza2z, prysu). O

6 Attachments

In the section we use the following notation. Let ¥ = 3PC/(z12923,y). The three paths of 3
are denoted Py, y, Pr,y and Py, (where P,,, is the path that contains ;). For i =1,2,3, we
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denote the neighbor of y (resp. z;) in Py, by y; (resp. z}). For 4,5 € {1,2,3}, i # j, let H;;
be the hole induced by Py, U ijy.

Lemma 6.1 Let G be a 4-hole-free odd-signable graph that does not have a star cutset. Let
u be a type pl node w.r.t. ¥ adjacent to x1. Let P = py,...,pr be a chordless path in G \ ¥
such that py is adjacent to w, px has a neighbor in ¥\ {x1, 2,23}, no node of P\ {p1} is
adjacent to u and no node of P\ {px} has a neighbor in 2. Then py is one of the following

types:
(1) pr is of type p2 with neighbors in Py, ,,.
(i1) pr is of type pl adjacent to x.
(i) py is of type d and it has no neighbor in Py, \ {y}.

(iv) pi is adjacent to x1 and it is either of type p3 or d, or it is a pseudo-twin of w1, xo, T3
ory w.r.t. X, or it is a crosspath w.r.t. ¥ adjacent to x1,x} and a node of {y2,y3}.

Proof: By Theorems 3.3, 4.3, 4.5 and 4.6 we may assume that G does not contain a proper
wheel, a bug with a center-crosspath, a bug with an ear nor a 3PC(A,-) with a type sl or
s2 node. Since py has a neighbor in ¥\ {21, 22, z3}, px cannot be of type t2 nor t3 w.r.t. X.
So, for the node pg, it sufices to examine the following remaining possibilities of Lemma 4.1.

Case 1: pyg is of type pl w.r.t. X.
Let v be the node of N(px) N X. Note that v ¢ {z1,z9,23}. If v # 2/, then YUP Uu
contains a 3PC(x1,v). So v = ) and hence (ii) holds.

Case 2: py is of type p2 w.r.t. 2.

If N(pi) C Py,y, then (i) holds. So w.l.o.g. assume that N(py) C P,y If 21y is not an
edge, then Hog U P U w induces a 3PC(z1x923,A) or a 4-wheel with center xs. So x1y is an
edge. But then u, P is either a center-crosspath or an ear of bug .

Case 3: py is of type p3 w.r.t. 2.
If prxy is not an edge, then XU PUwu contais a 3PC(x1,pg). So prx1 is an edge and hence
(iv) holds.

Case 4: py; is of type crosspath w.r.t X.

Let v (resp. v1v2) be the node-attachment (resp. edge-attachment) of py in an appropriate
hole of ¥. Note that since there is no bug with a center-crosspath, v ¢ {x1, z2,23}. Suppose
v =1yi. W.Lo.g. vivg is an edge of P,,,. Then HosUPU{z1,u} induces a 3PC(x1x2x3, prv1v2)
or a 4-wheel with center x3. So v =y or v = y3. W.lLo.g. let v = y2. Suppose viv2 € Py,y.
Let R be the subpath of P,,, with one endnode x3 and the other endnode adjacent to py.
Then Py, URU P U{u,y>} induces a 3PC(x1,pi). So viva € Py,y. Let R be the subpath
of P, , with one endnode z; and the other endnode adjacent to py. If pyx1 is not an edge,
then (Pp,y \ y) URU P Uwu induces a 3PC(z1,pk). So prx; is an edge, and hence (iv) holds.

Case 5: p; is a pseudo-twin of x1, x9 or x3 w.r.t. 2.
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Suppose that py, is not adjacent to z1. Then p; has two adjacent neighbors in P, ,. Let R
be the subpath of P,,, with one endnode x; and the other endnode is adjacent to py. Then
PURU{u,xs} induces a 3PC(x1,pg). So pi is adjacent to x1, and hence (iv) holds.

Case 6: pyi is of type d w.r.t. 3, or it is a pseudo-twin of y w.r.t. 3.

W.lo.g. pi has a neighbor in Py, \ y. If ppx1 is not an edge and p;, has a neighbor in
Py y\y, then (X\ Py,,) UP Uu contains a 3PC(x1, px). So either pyx; is an edge and hence
(iv) holds, or p; does not have a neighbor in P, \ y and hence (iii) holds. O

Lemma 6.2 Let G be a 4-hole-free odd-signable graph that does not have a star cutset. Let
u be a type t2 node w.r.t. 3 adjacent to xo and xr3. Let P = pq,...,pr be a chordless path in
G\ X such that p is adjacent to u, py has a neighbor in ¥\ {z1,z2,x3}, no node of P\ {p1}
is adjacent to u, and no node of P\ {px} has a neighbor in X.. Then py, is one of the following

types:
(1) pr is of type p2 w.r.t. ¥ and its neighbors in ¥ are contained in Py .

(ii) w3y is an edge and py is of type pl w.r.t. 3 adjacent to b, or xoy is an edge and py is
of type p1 w.r.t. ¥ adjacent to x%.

(iii) py is of type p3 w.r.t. X, and either pyro and x3y are edges, or pxxs and x2y are edges.
(iv) pi is of type d not adjacent to y1 and neither xoy nor xsy is an edge.

(v) pr is a pseudo-twin of x1, xo or x3 w.r.t. .

Proof: By Theorems 3.3, 4.3 and 4.6 we may assume that G does not contain a proper wheel,
a bug with a center-crosspath nor a 3PC(A,-) with a type sl or s2 node. Since p; has a
neighbor in ¥\ {z1, 22, 23}, pr cannot be of type t2 nor t3 w.r.t. X.

Claim 1: pg is not of type crosspath or a pseudo-twin of y w.r.t. 2.

Proof of Claim 1: Suppose that py is of type crosspath. Let v (resp. wvivy) be the node-
attachment (resp. edge-attachment) of pj in an appropriate hole of ¥. Suppose v = yj.
W.lo.g. {vi,v2} C Pyyy. Then Hog U P Uwu induces a 3PC(uxaxs, prviv2) or a 4-wheel with
center x3. So v # y;. W.lo.g. v = y3. Note that since pr cannot be a center-crosspath of
bug X, y3 # x3. Suppose viv is an edge of P, ,. Let R be the subpath of P, , with one
endnode z; and the other adjacent to pi. Then P,,, URUPU{u,ys} induces a 3PC(x2, ).
So vivg is an edge of P,,,. But then (P \ py) Uwu is the center-crosspath of the bug (Has, pi).
So pg is not of type crosspath w.r.t. 3.

Now suppose that pg is a pseudo-twin of y w.r.t. 3. Then either pizs or pirs is not an
edge. W.lLo.g. prs is not an edge. But then (X \ P,,,) U PUwu contains a 3PC(x3,py). This
completes the proof of Claim 1.

Suppose that (v) does not hold. Then by Claim 1 and Lemma 4.1, py is of type p or d
w.r.t. 2.

Suppose that pg is of type d. Suppose that pry; € E(G). So w.lo.g. N(py) NE =
{y,y1,y2}. If 2oy ¢ E(G), then (Hyo \ y) U P Uu induces a 3PC(x2,px). So xay € E(G).
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But then (P, \ y) U P U {u, 22,23} induces a 4-wheel with center z3. So pry1 ¢ E(G).
Suppose that one of {zoy, 3y} is an edge (note that by definition of 3PC(A,-), at most one
of {2y, 3y} can be an edge). W.l.o.g. xoy € E(G). But then Hyjs U P U {u,x3} induces a
proper wheel with center zs. So no one {x2y, z3y} is an edge, and hence (iv) holds.

Suppose that py is of type pl. Let v be the neighbor of pi in ¥. Note that v ¢ {x1, x9, x3}.
If v € Py, then Hi2UPUuw induces a 3PC(x2,v). Sov ¢ P,,,. W.lo.g. v € Pp,,. If v # ),
then His U P Uwu induces a 3PC/(z2,v). So v = x4. If 23y is not an edge, then Hio U P U x3
induces a 4-wheel with center x2. So z3y is an edge and hence (ii) holds.

Suppose that py is of type p2. Let v1,v9 be the nodes of N(pg) N X. Suppose that vivy
is not an edge of P,,,. W.lo.g. wvivg is an edge of P,,,. Then Hs3 U P U u induces a
3PC(uxox3, prv1v2) or a 4-wheel with center x2. So vivy is an edge of P, ,, and hence (i)
holds.

Suppose that py, is of type p3. If N(py)NE C Py, then Hi2UPUu contains a 3PC(x2, p).
So w.lo.g. assume N(p) N X C Py,y. If pras is not an edge, then Hip U P U u contains a
3PC(z2,pk). So prprs is an edge. If x3y is not an edge, then Hijo U P U {u,x3} contains a
4-wheel with center z5. So z3y is an edge and hence (iii) holds. a

Lemma 6.3 Let G be a 4-hole-free odd-signable graph that does not have a star cutset. Let
u be a type t3 node w.r.t. X. Let P = pq,...,pr be a chordless path in G\ ¥ such that py is
adjacent to u, px has a neighbor in ¥\ {x1, x2,x3}, no node of P\ {p1} is adjacent to u, and
no node of P\ {px} has a neighbor in X. Then py is one of the following types:

(i) pi is of type p1, p3t, or it is a pseudo-twin of x1, xo or xz w.r.t. X.

(ii) px is a pseudo-twin of y w.r.t. 3. Furthermore, if N(px) N2 # {y,y1,y2,y3}, then py
is adjacent to a node of {x1,x9,x3} and X is not a bug.

(i) py is of type p3b adjacent to x;, for some i € {1,2,3}, but not to z.

Proof: By Theorems 3.3, 4.3 and 4.6 we may assume that G does not contain a proper wheel
nor a bug with a center-crosspath nor a 3PC(A,-) with a type sl or s2 node. Since p; has a
neighbor in ¥\ {z1, 22,23}, pr cannot be of type t2 nor t3 w.r.t. X.

Claim 1: pg is not of type p2, crosspath nor d w.r.t. 3.

Proof of Claim 1: Suppose that py is of type p2. W.lo.g. N(py) N¥ C P,,,. But then
Hs3 U P Uw induces a 3PC(A, zox3u) or a 4-wheel with center x3. So py is not of type p2
w.r.t. 2.

Suppose that pi is of type crosspath. W.lo.g (Has,pr) is a bug and yo is the node-
attachment of py in Ha3. Note that since pi cannot be a center-crosspath of X, yo # xo. But
then (P \ px) Uwu is a center-crosspath of (Has,pr). So pi is not of type crosspath w.r.t. 3.

Finally suppose that py is of type d w.r.t. ¥. W.lLo.g. N(px) N2 = {y,y1,y3}. But then
Hs3 U P Uw induces a 3PC(uxsxs, pryys) or a 4-wheel with center x3. This completes the
proof of Claim 1.

Assume (i) does not hold. Then by Claim 1 and Lemma 4.1, py is of type p3b or it is a
pseudo-twin of y w.r.t. ¥. Suppose first that pj, is of type p3b. W.Lo.g. N(pp)N3E C Py, If
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x3 is not the node-attachment of py in Hag, then (P\ pg)Uu is a center-crosspath of (Hag, pg).
So x3 is the node-attachment of py in Has, and hence (iii) holds.

Suppose now that py is a pseudo-twin of y w.r.t. 3. We may assume that N(px) N #
{y,y1,y2,y3}, else (ii) holds. W.lo.g. N(px) N X = {y,v1,y3,v}, where v is a node of
Proy \{y,y2}. If v # 29, then (P \ py) Uu is a center-crosspath of (Has,py). So v = 2. Since
pk is a pseudo-twin of y w.r.t. X, [N(pg) N{x1, 22,23} < 1 and hence ¥ cannot be a bug, so
(ii) holds. O

7 Connected diamonds

In this section we prove Theorem 1.5. Recall the definition of a connected diamond (%, Q)
from Section 1. Note that if Q = ¢, ..., gk, then ¢; is of type t2 w.r.t. X and g is of type p2
ord w.r.t. X.

Lemma 7.1 Let G be a 4-hole-free odd-signable graph. If G contains a 3PC(A,-) with a
node of type dd, then either G has a star cutset or G contains a connected diamond.

Proof: Assume not. By Theorems 3.3, 4.3 and 4.6, G does not contain a proper wheel nor a
bug with a center-crosspath nor a 3PC(A,-) with a type sl or s2 node. Let u be a type dd
node w.r.t. a ¥ = 3PC(z12923,y) of G, such that w.lo.g. N(u)NE = {y,y1,y3}. So 21y
and x3y are not edges.

Since S = NJy] \ {u,y2} is not a star cutset separating u from X \ S, there is a direct
connection P = pq, ..., pg from u to X in G\ S. So p; is adjacent to u and py has a neighbor
in ¥\ S. Note that the only nodes of ¥ that may have a neighbor in P \ pj are y; and ys.
For i,j € {1,2,3}, i # j, let H;; be the hole induced by Py, U P, . By Lemma 4.1 and since
Pk is not adjacent to y, pi is of type p, t2, t3, crosspath or it is a pseudo-twin of 1, x2 or x3
w.r.t. X.

Claim 1: At most one of y;,ys has a neighbor in P\ pg.

Proof of Claim 1: Suppose both y1,y3 have a neighbor in P\ p;. Let R be a shortest subpath
of P\ p; with one endnode adjacent to y; and the other to y3. Then Hjz U R induces a
3PC(y1,y3). This completes the proof of Claim 1.

We now consider the following cases.
Case 1: p;, does not have a neighbor in P,,, \ Z2.

Case 1.1: No node of {y1,ys} has a neighbor in P\ p.
Then no node of ¥ has a neighbor in P \ py.

Case 1.1.1: pg is of type crosspath w.r.t. X.

Since py cannot be a center-crosspath of bug X, pj is not adjacent to xo. W.lo.g. N(pg)N
P,y = y1 and py has two adjacent neighbors in P,,,. If k& = 1, then (Hi3\ y) U {u,p:1}
induces a 4-wheel with center p;. So & > 1. Let R be the shortest path from u to pg in
(Pypyy \ y) U{u,pr}. Then P U RU {y;} induces a 3PC(u, p).
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Case 1.1.2: pg is of type t2, t3 or it is a pseudo-twin of x1, x2 or x3 w.r.t. 3.

If pi is of type t2 adjacent to x; and x3, then ¥ U P U u induces a connected diamond.
Note that since p;, does not have a neighbor in P,,, \ 22, p; cannot be a pseudo-twin of x5
w.r.t. . So w.lo.g. pg is adjacent to z; and x5 and N(pg) N (X \ {z1,22}) C Pryy. Recall
that pj cannot be adjacent to y. But then His U P Uw induces a 3PC(uyyi, 122Dk )-

Case 1.1.3: pg is of type p w.r.t. X.

Suppose py is of type pl and let p’ be the neighbor of p in X\ S. If p’ = x5, then
YU PUu induces a connected diamond (¥, Q)), where ¥’ = 3PC(yyiu, z2) and Q = P,y \ v.
So p' # x9. But then (Hisz \ y) U P Uw induces a 3PC(u,p’). So py is not of type pl. So the
neighbors of py in ¥\ S lie in either P,y or Py,,. W.Lo.g. N(pr) NYE C Pyyy. If py is of type
p2, then Ha3 U P U wu induces either a 3PC(uyys, A) or a 4-wheel with center y3. So py is of
type p3. If k = 1, then (Hy3 \ y) U {u,p;} induces a 4-wheel with center p;. So k > 1. But
then (Hi3 \ y) U P Uw contains a 3PC'(u, pg,).

Case 1.2: A node of {y1,y3} has a neighbor in P\ p.
By Claim 1, exactly one of {y1,y3} has a neighbor in P \ pi. Note that k& > 1.

Case 1.2.1: pyg is of type p.

If py is of type pl adjacent to o, then XU P contains a 3PC(x2,y1) (if y1 has a neighbor
in P\ pg) or a 3PC(xg,y3) (if y3 has a neighbor in P \ px). So by symmetry w.l.o.g.
N(pr) NE C Py \ y. Let p’ (resp. p”) be the node of N(py) N P,y closest to y3 (resp. x3).
Note that if pj, is of type pl, then p’ € P,y \ {y,y3}. Let R be the subpath of P,,, between
p"” and z3. Let H be the hole induced by P,,, UP URU u.

Suppose N(y3) N (P \ px) # @. Since (H,ys3) is not a proper wheel, |[N(y3) N P| =1 and
p’ys3 is not an edge. Let p; be the unique neighbor of y3 in P. Note that i < k. If p; is of
type pl, then Hos U P contains a 3PC(ys,p’). So py is of type p2 or p3. If N(y3) N P = py,
then Py, UPURU {ys,u} induces a 4-wheel with center u. So ¢ > 1. If py is of type p2,
then (H,ys3) is a bug and Py, \ (RU{y, y3}) is its center-crosspath. So py, is of type p3. But
then Has U {p;, ..., pr} contains a 3PC(ys, pk).

So N(ys) N (P \ px) = @. Hence N(y1) N (P \ px) # @. Since (H,y;) is not a proper
wheel, y; has a unique neighbor, say p;, in P. Let R’ be the subpath of P,,, between y3 and
p. Ifi =1, then PU R U{y,y1,u} induces a 4-wheel with center u. So ¢ > 1. But then
P U R U{y1,u} induces a 3PC(u,p;).

Case 1.2.2: pyg is of type t2, t3 or it is a pseudo-twin of x1, x2 or z3 w.r.t. 2.

Suppose pi is of type t2 adjacent to z; and z3. By symmetry w.l.o.g. N(y3) NP # @&
and N(y1) NP = @. Let H be the hole induced by P,,, U P U {x3,u}. Since (H,y3) is not a
proper wheel, z3ys is not an edge. But then Ho3 U P contains a 3PC(z3,y3). So pg is not of
type t2 adjacent to x1 and x3.

Recall that pi has no neighbor in P,, \ 2. So by symmetry w.l.o.g. py is adjacent to
both z; and z9 and N(pg) N (X \ {z1,22}) C Ppyy \y. If N(y1) NP = @, then Hia UPUu
induces a 3PC(uyyi, x1x2pg). So N(y1) N (P \ pr) # @ and N(y3) N (P \ px) = <. Let H be
the hole induced by P,,, UPUu. Since (H,y;) is not a proper wheel y; has unique neighbor,
say p;, in P.

Suppose py, is of type t3. If ¢ = 1, then P,,, U P U {y;,u} induces a 4-wheel with center
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w. So ¢ > 1. But then (P, \ y) U P U{y1,u} induces a 3PC(p;,u). So py is not of type t3.
Suppose pg is of type t2. If yxo is an edge, then since there is no 4-hole y;x1 is not an
edge. But then Py, U {p;,...,px, y1, 22,21} induces a 4-wheel center x2. So yz, is not an
edge. But then Has U {p;, ..., pk,y1} induces a 3PC(y, z2).
So pi is a pseudo-twin of z3 w.r.t. X. Let R be the shortest path from p; to y3 in
PryUpg. If i =1, then PURU {y1,y,u} induces a 4-wheel with center u. So i > 1. But
then P U R U {y1,u} induces a 3PC(u, p;).

Case 1.2.3: pg is of type crosspath w.r.t. X.

Since pj, cannot be a center-crosspath of bug Y, pi is not adjacent to xs.

W.lo.g. N(px) N Ppyy = y3 and N(pg) N (X \ y3) € Pypy \ y. Let p' (resp. p”) be the
node of N(py) N Py, closest to y; (resp. x1). Let R’ (resp. R”) be the y;p’-subpath (resp.
x1p”-subpath) of P,,,. If N(y3) N (P \pg) # &, then PU P,,,, U R"U{u,ys} induces a proper
wheel with center y3. So N(y3) N (P \px) =@ and N(y1) N (P \ px) # &. Let p; be the node
of N(y1)N P with highest index. If i = 1, then PU{y,y1,ys,u} induces a 4-wheel with center
u. Soi > 1. Let H be the hole induced by R” U Py, U P Uw. If p’ = yi, then (H,y1) is a
proper wheel. So p’ # y1, and hence (H,y1) is a bug. But then R’ \ y; is a center-crosspath
of (H,y1).

Case 2: p;, has a neighbor in Py, \ z2.

Case 2.1: py is of type p w.r.t. X.

In this case N(pr) N3 C Pryy.

Suppose that {y1,y3} have no neighbor in P\ pg. If py is of type pl, then XU P induces a
connected diamond (X', P, \y) (where ¥’ is the 3PC(y1yu, -) induced by Py, U Py, UP). If
pr is of type p2, then Hio U P Uw induces a 3PC(uyy;, A). So py is of type p3. Let R be the
chordless path from y to 3 in P,,,Upy, that contains p. Then P, ,UP,,,UPURUu induces
a connected diamond (X', Py, \ y) (where ¥’ is the 3PC(y1yu, p) induced by P, URU P).
So one of {y1,y3} has a neighbor in P\ pg.

Therefore £ > 1. By Claim 1, w.l.o.g. N(y3) N (P \px) # @ and N(y1) N (P \ px) = 2.
Let R’ (resp. R") be the shortest path in P, U p; between y (resp. z2) and pi. Let H be
the hole induced by R'UPUw. Since (H,ys) is not a proper wheel, y3 has a unique neighbor,
say p;, in P. Note that i < k. If py is of type pl, then Hos U {p;, ..., pr } induces a 3PC(ys, -).
If py is of type p3, then R'U R" U Py, U {pi, ..., p } induces a 3PC(y3, px). So py is of type
p2. If i > 1, then (H,y3) is a bug and the path induced by (P, \ {y,y3}) U (R” \ px) is its
center-crosspath. So ¢ = 1. But then P,,, UPUR"U{ys,u} induces a 4-wheel with center w.

Case 2.2: pyg is of type t2, t3 or it is a pseudo-twin of x1, x9 or x3 w.r.t. X.

Then py, is a pseudo-twin of 25 w.r.t. X. Let ¥/ = 3PC(z1pgxs, y) obtained by substituting
pk into X. If no node of {y1,y3} has a neighbor in P\ pi, then ¥'U PUwu induces a connected
diamond (¥”, @), where ¥ = 3PC(y1yu, pr) and Q = Py, \ y. So w.l.o.g. y3 has a neighbor
in P\ pg. Let p; be the node of P with highest index adjacent to y3. Note that i < k. But
then (X' \ (Ppyy \ v)) U {pi, ..., pr} induces a 3PC(y3, pg)-

Case 2.3: py is of type crosspath w.r.t. X.
Suppose N (px) N Pryy = y2. W.lo.g. N(pr) N (X \ y2) € Ppyy \ vy and, in particular,
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(Has,pi) is a bug. If N(y3) N (P \ px) = @, then (P \ pr) Uu induces a center-crosspath
of (Ha3,pr). So N(ys) N (P \ px) # @ and consequently k& > 1. Let p’ (resp. p”) be the
neighbor of py in Py,, closest to y3 (resp. x3). Let R be the subpath of P,,, between p”
and x3. Let H be the hole induced by P U {u,y,ys}. Since (H,ys) is not a proper wheel,
y3 has a unique neighbor in P \ p; and p’ # y3. Let p; be the neighbor of y3 in P. If
i = 1, then P, URU P U {ys,u} induces a 4-wheel with center w. So i > 1. But then
(Ppy \y) UPURU {u,y3} induces a 3PC(u,p;). So N(pg) N Pryy # yo.

W.lo.g. N(px) N Pyyy = y3 and py, has two adjacent neighbors in P,,,. Let p’ (resp. p”)
be the node of N(pg) N Py, closest to ya (resp. x2). Let R’ (resp. R”) be the subpath of
P,y between y (resp. z2) and p (resp. p”). If k = 1, then P, , U R" U {p1,y3,u} induces
a 4-wheel with center u. So k > 1. If no node of {y1,y3} has a neighbor in P \ pg, then
(Ppy \y) UPUR"U{u,y3} induces a 3PC(u, p). So by Claim 1, exactly one of yi,ys has a
neighbor in P\ pg. Suppose y; has a neighbor in P\ p; and let p; be the node of N(y;) N P
with highest index. Then Hys U {p;,...,pr} induces a 3PC(y1,y3). So y; does not have a
neighbor in P\ py and hence N(y3) N (P \ px) # @. But then P U R’ U {u,y3} induces a
proper wheel with center ys. O

Lemma 7.2 Let G be a 4-hole-free odd-signable graph. If G contains a bug with a type dc
node, then G has a star cutset or G contains a connected diamond.

Proof: Assume not. By Lemma 5.1 every bug (H, z) has a bridge P. Choose a bug (H, z) with
a type dc node u, and a bridge P = py, ..., pr of (H,x) so that the length of P is minimized.
Let x1, x9, y be the neighbors of = in H such that ;x5 is an edge. Let Hy (resp. Hz) be the
sector of (H,x) with endnodes y and x1 (resp. z3). Let y1 (resp. y2) be the neighbor of y in
H; (resp. Hs). So u is adjacent to x,y and a node of {y1,y2}. W.l.o.g. p; has a neighbor in
Hy\ {z1,y} and py in Ha \ {z2,y}.

By Lemma 7.1 G does not contain a 3PC(A,-) with a type dd node, and hence P is not
a bridge of type D. Let H' be the hole of (H \ y) U P that contains P. If P is a bridge of
type C2, C4, C5 or T, then H' U {z,y} induces a union of a 3PC(x1222,y) and a type dd
node w.r.t. this 3PC, a contradiction.

Suppose that P is a bridge of type C3. W.l.o.g. p; is adjacent to y, i.e., py is of type p3t
w.r.t. (H,z). Note that since {z1,z,y,p1} cannot induce a 4-hole, p;x; is not an edge. But
then H' U {x,y} induces a 3PC(x12z22,p1) and y; is of type dd w.r.t. it, a contradiction.

Suppose that P is a bridge of type C1. Let p; be the unique neighbor of y in P. Note
that 1 < i < k. Let ¥ = 3PC(z129x,p;) induced by H' U{z,y}. W.Lo.g. u is adjacent to ys.
If w does not have a neighbor in P, then (H \ {y1,22}) U P U {x,u} contains a 4-wheel with
center y. So w has a neighbor in P. By Lemma 4.1 applied to ¥ and u, N(u) N P = {p;},
{pit1} or {pi—1}. Since G does not contain a 4-hole, N(u) N P = {p;}. Let H{ = H' N H;
and H) = H' N Hy. Let H” be the hole induced by Hy U H) U {p;,...,px}. Then (H" z) is
a bug, u is of type dc w.r.t. (H”,z) and P’ = pq,...,p;—1 is a bridge of (H”,z), and hence
(H",z), uw and P contradict our choice of (H,z), u and P.

Therefore P is a bridge of type A. W.lLo.g. N(p1) N H; = y; and py has two adjacent
neighbors in Hj \ y. First suppose that u is adjacent to yo. If u does not have a neighbor in
P, then (H \ z2) U P U {u,z} contains a 4-wheel with center y. So u has a neighbor in P,
and let p; be such a neighbor with highest index. Since {y,y1,u,p1} cannot induce a 4-hole,
i > 1. But then H U {u,p;,...,pr} induces a 3PC(A, A) or a 4-wheel with center ys.
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So u must be adjacent to y;. If u has a neighbor in P, then (Hs \ y2) U P U {u,y1, 2}
contains a proper wheel with center u. So w does not have a neighbor in P. But then
Hs U PU{x,y1} induces a 3PC(A,y), and u is of type dd w.r.t. it, a contradiction. O

Lemma 7.3 Let G be a 4-hole-free odd-signable graph. If G contains a 3PC(A,-) with a
node of type d, then either G has a star cutset or G contains a connected diamond.

Proof: Follows from Lemmas 7.1 and 7.2. a

For a twin wheel (H,z) we use the following notation. Let x, z2, x3 be the neighbors of
x in H such that z1z5 and xzoxs are edges. Let o) (resp. x%) be the neighbor of 21 (resp. z3)
in H\ z2. Anodeu e V(G)\ (V(H)U{z}) is said to be of type d w.r.t. (H,z) if uz is an
edge and N(u) N H is either {z1,2}} or {x3, 25}

Lemma 7.4 Let G be a 4-hole-free odd-signable graph. If G contains a twin wheel with a
type d node, then either G contains a star cutset or G contains a connected diamond.

Proof: Assume not. By Theorem 3.3, Theorem 4.3 and Lemma 7.3, G does not contain a
proper wheel, a bug with a center-crosspath, nor a 3PC(A,-) with a type d node. Let u be
a type d node w.r.t. a twin wheel (H,z) in G. Let x1, 9, z3 be the neighbors of x in H such
that x129 and xoxs are edges. Let Py = x3,p1,..., Pk, €1 be the long sector of (H,x). Let
P=p, .. p.

Note that since there is no 4-hole, kK > 1. W.l.o.g. N(u)NH = {z3,p1}. Since S = N|z]\x2
is not a star cutset of G separating xo from P, there exists a direct connection Q) = q1, ...,
from x5 to P in G\ S. Let p; (resp. p;y) be the node of N(g;) N P with lowest (resp. highest)
index. Note that x; and x3 are the only nodes of H that may have a neighbor in @ \ ¢.

Claim 1: Both u and x3 have a neighbor in Q.

Proof of Claim 1: N(u)NQ # &, else QU {x, x2, x3,u,p1, ..., p; } induces a proper wheel with
center z3. Now suppose N (z3)NQ = &. Let H' be the hole induced by QU {2, z3,p1, ..., D; }-
So (H',u) is a bug or a twin wheel. If (H’,u) is a bug, then x is a center-crosspath of (H’,u).
So (H',u) is a twin wheel, and hence i = 1 and N(u) N Q = ¢;. Since {u,z,x1,q} cannot
induce a 4-hole, x1¢q; is not an edge. Since {u,xs,z2,q} cannot induce a 4-hole, I > 1.
Suppose i’ = 1. If N(z1) N Q = &, then H U Q induces a 3PC(x3,p1). So N(z1) NQ # .
Let g5 be the node of N(x1) N Q with highest index. Then {z,x1,x3,p1,s, ..., i, u} induces
a 4-wheel with center u. So ¢’ > 1. But then {u,x1,x2, 3, q, pir, ..., Pk, ¢} induces a 4-wheel
with center x. So N(x3) N Q # &. This completes the proof of Claim 1.

Claim 2: N(z;)NQ = @.

Proof of Claim 2: Suppose z1 does have a neighbor in ). By Claim 1, v and z3 both have
neighbors in Q. Let g5 (resp. ¢;) be the node of Q with lowest index adjacent to x3 (resp.
u). If s <t, then {x,x9,23,u,q1,...,q:} induces a proper wheel with center x3. So s > t. In
particular, ¢ <[ and s > 1.

If 21 has a neighbor in @ \ ¢, then both 27 and u (since ¢ < [) have a neighbor in @ \ ¢
and hence (Q \ ¢;) UP U{x,u,x1} contains a 3PC(z1,u). So z1 does not have a neighbor in
Q \ q;, and hence N(z1) N Q = {q}.
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Let H' be the hole induced by Q U {x1,22}. Since H' U z3 cannot induce a 3PC(-, "),
(H',x3) is a wheel, and hence it is a twin wheel or a bug. Since s > 1, (H’, x3) must in fact
be a bug. But then z is of type d w.r.t. bug (H’, x3), a contradiction. This completes the
proof of Claim 2.

By Claim 1, let g5 (resp. ¢¢) be the node of @ with lowest index adjacent to x3 (resp. u).
If s =1, then {x,x9,x3,u,q1,...,q:} induces a proper wheel with center z3, a contradiction.
So s > 1. By Claim 2, the node set Q U {x1, z2, py, ..., px } induces a hole, say H'. Node z3
must have at least two neighbors in @Q, else H' U x3 induces a 3PC(z9,qs). So (H',z3) is a
wheel. By our assumption (H’, z3) cannot be a proper wheel, and since s > 1 it cannot be a
twin wheel, hence it is a bug where zo does not belong to the short sector of (H’,z3). But
then node z is of type d w.r.t. (H',z3), a contradiction. O

Proof of Theorem 1.5: Suppose not. By Theorems 3.3 and 4.3 and Lemmas 7.3 and 7.4
we may assume that G does not contain a proper wheel, a bug with a center-crosspath, a
3PC(A,-) with a node of type d, nor a twin wheel with a node of type d.

We may assume that G contains a diamond induced by, say, {u, v, a,b}, where ab ¢ E(G).
Let S = N[u] \ {a,b}. Since S cannot be a star cutset separating a from b, there is a direct
connection P = py,...,pr in G\ S from a to b. If v has a neighbor in P, then P U {a,b,u,v}
induces a proper wheel with center v. So N(v) N P = @. Let S’ = N[u] \ v. Since S” cannot
be a star cutset of G, there is direct connection @ = ¢y, ..., q from v to P. Let p; (resp. py)
be the node of N(g;) N P with lowest (resp. highest) index.

Suppose both a and b have a neighbor in @ \ ¢;. Let R be a shortest path between a and
b in the subgraph induced by (Q \ ¢;) U {a,b}. Then PU RU {a,b,u} induces a 3PC(a,b).
So one of a,b does not have a neighbor in @ \ ¢;. W.lo.g. N(b)N(Q\ ¢) = 2.

Claim 1: N(b)nQ = @.

Proof of Claim 1: Suppose not. So N(b) N @ = ¢;. Suppose | = 1. Since there is no 4-hole,
aq; is not an edge. Since P U {v,a,b, ¢ } cannot induce a proper wheel with center q;, i =7’
If i = k, then PU{a,b,u,v} induces a twin wheel with a node of type d. So i < k. But then
{p1,--sPisq1,a,b,u,v} induces a 4-wheel with center v. So [ > 1.

Suppose N(a) N Q = @. If i = k, then P U Q U {a,b,u,v} induces a bug with center b
with a node u of type de. So i < k. But then Q U {p1, ..., p;, a,b,v} induces a 3PC (v, q;). So
N(a)NQ # @.

Suppose a has a unique neighbor, say ¢;, in Q. If j = 1, then Q U {a, b, u, v} induces a 4-
wheel with center v. So j > 1. But then QU{a, b, v} induces a 3PC(v, ¢;). So |N(a)NQ| > 2.
Let H be the hole induced by @ U {v,b}. Since there is no proper wheel, (H,a) is either a
bug or a twin wheel. If (H,a) is a bug, then u is either its center-crosspath or a node of type
dc. So (H,a) is a twin wheel. But then w is a node of type d w.r.t. (H,a). This completes
the proof of Claim 1.

Suppose N(a) N Q = &. If i =i, then PUQ U{a,b,v} induces a 3PC(v,p;). So i’ > i.
If p;p;yr is an edge, then PUQ U {a, b, v} induces a 3PC(qp;pi,v) with a node of type dd. So
pipy is not an edge. If [ = 1, then P U {a,b,v,q1} induces a proper wheel with center ¢;. So
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[ > 1. But then QU {a,b,v,p1, ..., pi, P}, ..., px } induces a 3PC(v,q). So N(a) NQ # &.

Let H be the hole induced by Q U {b,v,p;,...,pr}. Note that since a has a neighbor in
@, it has at least two neighbors in H. Suppose |N(a) N H| = 2 and let v' be the neighbor
of ain H \ v. If vv' is an edge, then H U {a,u} induces a 4-wheel with center v. So vv’ is
not an edge. But then H U a induces a 3PC(v,v"). Therefore, since (H,a) cannot induce a
proper wheel, (H,a) is either a bug or a twin wheel. If (H,a) is a bug, then u is either its
center-crosspath or a node of type dc. So (H,a) is a twin wheel, and hence u is a node of
type d w.r.t. (H,a). O

8 2-joins and blocking sequences

In this section we consider an induced subgraph H of G that contains a 2-join H;|Hy. We
say that a 2-join H;|Hy extends to G if there exists a 2-join of G, Hj|Hj with H; C H and
Hy C H). We characterize the situation in which the 2-join of H does not extend to a 2-join
of G.

Definition 8.1 A blocking sequence for a 2-join Hy|Hs of an induced subgraph H of G is a
sequence of distinct nodes x1,...,x, in G\ H with the following properties:

(1) (i) Hi|Hs Uy is not a 2-join of HU x1,
(i) Hy U x,|Hs is not a 2-join of HU x,, and
(iii) if n > 1 then, fori=1,...,n—1, HiUx;|HoUx;11 is not a 2-join of HU{x;, x11}.

(2) z1,..., 2y is minimal w.r.t. property (1), in the sense that no sequence xj,, ...,z , with
{xj,...,zj,} C{z1,...,2n}, satisfies (1).

Blocking sequences for 2-joins were introduced in [11], where the following results are
obtained.

Let H be an induced subgraph of G with 2-join H;|Hy and special sets (A1, Ag, By, B).
In the following results we let S = z1,...,z, be a blocking sequence for the 2-join H;|Hs of
an induced subgraph H of G.

Remark 8.2 H;|HoUu is a 2-join of HUu if and only if N(u)NHy = 0, Ay or By. Similarly,
Hy UulHs is a 2-join of H Uw if and only if N(u) N Hy = (), Ay or Bs.

Lemma 8.3 Ifn > 1 then, for every node z;, j € {1,...,n—1}, N(z;) N Hy =0, Ay or Bs,
and for every node x;, j € {2,...,n}, N(z;) N Hy =0, A; or By.

Lemma 8.4 Assumen > 1. Nodes z;,z;y1, 1 < i <n—1, are not adjacent if and only if
N(l‘z) N Hy = Ay and N(xz'—i-l) NHy = A, or N(l‘z) N Hy = By and N(I‘Z‘_H) NH, = B;.

Theorem 8.5 Let H be an induced subgraph of a graph G that contains a 2-join Hy|Hy. The
2-join Hq1|Hy of H extends to a 2-join of G if and only if there exists no blocking sequence
for Hi|Hy in G.

Lemma 8.6 For 1 <i<mn, HHU{x1,...,x;—1}|HyU{xit1,..., 20} is a 2-join of HU (S \
{zi})-
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Lemma 8.7 If zjx, n > k > i+ 1 > 2, is an edge, then either N(z;) N Hy = Az and
N(zg) N Hy = Ay, or N(z;) N Hy = By and N(x) N Hy = B;.

Lemma 8.8 If x; is the node of lowest index adjacent to a node of Ha, then x1,...,x; is a
chordless path. Similarly, if x; is the node of highest index adjacent to a node of Hy, then
Tj,..., Ty 18 a chordless path.

Theorem 8.9 Let G be a graph and H an induced subgraph of G with a 2-join Hi|Hs and
special sets (A1, Ag, B1,Bg). Let H' be an induced subgraph of G with 2-join H{|Hy and
special sets (A}, Aa, By, Ba) such that Ay N A1 # 0 and By N By # 0. If S is a blocking
sequence for Hi|Hs and H] NS # 0, then a proper subset of S is a blocking sequence for
H{|H,.

9 Decomposing connected diamonds

In this section we prove Theorem 1.6.

Recall that a connected diamond is a pair (3, Q), where ¥ = 3PC(x1x9x3,y) and @ =
q1,---,qr, k > 2, is a chordless path disjoint from ¥ such that the only nodes of ) adjacent
to X are ¢1 and gi. Furthermore ¢ is of type t2 w.r.t. 3 adjacent to, say 1 and x3 and one
of the following holds:

(i) gx is of type p2 such that N(gx) N V(E) C V(Py,y) \ {22}, or

(ii) g is of type d adjacent to y,y1,ys such that z1y and xsy are not edges.
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Figure 12: Different types of connected diamonds.
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We rename some nodes and introduce some additional notation. Let aj = ¢i and let a;
be the closest neighbor of @} to x2 in Py,,. Let by = x9, b] = q1, by = x; and b, = 3. Now let
Al = {al,aﬁ}, Ay = V(E) N N(a&) \ {al}, By = {bl,bll} and By = {bQ,bIQ} Let A= A;UAy
and B = By U By. When d} is of type d w.r.t. X, As has cardinality 2 and let ay = y,
ah = y3, whereas when a} is of type p2, Ay has cardinality 1 and we let as = af, denote its
unique node. The connected diamond (3, Q) is denoted by H(A;, A2, B1, B2). Let R be the
subpath of P,,, between a; and by. Now let Hy = RUQ and Hy = H(A1, Ay, B1, Bs) \ Hy.
Let P,,p, be the chordless path from as to be in Hs \ b, and define Pa’Qbé similarly. When
|A2| = 2, Pu,p, and Py, are node-disjoint paths. When |As| = 1, these two paths are
identical between as = af, and y. In this case, we refer to the agy-subpath of P,,;, as Py
path, and the byy-subpath (resp. by-subpath) of P, (resp. Pa'zbg) as Py, (resp. Pbéy)
path. Let P, be the chordless path from a; to by in H; \ @}, and define Pa’l v, similarly.
The two paths P, 5, and Pa’l b, of H; we call the side-1-paths of H and the two paths P,,,
and Pa’Qb’Q of Hy we call the side-2-paths of H. We say that H is short if out of all connected
diamonds of G, the two side-2-paths of H have as few nodes in common as possible, i.e.
there is no connected diamond H’ of G such that the side-2-paths of H' have fewer nodes in
common that the side-2-paths of H.

We denote by 2 the 3PC/(aja}asz, by) induced by HiUP,,p, and by X9 the 3PC'(a1aal, bh)
induced by H1U Py . X' denotes the 3PC (babyb), y) when |As| = 1 and the 3PC(bob5b}, af)
when |Ag| = 2 induced by H \ P,,p,. We denote v,, (resp. vp,) the neighbor of a; (resp. b;)
in P, ,, and we define Vot Uy, Uby, Uy, similarly. If |Ag| = 2, then we let v,, (resp. vaé) be
the neighbor of ay (resp. ab) in P, (resp. Pa;b;)- If |[A2| = 1 and ag # y, then we let v,
be the neighbor of ay in P,,,. Finally, when [As| = 1, we let y,, Y, be the neighbor of y
in Py, and Pyb/2 respectively. If [As| =1 and y # ag, we let y,, denote the neighbor of y in
Pya,.

A segment of H is a path P of H whose endnodes are of degree at least 3, whose inter-
mediate nodes are all of degree 2, and P is not an edge of G[A] or G[B].

Lemma 9.1 Let G be a 4-hole-free odd-signable graph that does not have a proper wheel, a
bug with a center-crosspath nor a bug with type s2 node. Let H(Ai, As, B1, Ba) be a short
connected diamond of G. A node u of G\ H that has a neighbor in H is one of the following
types.

pi, for i=1,2,3 : For some segment S of H, N(u) N H C S and |[N(u) N H| = 1.
Furthermore, if i > 2, then u has two adjacent neighbors in H. Also
ifi =3, |[A2| =1 and S = P,,y, then N(u) N H induces a path of

length 2.

Ay : N(u)NH=A.

A : Nu)nH=A.

a : A2l =1 and u has two neighbors in H, the node of As and one node
of A1.
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Bs

t3

Ad

Hi-crossing

Hs-crossing

pseudo-twin of a
node of By

pseudo-twin of a
node of By

pseudo-twin of a
node of Ay

N(u)NH = B.
N(u)ﬂH:Bg

Node u has three neighbors in H: either two nodes of By and one of
Bi; or|As| =2 and u is adjacent to two nodes of A1 and one node of
As.

|A2| =1 and u has three neighbors in H: if y = aa, then N(u) N H =
{y,be,ybIQ}, and otherwise the neighbors of w in H are y and two

nodes from {yazgbebeIQ}'

|As| =1, y = as and u has four neighbors in H: ay,ay,ay and either
Yoy OT Ypy,-

Bither N(u) N H = {b1,v1,v2} where vivy is an edge of Py \ by or
N(u) N H = {V},v1,v2} where vivy is an edge of Py p, \ b1.

If |As] = 1, then either yp, # by and N(u) N H = {yp,,v1,v2}
where vivy is an edge of Py, \ y, or Yy, # by and N(u) N H =
{Ypy. v1,v2} where vive is an edge of Py,y \ y. If [As| = 2, then
N(u) N H = {az,vi,v2} where vivy is an edge of Py \ ay, or
N(u) N H = {ah,v1,v2} where vivy is an edge of Py,p, \ az.

We define pseudo-twin of by: N(u)NH = By U{v1,ve}, where vy and
vy are nodes of Py, . Furthermore, if by ¢ {vi,v2}, then vivy is an
edge. Pseudo-twin of b} is defined symmetrically.

We define pseudo-twin of by: N(u) N H = BU{v}, where if |As| = 2,
then v is a node of Py, \ b2, and if |As] = 1, then v is a node of
Py,y \ ba and not both ybly, and yu are edges. Pseudo-twin of b is
defined symmetrically.

We define pseudo-twin of ay: N(u) N H = Ag U {a),v1,v2}, where vy
and vy are nodes of Py, . Furthermore, if a; ¢ {v1,va}, then |As| =1
and vive is an edge. Pseudo-twin of ay is defined symmetrically.
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pseudo-twin of a :  We define pseudo-twin of as: If |As| = 2, then N(u) N H = A U

node of As {v1,v2}, where vi and vy are nodes of Pu,p,. Furthermore, if ay ¢
{v1,v9}, then vive is an edge. If |As| = 1 and ag # y, then N(u) N
H = Ay U{ag,vq,}. If |A2] = 1 and aa = y, then N(u) N H =
Ay U {az,v1,v2} where vi € Py, \ Yy, v2 € Py, \ y, at least one of
{v1,v2} is adjacent to y, and u is adjacent to at most one of {ba, bs}.
Pseudo-twin of aly is defined symmetrically.

pseudo-twin of y : If y = a1 or ag, then pseudo-twin of y is defined as corresponding
pseudo-twins above. So assume |As| = 1 and as # y. Then N(u) N
H = {y,Ya,,v1,v2} where v1 € Py, \ 'y, v2 € Py, \ y, at least one of
{v1,v2} is adjacent to y, and u is adjacent to at most one of {ba, bs}.

s1 : N(u)N H = {v1,v2} where either v1 € By and v9 € By; or |As| = 2,
v1 € A1 and vy € As.

82 o |Agl =1, y # ag and N(u)NH = {by, by, v1,v2} where vivy is an edge
of Puyy. Furthermore, if y = vy or vy, then yby and ybl, are not edges.

53 : |A2] =1 and either N(u) N H = By U {ag,a},b1} and asbly is not an
edge, or N(u) N H = By U{ag,a1,b}} and asby is not an edge.

s4 o |Ag]l =1, agbe and asxbly are not edges, and N(u) N H = AU Bs.

Proof: We first prove the following two claims.
Claim 1: If |A3| = 1, then N(u) N H # {y, Y, Yy, b1} and N(u) N H # {y, yb,, yu,. b1 }-

Proof of Claim 1: Assume not. By symmetry, w.l.o.g. assume that N(u) N H =
{y,be,ybé,bl}. If yby (resp. ybh) is an edge, then by definition of a connected diamond
ybly (resp. yby) is not an edge, H \ Py, induces a bug with center by (resp. bh) and w is of
type s2 w.r.t. this bug, contradicting our assumption.

So yby and yb), are not edges, and hence yp, # by and yy, # by. So (H \ Puyp,) U {b1,u}
induces a connected diamond H'(Aj, A5, By, By) where A} = {u,y} and A5 = {yp,, 4, }-
The two side-2-paths of H’ have fewer nodes in common than the two side-2-paths of H,
contradicting our assumption. This completes the proof of Claim 1.

Claim 2: If |[N(u) N A| > 2 and |N(u) N B| > 2, then u is of type s3 or s4 w.r.t. H.

Proof of Claim 2: Assume that |[N(u) N A| > 2 and |N(u) N B| > 2. We first show that
|Aa| = 1. Assume not. First suppose that N(u) N By = By. Let H’ be the hole induced by
Puaby UPyyp Ua). Since (H', u) cannot be a proper wheel, [N (u)N(A2Ua})| < 1. By symmetry,
|N(u)N(A2Uaq)| < 1. From these two inequalities, and the assumption that |N(u) N A| > 2,
it follows that N(u) N A = A;. By symmetry N(u) N B = Bs. In particular, (H',u) is a bug

45



and hence N(u) N H' = {a), ba, b3}. By symmetry, N(u) N (Pyyp, U Payp, Ub2) = {a1,a],ba}.
In particular, N(u) N H = Ay U By. But then ¥ and u contradict Lemma 4.1. Therefore,
N(u) N By # By. By symmetry we may assume that |N(u) N By| <1 and |[N(u) N A;| < 1.
Since {bg, b1, b}, u} and {b, by, b}, u} cannot induce 4-holes, [N (u)NBsz| > 1, and by symmetry
|IN(u) N Ay] > 1. Hence |[N(u) N Ba| =1 and |[N(u) N A1 = 1. W.lo.g. N(u) N By = ba.
By symmetry we may assume that v is adjacent to by. Since {b},b1,b],u} cannot induce a
4-hole, N(u) N B = {b1,ba}. Suppose that u is adjacent to a;. Then it is not adjacent to aj.
By Lemma 4.1 applied to ¥ and u, N(u) NX = {b1, b2, a1, ab}. But then 39 and u contradict
Lemma 4.1. So u is not adjacent to aj, and hence it is adjacent to a}j. But then ¥ and u
contradict Lemma 4.1. Therefore |As| = 1.

Next we show that N(u) N By = By. Assume not, i.e. assume that |N(u) N Bg| < 1.
Since {ba,b1,b],u} and {b},by,b},u} cannot induce 4-holes, |N(u) N By| > 1, and hence
|IN(u) N By] =1. W.lo.g. N(u)N By = by. By symmetry we may assume w.l.o.g. that u is
adjacent to by. Since {b}, b1, b}, u} cannot induce a 4-hole, it follows that N(u)NB = {by,bs}.
Since |N(u) N A| > 2 and |A2| = 1, u is adjacent to a; or ag. But then ¥ and u contradict
Lemma 4.1 (note that by our assumption G does not contain a bug with a center-crosspath,
and so u cannot be of type sl w.r.t. ¥). Therefore, N(u) N By = Bs.

Suppose that N(u)NA; = A;. Since Py, p, U Pyy U {b2,u} cannot induce a proper wheel,
N(u) O (Payp, U Pyy,) = Ar. By Lemma 4.1 applied to ¥ and u, N(u) N E = {ba, b5, a1, az}.
Therefore N(u) N H = By U A. If agby is an edge, then ¥ is a bug and u is of type s2 w.r.t.
¥, a contradiction. So asbs is not an edge, and by symmetry neither is asb}, and therefore u
is of type s4 w.r.t. H.

Now we may assume that N(u) N A; # Ap, and so wlo.g. N(u) N A = {a1,a2}. By
Lemma 4.1 applied to ¥ and u, N(u) MY = {be, b}, a1,a2}. By Lemma 4.1 applied to ¥’ and
u, N(u) N X" = {by,b,b],a2}. Hence N(u) N H = By U {b},a1,a2}. If agby is an edge, then
3 is a bug and u is of type s2 w.r.t. X, a contradiction. So asby is not an edge and hence u
is of type s3 w.r.t. H. This completes the proof of Claim 2.

By Claim 2 we may assume that either |[N(u) N A < 1 or |[N(u) N B| < 1. We may
assume that |N(u) N H| > 2, since otherwise u is of type pl w.r.t. H. Suppose that u is not
strongly adjacent to ¥ nor ¥’. Then u has exactly one neighbor in P,,;, and one in Pa/l b, -
By Lemma 4.1 applied to ¥; and u, N(u)N3; = Aj, and hence u is of type A; w.r.t. H. By
symmetry between Y and ¥’ we may now assume that wu is strongly adjacent to X. Since G
does not contain a bug with center-crosspath, u cannot be of type sl w.r.t. ¥ (nor any other
3PC(A,-)). So by Lemma 4.1 it suffices to consider the following cases.

Case 1: u is of type t3 w.r.t. X.
By Lemma 4.1 applied to X1, N(u) N H = {b1,b2,b5} or B and hence u is of type t3 or
B wrt. H.

Case 2: u is of type t2 w.r.t. 3.

Suppose N(u) N = {by,ba} or {b1,b5}, w.lo.g. say N(u) N X = {b1,ba}. Since there is
no 4-hole, ub} is not an edge. Then by Lemma 4.1 applied to ¥; and u, N(u) N Pyy =2
and hence u is of type sl w.r.t. H. Suppose now that N(u) N X = {by,b,}. By Lemma 4.1
applied to ¥, u is of type Bs, t3 or a pseudo-twin of b} w.r.t. H.
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Case 3: u is a pseudo-twin of a node of {b1, b2, b5} w.r.t. X.

If IN(u) N {b1,b2,b5} = 2, then let v; and vy be the two adjacent neighbors of u in
Y\ {b1, b2, bs}. Otherwise let v; = vy be the neighbor of u in ¥\ {by, be, b, }. Since |N(u)NB| >
2, by our assumption |N(u) N A] < 1.

First suppose that v1,vs are contained in the byy-path of . Then N(u) N By = Bs.
If |As| = 2, then by Lemma 4.1 applied to ¥ and u, N(u) N Py, = @ and hence u is a
pseudo-twin of b; w.r.t. H. So we may assume that |As| = 1. Since |[N(u) N A| <1, v; and
v are contained in either P, ;, or in Pp,,. If {vi,v2} C P, p,, then by Lemma 4.1 applied
to ¥y and u, N(u) N Py = @ and hence u is a pseudo-twin of by w.r.t. H. So assume that
{v1,v2} C P,,y. Suppose that vivy is an edge, i.e. |N(u) N {b1, b2, b5} = 2. By Lemma 4.1
applied to X7 and u, N(u) N Py, =2. Ity ¢ {vy,vs}, then u is of type s2 w.r.t. H. So
assume w.l.o.g. that y = vo. W.Lo.g. yby is not an edge, and suppose that yb, is an edge.
Let H' be the hole induced by P, 4, U Pyyp,. Then (H', b)) is a bug and u is of type s2 w.r.t.
(H',bY). So neither yby nor yb) is an edge, and hence u is of type s2 w.r.t. H. We may now
assume that v, = vg, i.e. |N(u) N {b1,b2,05}| = 3. Then ub; is an edge. Note that by our
assumption, u cannot be adjacent to both a) and ag, and hence by Lemma 4.1 applied to
¥ and u, N(u) N Pa’lb’l =b). If vy #y, then H; U Pa2b/2 U v induces a connected diamond
H'(A1, As, By, B}) where B} = {b,, u}, whose side-2-paths have fewer nodes in common than
the side-2-paths of H (note that the common nodes of side-2-paths of H are the nodes of
Py,y, and the common nodes of side-2-paths of H' are the nodes of the agvi-subpath of Py, ),
a contradiction. Hence v; = y. W.lo.g. ybj is not an edge, and hence u is a pseudo-twin of
by wrt. H.

We may now assume that vi,ve are contained in the boy-path of ¥ or the by-path of X.
By symmetry we may assume w.l.o.g. that vy, vy are contained in the boy-path of . Then
u is adjacent to by and b,. First suppose that [Ag| = 1. If [N (u) N {b1, b2, b5}| = 2, then by
Lemma 4.1 applied to 3y and u, N(u) N Py = @, and hence (Py,p, \ v,) U Pyrpr U {1, b5, u}
contains a 4-wheel with center b,. So |N(u) N {b1,b2,b5}| = 3, i.e. v1 = ve and uby is an
edge. Note that by the argument in the previous paragraph we may assume that vy # y. By
Lemma 4.1 applied to ¥’ and u, N(u) N Puy, = b}, and hence u is a pseudo-twin of by w.r.t.
H.

We may now assume that |As| = 2. Since |N(u) N A| < 1, {v1,v2} C Pap,. If [N(u) N
{b1,b2,05}| = 2, then by Lemma 4.1 applied to ¥; and w, N(u) N Py, = @, and hence
(Pasbs \Vby) U Py, U{b1, b5, u} contains a 4-wheel with center b5. So [N (u)N{b1,bs, b5} = 3,
ie. v1 = vg and uby is an edge. Since v; € P,,p,, by Lemma 4.1 applied to ¥’ and wu,
N(u) N Py, = b, and hence u is a pseudo-twin of by w.r.t. H.

Case 4: u is a pseudo-twin of y w.r.t. X.

First suppose that all nodes of N(u) N (X \ y) are adjacent to y. If |As| = 2, then by
Lemma 4.1 applied to X1, N(u)N Pa’lb’l = a) and hence u is a pseudo-twin of a; w.r.t. H. So
assume that |Ag| = 1. W.lo.g. ybs is not an edge. If ay = y, then by Lemma 4.1 applied to
Y1, N(u)n Puy, = a’, and hence u is a pseudo-twin of ag w.r.t. H. So we may assume that
az # y. By Lemma 4.1 applied to X1, N(u) N Pa’lb’l = @, and hence u is a pseudo-twin of y
w.r.t. H.

Now assume that some node of N (u)N(X\y) is not adjacent to y, and let v be such a node.
Suppose |A2| = 2. If v is a node of Pp,p,, then by Lemma 4.1 applied to X2, N(u)N Py = aj.
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But then Lemma 4.1 applied to 1 and w is contradicted. So, by symmetry, we may assume
that v is a node of Py,p,. Then by Lemma 4.1 applied to X1, N(u) N Py = a} and hence u
is a pseudo-twin of a; w.r.t. H.

Now assume |Az| = 1. If v is a node of P,,3,, then by Lemma 4.1 applied to ¥, v = b; and
N(u) NPy, = &, contradicting Claim 1. So we may assume w.l.o.g. that v is a node of P,,p,.
Suppose y = az. Then u is adjacent to a;. By Lemma 4.1 applied to ¥/, N(u) N Pa’lb’l =aj.
Since |N(u) N A| > 2, by our assumption |N(u) N B] < 1, and so u cannot be adjacent to
both bs and b5. Hence u is a pseudo-twin of ag w.r.t. H. So assume that y # az. By Lemma
4.1 applied to X1, N(u)N Py, = 2. Suppose that u is adjacent to both by and bf. Then yb),
is an edge and N(u) N H = {ba, b, y,ya, } (since by definition of connected diamond it is not
possible that both ybs and yb,, are edges). But then ¥ is a bug, and w is of type s2 w.r.t. it,
a contradiction. So u cannot be adjacent to both by and b}, and hence u is a pseudo-twin of
y w.rt. H.

Case 5: v is of type d w.r.t. X.

Suppose |Ao| = 2. If N(u) N X = {a1,a2,v,, }, then by Lemma 4.1 applied to ¥; and
u, ua)j is an edge. But then, since ua), is not an edge, Lemma 4.1 applied to X9 and u
is contradicted. So N(u) N Y # {a1,a2,vq, }. By symmetry N(u) NY # {a1,a},vq,}. So
N(u)NE = {ai,az,ay}. Then ua) is an edge, else {u, az,a}, a}} induces a 4-hole. By Lemma
4.1 applied to 39, u has at most two neighbors in Pa/lb/l. So u is of type A w.r.t. H or it is a
pseudo-twin of aj w.r.t. H.

Assume now that |As| = 1. Suppose u is adjacent to both v, and Ynl,- So the neighbors
of u in X are Y Ybss Ypy,- By Lemma 4.1 applied to ¥, the only node of Py, that may be
adjacent to w is bj. Then by Claim 1, ub) is not an edge and hence w is of type d w.r.t. H.
So we may assume that u is not adjacent to one node of {be,ybé}. Suppose that y = ao.
Suppose u is adjacent to a1,y, yp,. By Lemma 4.1 applied to 31, uaj is an edge and no other
node of Py, is adjacent to u, and hence w is of type Ad w.r.t. H. Similarly, if u is adjacent
to a1, y, Y, then by Lemma 4.1 applied to Xs, u must be of type Ad w.r.t. H. Assume now
that y # as. If u is adjacent to y, Yay, Yp, (resp. y,ya2,yb/2), then by Lemma 4.1 applied to
Y1 (resp. o), w is of type d w.r.t H.

Case 6: u is of type p3t w.r.t. X.

Suppose that N(u) N X is contained in Py,,, or |A2| = 2 and it is contained in P,,;, or
Py, or |A2| = 1 and it is contained in P,,, or B, or Py,,. Then by Lemma 4.1 applied
to X1 or Yo, N(u)N Pa’lb’l = @, and hence u is of type p3 w.r.t. H. So we may assume
w.l.o.g. that u is adjacent to both a; and as. Then by Lemma 4.1 applied to ¥; or Yo,
N(u) N Py, = aj, and hence u is a pseudo-twin of a; or az w.r.t. H.

Case 7: u is of type p3b w.r.t. X.

Let N(u)N¥ = {v, v1, v} such that vivs is an edge. Suppose that |As| = 2. If vive = ajas,
then by Lemma 4.1 applied to X1, N(u) mPa’lb’l = a}, and hence u is a pseudo-twin of ag w.r.t.
H. Similarly, if vjve = a1ab, then u is a pseudo-twin of ab w.r.t. H. If {v,v1,ve} C P, p, or
P, or Paébé, then by Lemma 4.1 applied to ¥; or X9 (depending on which path of ¥ the
neighbors of u are contained in), N(u) N Py = @ and hence u is of type p3 w.r.t. H. So
we may assume w.l.o.g. that v = a; and vjv is an edge of Pp,p, \ a2. By Lemma 4.1 applied
to X1, N(u) N Py, = aj, and hence u is a pseudo-twin of as w.r.t. H.
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Suppose now that |As| = 1. If vjvg = ajag, then by Lemma 4.1 applied to ¥, N(u) N
Py, = aj. Suppose that v is contained in Py, Note that vaz ¢ E(G). Then (H \ az) U{u}
contains a connected diamond H'(A;, A}, By, By) where A, = {u}. Since vag is not an edge,
the two side-2-paths of H’ have fewer nodes in common than the two side-2-paths of H,
contradicting our assumption. So v must be contained in F, ,, and hence u is a pseudo-twin
of a; w.r.t. H.

So we may assume that vivy # ajas. Suppose v is a node of P, p,. If viv is an edge of
P,.»,, then by Lemma 4.1 applied to X1, N(u) N Py y = @ and hence u is of type p3 w.r.t.
H. Assume now that vjvp is an edge of F,,,. By Lemma 4.1 applied to X1, v = b; and
N(u) N Py, = @. Say v is the neighbor of u in Py, closer to y. Then (H \ Py,p,) U {b1, u}
induces a connected diamond H'(A}, A}, By, By) where A} = {v1,u} and A} = {va}. The two
side-2-paths of H' have fewer nodes in common than the two side-2-paths of H, contradicting
our assumption.

We may now assume that v is not in F,,;,. Suppose that v1vs is in Py p,. Sov € F,,. By
Lemma 4.1 applied to X1, v =y, ybs € E(G) and N(u) N Py = @. Since yby € E(G), by
definition of connected diamonds yb), cannot be an edge. Then P, ;, U Py, U Pagy U {u, b}
induces a 3PC(aja)az, uvive) or a 4-wheel with center a;. So v1vs is not an edge of Py, ,
and hence {v,v1,v2} C P for some P € {Fuyy, Pyp,, Py} Then by Lemma 4.1 applied to
Yy or X9, N(u) N H = {v,v;,v2}. If P = PF,,,, then H Uu contains a connected diamond
H'(A4, As, By, Bs) that contains u and whose side-2-paths have fewer nodes in common than
the side-2-paths of H, a contradiction. So P € {Pbe,PybIQ}, and hence u is of type p3 w.r.t.
H.

Case 8: u is of type p2 w.r.t. X.

Let v1vy be the edge of N(u) N Y. Suppose |Ag| = 2. If vjvy is an edge of P,,3,, then by
Lemma 4.1 applied to X1, u is of type p2 or an Hjp-crossing w.r.t. H. Suppose vivs is an
edge of P,,p, or Payy,, wlo.g. say vivg is an edge of P,,p,. Then by Lemma 4.1 applied to
¥ and u, b is the only node of P,y that may be adjacent to u. If ub) is not an edge, then u
is of type p2 w.r.t. H. So assume ub] is an edge. If uby is an edge, then u is of type sl w.r.t.
¥, contradicting our assumption. So ubs is not an edge. Hence Ha U {u,b|,a;} induces a
3PC (bobhb], vivau). We may now assume w.l.o.g. that N(u) N X = {aj,az}. If u does not
have a neighbor in Pb’la’l’ then wu is of type s1 w.r.t. H. So assume u does have a neighbor
in P'la'l‘ By Lemma 4.1 applied to u and ¥, and since u cannot be of type sl w.r.t. Yo,
N(u)N Pyy = al, and hence u is of type t3 w.r.t. H.

Now assume that |As| = 1. If v1v9 is an edge of P, p,, then by Lemma 4.1 applied to X,
u is of type p2 or an Hi-crossing w.r.t. H. Suppose vivy is an edge of Py, or Pybé, w.l.o.g.
say v1v2 is an edge of Py,,. Then by Lemma 4.1 applied to ¥’ and since u cannot be of type
sl w.r.t. ¥/, either N(u) N Py, = @, or y = az and N(u) N Py, = aj. In the first case u is
of type p2 w.r.t. H, and in the second case, by Lemma 4.1 applied to ¥; and u, node u is
of type sl w.r.t. X1, contradicting our assumption. Now assume that y # ao and vivs is an
edge of P,,,. By Lemma 4.1 applied to ¥; and v (and since N(u) N ¥ = {vi,v2}), the only
node of H \ {v1, v} that may be adjacent to w is b}. If u is not adjacent to b}, then u is of
type p2 w.r.t. H. Suppose that u is adjacent to bj. W.lo.g. vy is closer than v; to y on P,,,.
So (H \ Py,p;) U {b},u} induces a connected diamond H'(A', Ay, B1, Bz) where A} = {vi,u}
and A, = {va}. The two side-2-paths of H' have fewer nodes in common than the two side-
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2-paths of H, contradicting our assumption. Finally suppose that N(u) N X = {a1,a2}. By
Lemma 4.1 applied to 31, u is of type a, A or a pseudo-twin of a} w.r.t. H.

Case 9: u is of type crosspath w.r.t. X.

Let N(u) N X = {v,v1,v2} such that vivs is an edge. First suppose that |As| = 2. Note
that v € {ag,ab, vy, }. Suppose that v = v,,. Then by Lemma 4.1 applied to ¥; (in the case
where v1v2 is an edge of P,,p,) or Xo (in the case where vjvy is an edge of Pa’zb’z)7 a1by is an
edge. But then w is the center-crosspath of bug . So v = ag or a}, w.lo.g. say v = as.
Suppose vyv2 is an edge of P, p,. Then by Lemma 4.1 applied to £; and wu, either aby is an
edge and N(u) N Py = @, or N(u) N Py = aj. In the first case u is a center-crosspath of
bug ¥, a contradiction. So N(u) N Pa’l b, = a, and hence ¥y and u contradict Lemma 4.1.
So v1vy is an edge of Py, . Then by Lemma 4.1 applied to Y/, w is an Hy-crossing w.r.t. H.

Now assume that |A| = 1. Suppose that v & {ys,, Y, }. So w.l.o.g v1vs is an edge of Py,
If y = a9, then v = a7 and by Lemma 4.1 applied to X1, u is a pseudo-twin of ag w.r.t. X,
ie. N(u)n Pa’lb’l = a}. Let v be the neighbor of u in P,,;, that is closer to be, and let P be
the bpvi-subpath of Fy,p,. Then PU Py b, U Py U Py, U w induces a connected diamond
H'(Ay, A, By, By), where A, = {as,u}. The side-2-paths of H' have fewer nodes in common
than the side-2-paths of H, contradicting our choice of H. So y # a2. Then v = y,, and by
Lemma 4.1 applied to 1, N(u)NH = {v,v1,vs2}. But then (H \ y3,) Uu contains a connected
diamond whose two side-2-paths have fewer nodes in common than the side-2-paths of H,
contradicting our assumption.

So w.l.o.g v = yp,. Since there is no bug with a center-crosspath, ybs is not an edge.
Suppose that v1v9 = ajas. Then by Lemma 4.1 applied to X1, N(u) N Pa/lbll = af, and hence
Nu)NH = {a1,ad}, a2, yp, . Note that yay is not an edge, else {y, as,u, yp, } induces a 4-hole.
So (H \ P,,y) U {y,u} induces a connected diamond H'(Ai, A}, Bi, B2) where A5 = {u}.
Since yasy is not an edge, the two side-2-paths of H' have fewer nodes in common that the
two side-2-paths of H, contradicting our assumption. So v1vs # ajas.

Suppose that v1v9 is an edge of P,,p,. Then, by Lemma 4.1 applied to ¥, N(u)ﬂPaflbfl =0
and v is adjacent to ba. So yp,by is an edge. Node y is not adjacent to bf, otherwise
{9, by, b2, b5} induces a 4-hole. But then Pup, U Py U (Pagp, \ b2) U {u, b5} induces a
3PC(a1a)az,uvive) or a 4-wheel with center a;. So vjvy is not an edge of P,,p,. Then by
Lemma 4.1 applied to ¥/, N(u) N H = {v,v1,v2}. Note that since neither {u,yp,,y,v1} nor
{u, Yp,,y,v2} can induce a 4-hole, neither v;y nor vey is an edge. If vjvy is an edge of Pbéy,
then u is an H-crossing w.r.t. H. So assume that vivp is an edge of Fg,,. Let v; be the
neighbor of u in F,,, that is closer to a2, and let P be the asvi-subpath of P,,,. Then
PUP,, UPB,,U Pbéy U Pa/lbll U u induces a connected diamond H'(A;, A2, By, B2). Since
voy is not an edge, the two side-2-paths of H' have fewer nodes in common than the two
side-2-paths of H, contradicting our assumption. O

The following three remarks follow from Lemma 9.1.

Remark 9.2 Let H(A;, Ag, B1, Bs) be a short connected diamond of G, and let u € G\ H.
If IN(u) NA| > 2 and |N(u) N B| > 2, then u is of type s3 or s4 w.r.t. H.

Remark 9.3 Let H(A1, A2, By, Ba) be a short connected diamond of G. Letv € AUBU{y}
and let u be a pseudo-twin of v w.r.t. H. Then (H \ {v}) U {u} contains a short connected
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Figure 13: Nodes adjacent to a connected diamond.
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Figure 14: Pseudo-twins of a node of AU {y}.
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pseudo-twin of by pseudo-twin of by

Figure 15: Pseudo-twins of a node of B.
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Figure 16: Nodes adjacent to a connected diamond that lead to star cutsets.

diamond H' that contains (AU B U {y}) \ {v}) U {u}. We say that H' is obtained by
substituting v into H.

Remark 9.4 Let H(A1, As, By, B2) be a short connected diamond of G. If u is of type p3
w.r.t. H, then HUw contains a short connected diamond H'(A1, As, B1, Bs) that contains
u. We say that H' is obtained by substituting u into H.

We first prove a usefull lemma about paths that connect H; to Hs, and then show that
if there is a node of type sl, s2, s3 or s4 w.r.t. H, then there is a star cutset.

Lemma 9.5 Let G be a 4-hole-free odd-signable graph that does not have a star cutset. Let
H(Aq, As, By, Bs) be a short connected diamond of G. Let P = p1,...,pk, k > 1, be a chordless
path in G\ H such that @ # N(p1) N H C Hy1, @ # N(px) N H C Ha, and no intermediate
node of P has a neighbor in H. Then P is one of the following types:

(i) N(p1) N H = by or by, and py is of type By w.r.t. H.

(ii) p1 is of type p2 w.r.t. H with neighbors in Py, or Pa/lbll, and py is of type By w.r.t.
H.

(iii) p1 is of type A1 and py is of type p2 w.r.t. H and the following holds. If |A1| = 1, then
az #y and N(p) C Payy. If [As| = 2, then N(pk) € Payp, or Payy, -

(i) p1 is of type Ay and N(px) N H = ag or d.

(v) p1 is of type A1 and py is of type d w.r.t. H such that N(px) N H = {y,be,ybIQ}.

o4



Proof: Assume G does not have a star cutset. Then by Theorems 3.3, 4.3, 4.4, 4.5 and 4.6,
G does not contain a proper wheel, a bug with a center-crosspath, a 3PC(A,-) with a hat, a
bug with an ear nor a 3PC(A,-) with a type s2 node.

By definition of P and Lemma 9.1, the following hold.

(1) p1 is of type pl, p2, p3, Ay, or Hi-crossing w.r.t. H.

(2) pr is of type pl, p2, p3, d, Be, s2 or Ha-crossing w.r.t. H, or y ¢ {aj,a2} and py is a
pseudo-twin of y w.r.t. H.

By (1) we consider the following cases.

Case 1: p; is of type pl w.r.t. H.

W.lo.g. p; is adjacent to a node v of P,,;,. Let Ry (resp. R3) be the subpath of P, s,
with one endnode a; (resp. by) and the other v.

Suppose that py, is of type pl w.r.t. H. W.l.o.g. p; is adjacent to a node of F,,;,. Then
either P is a hat of 31 (in the case where both pia; and pras are edges), or P is a hat of ¥
(in the case where both p1b; and pibs are edges), or P U P, p, U P,,p, induces a 3PC(-, ).

Suppose that py is of type p3 w.r.t. H, and let H'( A1, A2, By, B2) be the short connected
diamond obtained by substituting py into H. If k¥ = 2, then H' and p; contradict Lemma
9.1. So k > 2, and hence pj_; is of type pl w.r.t. H' and a contradiction is obtained in the
same way as in the previous paragraph.

Suppose that py is of type p2 w.r.t. H. W.lo.g. N(px) N H C P,,p,. Let H' be the hole
induced by Pg,p, U Pyp,- Then P and Pa’l y, are crossing appendices of H’, and hence by
Lemma 2.2, v = by. If |Ay| = 2, then Hy U P U a) induces a 3PC(A,A) or a 4-wheel with
center bg. So [As| = 1. If N(py) N H C Py, then By U Py, U P induces a 3PC(A, A) or
a 4-wheel with center by. So N(py) N H C Py,,. But then (H \ (FPap, \ b1)) U P induces a
connected diamond whose side-2-paths have fewer nodes in common than the side-2-paths of
H, a contradiction.

Suppose that py is of type d w.r.t. H. So |As| = 1. Suppose N(px) N H = {y,be,ybé}.
Let H' be the hole induced by Py, U Pyyp,. Then P and Py are crossing appendices of
H’, and hence by Lemma 2.2, v = b;. Suppose one of {ybe,ybs} is an edge, w.l.o.g. say
yby € E(G). Then P U Py, U Py U {b1,b5} induces a proper wheel with center by. So
both yby and yb), are not edges. But then P U Ha U Pa/l v, U b1 induces a connected diamond
H'(A}, Ay, Bi, By), where A} = {py,y}, and Ay = {ys,, Yy, }, and the two side-2-paths of H’
have fewer nodes in common than the two side-2-paths of H, contradicting our assumption.
So w.lo.g. N(px) NV H = {y,Yay, Y, }- But then P U P, 5, U (Pyyp, \ y) induces a 3PC(py, v).

Suppose that py is of type s2 w.r.t. H or y ¢ {aj,as} and py is pseudo-twin of y w.r.t.
H. Then pj has two nonadjacent neighbors in F,,;,. But then P, ,, U P,,p, U P contains a
3PC (pg,v).

Suppose that py is an Ha-crossing w.r.t. H. First assume that |As| = 2. W.lo.g. pg is
adjacent to as. Let v’ be the neighbor of py in Pa’Qbé that is closer to a), and let R be the
v'ag-subpath of P . Then RU P U Ry U as induces a 3PC(pg,a1). So [Az| = 1. Let H'
be the hole induced by Py, U Pybé. If either v # a1 or y # ag, then (H',p;) is a bug and
Ry U (P \ px) induces its center-crosspath or an ear, contradiction our assumption. So v = ay
and y = as. W.l.o.g. prys, is an edge, and hence Py, U P, 5, U P induces a 3PC(v, yp, ).
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So pr must be of type Bs w.r.t. H. If v # by, then X, py and pq, ..., pr_1 contradict
Lemma 6.2. So v = by, and hence (i) holds.

Case 2: p; is an Hj-crossing w.r.t. H.

W.lo.g. p1 is adjacent to V). Let R be the shortest subpath of P, ;, with one endnode
by and the other adjacent to p;. If pj is adjacent to bg, then P U R U {by,b}} induces a
3PC(p1,b2). If py is adjacent to b, then P U R U {b,, ]} induces a 3PC(p1,b,). So neither
prba nor pibh is an edge, and hence py, has a neighbor in Hy \ {b2,b5}. By Lemma 6.1 applied
to ¥',p1 and P\ p1, |Az] = 1 and the following holds. Node py is either of type p2 w.r.t.
H with neighbors contained in P,,, or of type d adjacent to {y,be,ybIQ}. But then in both
cases Py p, U Payp, U P induces a 3PC(A, A).

Case 3: p; is of type A1 w.r.t. H.

Note that if |Aa| = 2, then pj cannot be adjacent to both ag and af (else {p, az, ab, a}}
induces a 4-hole). Supose (iv) does not hold. Then pj has a neighbor in Hj \ {ag,a)}. By
symmetry, w.l.o.g. N(px) N (Pasp, \ a2) # @. By Lemma 6.2 applied to X1, p; and P\ p1, px
is of type p2 w.r.t. ¥; with neighbors in P,,;,. So by (2), pg is of type p2 or d w.r.t. H or
|A2| = 1 and py, is an Ha-crossing w.r.t. H. If py is an Ho-crossing w.r.t. H, then 39, p; and
P\ p1 contradict Lemma 6.2. Suppose that py is of type d w.r.t. H. By Lemma 6.2 applied
to Xo, p1 and P\ p1, pi is of type p2 w.r.t. 3o. Hence N(px) N H = {y,be,ybé} and so (v)
holds. Finally suppose that py is of type p2 w.r.t. H. If |A2| = 2, then (iii) holds. So assume
that |Aa| = 1. Suppose that y = as. If py is not adjacent to y, then (H \ yp,) U P contains a
connected diamond H'(A;, A, By, Bs), where A}, = {ag,p1}, and the side-2-paths of H' have
fewer nodes is common than the side-2-paths of H, contradicting our assumption. So pg is
adjacent to y and hence P, 3, U Py, U P induces a bug with center as, and Pa2b/2 \ ag is its
center-crosspath. So y # as. Suppose that N(py) N H C Py,,. If pj is adjacent to y, then
Y9 and P contradict Lemma 6.2. So py is not adjacent to y. Then (H \ y,) U P contains
a connected diamond H'(Ay, A}, B1, Ba), where A} = {as,p1}, and the side-2-paths of H’
have fewer nodes in common than the side-2-paths of H, contradicting our assumption. So
N(pr) N H C P,,, and hence (iii) holds.

Case 4: p; is of type p2 w.r.t. H.

W.lo.g. N(p1)NHC P, -

Suppose that pj is of type pl, p2 or p3 w.r.t. H. Then w.lo.g. N(py) N H C Pu,.
Let H' be the hole induced by P,,p, U Pa,p,. Note that Py, is an appendix of H " with
node-attachment by and edge-attachment ajas. By Lemma 2.1 applied to H’, Pall b, and P,
one of the following must hold: py is adjacent to by or N(px) N H = as or N(py) NH = w,. If
N(px)NH = ag, then X1, py and P\ py contradict Lemma 6.1. Suppose that N (px) NV H = vp,.
Let R be a shortest subpath of P, ;, whose one endnode is by and the other is a neighbor of
p1in Payp,. If [As| =2, or [As] = 1 and ybj is not an edge, then Pyyp, U Py UP U RUD,
induces a 4-wheel with center by. So |[As| = 1 and yb), is an edge. Then yby is not an edge,
ie. vy, # y, and since {ba, b, y, vy, } cannot induce a 4-hole, vp,y is not an edge. But then
Poyby U(Payp, \ b1) UP U, contains a 3PC(uvp,,y). Therefore py must be adjacent to be. If py
is of type pl w.r.t. H, then X, py and P\ py contradict Lemma 6.1. If py is of type p2 w.r.t.
H, then H' U P induces a 3PC(A,A). So py is of type p3 w.r.t. H. Let H'(Ay, Ay, By, B)
be the short connected diamond obtained by substituing p; into H. By Lemma 9.1 applied
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to H' and p1, k > 2. But now P\ pi is a path such that py is of type p2 w.r.t. H', pgp_1 is
of type pl w.r.t. H', and we have already shown that this cannot happen. So p; cannot be
of type pl, p2 nor p3 w.r.t. H.

Suppose that pi is of type d w.r.t. H. W.lo.g. pg is adjacent to Ynly» and hence P U
P,p, U Pagby induces a 3PC(A,A). So py, cannot be of type d w.r.t. H.

Suppose that y ¢ {a1,a2} and py is a pseudo-twin of y w.r.t. H. Then w.l.o.g. pi is not
adjacent to by. Let H’ be the hole contained in P, p, U (Pyyp, \ ¥) Upk. Then H, Py, and
P\ pi, contradict Lemma 2.2. So py cannot be a pseudo-twin of y w.r.t. H.

If py is of type s2 w.r.t. H, then (H’ py) is a bug, where H' is the hole induced by
P, b, U Pa,p,, and P\ py is its center-crosspath, a contradiction. So pj cannot be of type s2
w.r.t. H.

Suppose that py is an Ho-crossing w.r.t. H. If |As| = 2, then w.l.o.g. py is adjacent to ag,
and hence 31, pi and P \ py contradict Lemma 6.1. So |Ag| = 1. Let H’ be the hole induced
by Pyp, U Py . Then (H',py) is a bug, and the path from py_; to by in the graph induced
by (P \ px) U (Pap, \ @1) is its center-crosspath or ear, a contradiction. So pj cannot be an
Hs-crossing w.r.t. H. Therefore by (2), pi is of type Bs w.r.t. H, and hence (ii) holds.

Case 5: p; is of type p3 w.r.t. H .

Let H'(A1, A, By, By) be the short connected diamond obtained by substituting p; into
H. If k > 2, then ps is of type pl w.r.t. H' and it is not adjacent to by nor b}, and we obtain
a contradiction as in Case 1. So k = 2. But then by (2), p2 and H’ contradict Lemma 9.1. O

Figure 17: Paths from Lemma 9.5.

Lemma 9.6 Let G be a 4-hole-free odd-signable graph that does not have a star cutset. Let
H(Ay, Ag, By, Ba) be a short connected diamond of G. Then no node of G\ H is of type s1
w.r.t. H.

Proof: Assume G does not have a star cutset. Then by Theorems 3.3, 4.3, 4.4, 4.5 and 4.6
G does not contain a proper wheel, a bug with a center-crosspath, a 3PC(A,-) with a hat, a
bug with an ear, nor a 3PC(A,-) with a type s2 node.

Assume that the lemma does not hold. By symmetry we may assume that there is a node
u that is of type s1 w.r.t. H, adjacent to b,. Then the second neighbor of u in H is either
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by or b). Let S = N[ba] \ vp,. Since S is not a star cutset, there exists a direct connection
P=p1,...,pr in G\ S from u to H\ S. We may assume w.l.o.g. that H, u and P are chosen
so that |P| is minimized. Note that py has a neighbor in H \ S and the only nodes of H that
may have a neighbor in P\ py are by, b}, and b].

So if a node of P\ py has a neighbor in H, then it is either not strongly adjacent to H or
by Lemma 9.1 it is of type sl w.r.t. H adjacent to b,. In fact, by the choice of H, u and P,
no node of P\ py can be of type s1 w.r.t. H. So nodes of P\ p; are not strongly adjacent to
H.

We may assume w.l.o.g. that N(u) N H = {b),}}.

Claim 1: py is of type p1, p2, Ay, A, a, sl (with neighbors in A), t3 (with neighbors in A),
d, Ad, Hq-crossing or Hy-crossing w.r.t. H.

Proof of Claim 1: Since py has a neighbor in H \ S, it cannot be of type sl w.r.t. H with
neighbors in B. Since pg is not adjacent to be, node py cannot be of type B, B2, t3 (with
neighbors in B), s2, s3 nor s4 w.r.t. H, nor a pseudo-twin of a node of B w.r.t. H.

Suppose that p; is of type p3 w.r.t. H, and let H' be the short connected diamond
obtained by substituting p; into H. By Lemma 9.1 applied to H' and u, k > 1, and hence
H', v and P\ p; contradict our choice of H, u and P. So py is not of type p3 w.r.t. H.

Suppose that pj is a pseudo-twin of a node of AUy w.r.t. H, and let H' be the short
connected diamond obtained by substituting pg into H. By Lemma 9.1 applied to H' and
u, k > 1, and hence H’', u and P \ py contradict our choice of H, u and P. So py is not a
pseudo-twin of a node of AUy w.r.t. H. Now by Lemma 9.1, the proof of Claim 1 is complete.

We now consider the following two cases.

Case 1: A node of P\ p; has a neighbor in H.

Recall that for i < k, N(p;) " H C {by,},b,} and |[N(p;) N H| < 1. Let p; (resp. p;) be
a node of P\ p; with lowest (resp. highest) index that has a neighbor in H. Node p; is not
adjacent to by, since otherwise u, p1, ..., p; is a hat of . So p; is adjacent to b} or bh. If there
are two distinct nodes of {by, b}, b} that have a neighbor in P \ pg, then a subpath of P\ py
is a hat of ¥ or 3. So either b} or b is the only node of H that has a neighbor in P \ py.

Case 1.1: b is the only node of H that has a neighbor in P\ py.

By definition of S and Lemma 9.5 applied to H and pj,...,pr, node p; must have a
neighbor in Hy. In particular, p; cannot be of type d nor an Hs-crossing w.r.t. H.

Suppose that py is an Hj-crossing w.r.t. H. If py is adjacent to b} then (P, \ a1) U
P U {u,b,by} contains a proper wheel with center b}. So pj is adjacent to b;. But then
(Parlbrl \ a}) U {b, b1, pj,...,px } contains a 3PC (b, p). So py is not an Hj-crossing w.r.t. H.

If pg is of type A or A; w.r.t. H, then ¥, u and P contradict Lemma 6.1.

If py, is of type a w.r.t. H, then by Lemma 6.1 applied to X, w and P, N (py)NH = {a},as},
y = ay and ybf is an edge. But then ¥, p and pj, ..., pr—1 contradict Lemma 6.2.

If py, is of type sl w.r.t. H, then X, b} and pj, ..., p contradict Lemma 6.2.

Suppose that p is of type t3 w.rt. H. If N(py) N H = {ai1,a},a5} then ¥ p; and
Pj+1, .-, Dk contradict Lemma 6.1. So N(py) N H = {ai,d},a2}, and hence ¥,u and P
contradict Lemma 6.1. Therefore p;, is not of type t3 w.r.t. H.
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If py, is of type Ad w.r.t. H, then ¥',p; and pjy1, ..., pr contradict Lemma 6.1.

So by Claim 1, pg is of type pl or p2 w.r.t. H, and since p; must have a neighbor in
Hy, N(px) " H C Hy. If N(px) " H C P,p,, then ¥,u and P contradict Lemma 6.1. So
N(pk) NH C Py If [Ag| = 2, then Pyp, U Py U P U{u, by} contains a proper wheel with
center by. So |[As| = 1. Let R be the chordless path from pi to aj in PU (Pyry \ b7). Then
>, u and R contradict Lemma 6.1.

Case 1.2: V), is the only node of H that has a neighbor in P\ py.

By Lemma 9.5 applied to H and pj,...,pi, node p, must have a neighbor in Hs. In
particular, pg is not an Hi-crossing w.r.t. H.

If pi is of type t3, A1, A, sl (adjacent to a;) or a (adjacent to a;) w.r.t. H, then
P, b, UPU{u, by, b, b4} induces a proper wheel with center b,. If py is adjacent to @} and it
is of type a or s1 w.r.t. H, then Py p, U Py U {05, pj, ..., i} induces a 3PC(bh, a}). So py, is
not of type t3, A1, A, sl nor a w.r.t. H.

Suppose that py is of type Ad w.r.t. H. If p; is adjacent to Y, and Y, # by, then ¥, p; and
Pj+1s - P contradict Lemma 6.1. If py, is adjacent to y, and yy, = b, then Py UPU{by, u}
induces a proper wheel with center by. So py is adjacent to y,,. Note that by definition of
S, pi is not adjacent to be. But then P, p, U P U {u,bo,b],b,} contains a proper wheel with
center b. So py is not of type Ad w.r.t. H.

If py is of type d w.r.t. H, then by Lemma 6.1 applied to ¥, p; and pjy1, ..., pg, either
N(pr) N H = {Y,Yas, Ys, } O pi is adjacent to b5. In the first case P U (Pyyy \ y) U {u, b7, 05}
induces a proper wheel with center b5. So pj, is adjacent to by, and hence PU Py, U {u, b, b2}
induces a proper wheel with center b,. Similarly, if py is an Ha-crossing w.r.t. H, then either
PU(Pyyy \y) U{u, b, b} (if [A2] = 1) or PU Payp, U{u, by, b5} (if [A2| = 2) contains a proper
wheel with center b,.

So by Claim 1, py, is of type pl or p2 w.r.t. H, and since py must have a neighbor in Hs,
N(px)NH C H,.

By Lemma 6.1 applied to 3, p; and pji1, ..., pk, if |A2| = 2, then N(py) N H C Py, and
if |A2| = 1, then N(py) NH C Py, If |[Az| = 2, then Pyyp, U Pyyyy U P U{b), b2, u} contains a
proper wheel with center b5, and if |As| = 1, then Py, U Py, UPU{u, b} } contains a proper
wheel with center b),.

Case 2: No node of P\ p has a neighbor in H.

Suppose pi is an Hi-crossing w.r.t. H. If p; is adjacent to by, then P is hat of 3. So p
is adjacent to b}. But then ¥, u and P contradict Lemma 6.1. So py is not an Hj-crossing
w.r.t. H.

If py is of type Ay, t3, A, or Ad w.r.t. H, then P, UP U{u,be,b|,b,} induces a proper
wheel with center b/, (recall that by definition of S, py is not adjacent to bs).

If py, is of type a w.r.t. H, then ¥’, v and P contradict Lemma 6.2. So py is not of type
aw.rt H.

Suppose that py, is of type s1 w.r.t H. If p is adjacent to aq, then P, UPU{u, by, by, b}
induces a 4-wheel with center b,. So py is adjacent to a}. By Lemma 6.1 applied to ¥, u and
P, N(px) N H = {d},d,}. But then ¥’,u and P contradict Lemma 6.2. So py is not of type
sl w.r.t. H.

Suppose that py is of type d w.r.t. H. By Lemma 6.2 applied to X', u and P, N(py)NH =
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1Y Yass ypy } and gy, # b5. But then ¥,u and P contradict Lemma 6.1. So py is not of type
d wrt. H.

If pj, is an Hs-crossing w.r.t. H, then ¥/, u and P contradict Lemma 6.2.

So by Claim 1, py is of type pl or p2 w.r.t. H. If N(px) N H C P,3,, then ¥, u and P
contradict Lemma 6.1. If N(pg)NH C Py, then X, u and R contradict Lemma 6.1, where R
is the chordless path from p; to aj in PU(Pyy \by). So N(pg)NH C Hy. If [As] = 2, then by
Lemma 6.1 applied to ¥,u and P, N(px)NH C Py, , and hence Py p, U Py UPU{u, b2, by }
contains a proper wheel with center b,. So |A3| = 1. By Lemma 6.1 applied to ¥,u and P,
N(pk) N H C By, But then ¥', u and P contradict Lemma 6.2. O

Lemma 9.7 Let G be a 4-hole-free odd-signable graph that does not have a star cutset. Let
H(A;, Ag, By, Ba) be a short connected diamond of G. Then no node of G\ H is of type s2
w.r.t. H.

Proof: Assume that GG does not have a star cutset. Then by Theorems 3.3, 4.3, 4.4, 4.5 and
4.6 G does not contain a proper wheel, a bug with a center-crosspath, a 3PC(A, ) with a
hat, a bug with an ear nor a 3PC(A,-) with a type s2 node.

Assume that G has a node u of type s2 w.r.t. H. Let v; and vy be the neighbors of «
in Py,y, so that vy is closer to ag on Py,y. Let P,,, (resp. P, ) be the vay-subpath (resp.
agvi-subpath) of Pp,,. We choose H and such a node u so that the length of P,,, is shortest
possible. Note that since u is of type s2 w.r.t. H, |As] = 1 and if y = vy, then yby and ybl
are not edges.

Let S = N[u] \ v1, and let P = py,...,pr be a direct connection from Hy U P,,,, to Ha '\
(Pagu, U{va, b2, b5}) in G\ S. So py has a neighbor in H1UP,,,,, pk in Ha\ (Payy, U{v2, b2, 05}),
and the only nodes of H that may have a neighbor in P\ {p1,px} are ve,be and bf. Subject
to the previous choice of H and u, we choose H, u and P so that |P| is minimized.

Claim 1: Node p; is of type p1, p2, B, A, a, t3 (with neighbors in B), s2 (with neighbors
contained in By U (Pyyy, \ v1)), 3 or s4 w.r.t. H. Node py is of type pl, p2, d or an Ha-
crossing w.r.t. H. Furthermore if py is of type d w.r.t. H, then py is not adjacent to vi. In
particular, N(p1) N H = {v1,v2} or N(p1) N H C Hy U Pyyy, UBa, N(px) N H C Hy \ Payy,
and k> 1.

Proof of Claim 1: Since |A2| = 1, no node of G is of type t3 (with neighbors in A) w.r.t. H.
Since y # a9, no node is of type Ad w.r.t. H. By Lemma 9.6 no node is of type sl w.r.t. H.

Suppose that p; is a pseudo-twin of a node of By, and let H' be the short connected
diamond obtained by substituting p; into H. Then H',u and P \ p; contradict our choice
of H, u and P. So no node of P is a pseudo-twin of a node of B; w.r.t. H. By analogous
argument no node of P is a pseudo-twin of a node of A7 w.r.t. H.

Suppose that p; is a pseudo-twin of a node of By w.r.t. H, and let H' be the short
connected diamond obtained by substituting p; into H. Recall that if vy = y, then yby and
ybl, are not edges, and hence u cannot be of type d w.r.t. H'. So H' and u contradict Lemma
9.1. So no node of P is a pseudo-twin of a node of By w.r.t. H.

Suppose that p;, i € {1,k}, is of type p3 w.r.t. H, and let H' be the short connected
diamond obtained by substituting p; into H. If N(p;) " H C H; U P,,,,, then ¢ = 1 and
hence H', u and P \ p; contradict our choice of H, u and P. A contradiction is obtained by
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analogous argument if N(p;) N H C P,y U By, U Py,y. So N(p;) N H C P,y and p; has a
neighbor in both F,,,, and P,,,. Hence N(p;) N H induces a path of length 2, i.e. p; is a twin
w.r.t. H of a node v € P,,,. Since p; has a neighbor in both P,,,, and P,,,, v € {vi,v2},
and hence H' and u contradict Lemma 9.1 (recall that by definition of S, p; is not adjacent
to u). Therefore no node of P is of type p3 w.r.t. H.

Suppose that p; is a pseudo-twin of as w.r.t. H, and let H' be the short connected
diamond obtained by substituting p; into H. Note that since as # y, N(p1) N H = AU vg,.
If v1 # ag, then H', w and P\ p; contradict our choice of H, u and P. So v; = ag, and hence
H' and u contradict Lemma 9.1. So no node of P is a pseudo-twin of ay w.r.t. H.

Suppose that py is a pseudo-twin of y w.r.t. H. Note that py is adjacent to y,,. Let H’
be the short connected diamond obtained by substituting py into H. If v; # yg,, then & > 1
and hence H’', u and P\ py contradict our choice of H, u and P. So v; = y,,, and hence H’
and u contradict Lemma 9.1. So no node of P is a pseudo-twin of y w.r.t. H.

Suppose that p; is of type Ay or Hy-crossing w.r.t. H. Let p; be the node of P\ p; with
lowest index adjacent to a node of Hy. Note that N(p;) N H C Hy and N(p;) " H C Hy. By
Lemma 9.5 applied to H and p;, ..., p;, node p; is of type Ay w.r.t. H and p; is either of type
p2 w.r.t. H and N(p;) N H C Py,y, or of type d w.r.t. H such that N(p;) N H = {y, yb,, v, }-
In fact, since i # 1, i = k and hence N(py) N H C P,,, U {ybz,ybé}. In particular, no node of
H has a neighbor in P\ {p1,pr}. Let H' be the hole induced by P, p, U Pa,p,. Note that u
and P are appendices of H' that contradict Lemma 2.1. So no node of P is of type A; nor
Hi-crossing w.r.t. H.

So by Lemma 9.1, nodes of P are of type pl, p2, A, B, Bs, a, d, t3 (with neighbors
in B), s2, s3, s4 or Ho-crossing w.r.t. H. By definition of P, p; and p; are not of type
By w.r.t. H. Suppose that a node p; of P is of type s2 w.r.t. H. Then by the choice of
u, N(pi) N Payy € Payoy Uva. Since {u,p;,ba,v1} and {u,p;, b2, v2} cannot induce 4-holes,
N(pi) N Payy € Payy, \ v1. In particular, ¢ = 1 and k& > 1. Suppose that p; is of type d w.r.t.
H. Then i = k. If p is adjacent to vy, then vy = y and w.l.o.g. N(pr) N H = {Y, Yay, by |
and hence Py, U {u, Ya,,pr} induces a 4-wheel with center y. So p is not adjacent to v,
and hence k£ > 1. This completes the proof of Claim 1.

Claim 2: Node vy does not have a neighbor in P\ {p1,pr}. In particular, fori=2,...k —1,
N(p;) N H C B,.

Proof of Claim 2: Suppose that v9 has neighbor in P\ {p1,pr}. We first show that no node
of By has a neighbor in P\ {p1,pr}. Assume it does. Then there is a minimal subpath P’
of P\ {p1,px} such that one endnode of P’ is adjacent to vo and the other to a node of Bs.
W.lo.g. bs is adjacent to an endnode of P’. By minimality of P’, by, P/, vy is a chordless
path, and hence Py, U P,,, U P’ Uw induces a 3PC(ba,v2) (recall that if y = vy, then yby is
not an edge). So no node of By has a neighbor in P\ {p1,px}-

Let p; be the node of P\ {p1,pr} with lowest index adjacent to ve. If N(p1) N H C Hy,
then H and py,...,p; contradict Lemma 9.5. So p; has a neighbor in P,,,,. Let H' be the
hole induced by Pp,p, U Payp,- Then (H',u) is a bug. If N(p1) N H = vy, then py,...,p; is a
hat of (H',u). So N(p1) N H # v;.

Suppose that N(p;) N H = {v1,v2}. By Claim 1 and definition of P, w.l.o.g. p has a
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neighbor in (Py,y U Py,y) \ v2. Let P’ be the chordless path from py to by in ((Py,y U Phyy) \
v2)Upg. Note that by Claim 1, py is not adjacent to v, and hence P'UPU{u, vy, vs} induces
a proper wheel with center vy. So N(p1) N H # {v1,v2}.

Therefore p; has a neighbor in Hy U (Pa,y, \ v1). W.lo.g. p; has a neighbor in
Pup, U (Payw, \ v1) and if py is of type t3 w.r.t. H, then it is adjacent to by. Let H' be
the hole induced by Py, p, U Payp,- Then (H',u) is a bug, and by Claim 1, (H',u), p; and
P1, ---, Pi—1 contradict Lemma 6.1. This completes the proof of Claim 2.

We now consider the following cases.

Case 1: A node of H has a neighbor in P\ {p1,px}.
Let p; be such a neighbor with highest index. By Claim 2, N(p;) " H C By. W.l.o.g. it
suffices to consider the following two cases.

Case 1.1: p; is of type By w.r.t. H.
Note that by definition of P, pj has a neighbor in ¥\ {b2, b5,b;}. By Claim 1 and Lemma
6.2 applied to X, p; and p;11, ..., pr one of the following holds:

(a) pi is of type d w.rt. H , N(px) OV H = {y, Yo, Yoy, }+ Yoo 7 b2 and yy, # by,
(b) w.lo.g. ybs is an edge and N(py) N H = vy, or

(c) pg is of type p2 w.r.t. H and N(py) N H C P,,,.

If (a) or (c) holds, then (H \ Py, ) U{pi, ..., pr } induces a connected diamond whose side-
2-paths have fewer nodes in common than the side-2-paths of H, contradicting our choice of
H. So (b) must hold, and hence yb}, and yu are not edges. Let P’ be a chordless path from
p1 to y in HyU Py, Upy, and let H' be the hole induced by P'U P U (B, \b5). Since H' Ub,
cannot induce a 3PC (pi, vy, ), (H',b5) is a wheel. Since vy p; is not an edge, (H',b5) cannot
be a twin wheel, and hence it is a bug. If H’ contains both v; and wvo, then u is a center-
crosspath of (H',b,). So H' does not contain both v; and ve. By Claim 1 and definition of P
it follows that N(p1) N H = {v1,v2}. But then Py U Py, is a center-crosspath of (H',b5).

Case 1.2: N(p;) N H = b,
As before, py, has a neighbor in X\ {bs, ), b1 }. By Claim 1 and Lemma 6.1 applied to 3,
p; and p;11, ..., pr one of the following holds:
(a) N(pk) NH = Ub’zv
(b) pi is of type p2 w.r.t. H and N(py) N H C Py,
(c) p is of type d w.r.t. H and either N(px) N H = {y, Yn,, Ya, } OF P is adjacent to b}, or
)

(d) px is an Hp-crossing w.r.t. H and N(py) N H = {b5, vy, yp, }-

Let P’ be a chordless path from p; to y in Hy U P,,, Up;. Suppose that (a) holds. Let H’
be the hole induced by P'UPU(Py, \by). Since H' U, cannot induce a 3PC (vy,, pi), (H', b3)
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is a wheel, and hence it must be a bug. If H' contains both vy and vy, then u is a center-
crosspath of (H',b,). So H' does not contain both v; and ve. By Claim 1 and definition of P
it follows that N(p1) N H = {vi,v2}. But then Py U Py,y, is a center-crosspath of (H',b5).

Suppose that (b) holds. If py is not adjacent to b, then (H \ Ub'z) U{pi,...,px} contains a
short connected diamond H'(A;1, A2, By, B2) and H',u and py, ..., p;—1 contradict our choice
of H',u and P. So py, is adjacent to b5. Let H’' be the hole induced by P'U P U (Py, \ b3).
Since (H',b5) cannot be a proper wheel, N(b5) N H' = {p;, px, vy, }. In particular, b is not
adjacent to py, and hence by Claim 1, by is not adjacent to p;. Also H' does not contain by
nor b}. If bg has a neighbor in P\ {p1,py}, then a subpath of P\ {p1,px} is a hat of X. So by
has no neighbor in P. Since by and b, are not adjacent to p1, by Claim 1, p; is of type pl, p2,
A or aw.r.t. H. Since H' does not contain by nor by, N(p1) N H # by nor b}. In particular p;
has a neighbor in w.l.o.g. ¥\ {ba,b),b1}. But then X, p; and p1,...,p;—1 contradict Lemma
6.1.

Suppose that (c) holds. First assume that N(pg) N H = {y,Ys,,Ya, }. Then (H \ (P, \
b4)) U{pi, ...,pr} induces a short connected diamond H'(A;, Aa, B, B2). By Claim 1, u is of
type s2 w.r.t. H', and hence H', v and p1, ..., p;—1 contradict our choice of H, v and P. So py
must be adjacent to b, so yb), is an edge. Suppose that N(px) N H = {y, b5, yp,}. Let H' be
the hole induced by P’ U P. Since {y,pg,pi} C N(by) NH', (H',b,) is a twin wheel or a bug,
ie. N(bS)NH" = {y,pk,pi}. In particular, b/, is not adjacent to p1, and hence by Claim 1, by
is not adjacent to p1. Also H' does not contain by nor b}. If by has a neighbor in P\ {p1,pr},
then a subpath of P\ {p1,px} is a hat of ¥. So by has no neighbor in P. Since by and b, are
not adjacent to pq, by Claim 1, p; is of type pl, p2, A or a w.r.t. H. Since H' does not contain
by nor by, N(p1) N H # by nor b}. In particular, p; has a neighbor in w.l.o.g. ¥\ {ba, b, b1 }.
But then ¥, p; and py, ..., pi—1 contradicts Lemma 6.1. Therefore N(px) N H = {y, b}, Ya, }-
Since yb), is an edge, yby is not. Suppose that N(p;) N H is not contained in {v1,v2}. Then
by Claim 1, p; is not adjacent to ve and p; has a neighbor in Hy U (P, \ v1). Let P” be
a chordless path from p; to by in Hy U (Paye, \ v1) U {p1,...,pi, b2}, and let H” be the hole
induced by P"U (Py,y \ y) U{u, pit1,...,pr}. Note that b, is adjacent to ba,u,p; and py, and
hence (H", b)) is a proper wheel, a contradiction. Therefore N(p1) N H C {v1,v2}, and hence
p1 is adjacent to vi. But then Fyrpy U Pago, U {u,p1,...,pi,by} contains a 3PC(bh, v1).

So (d) must hold. Then yp, # bz and vy, # y, and hence P'U P U (Py, \ b)) Uyp, induces
a 3PC(pr,y).

Case 2: No node of H has a neighbor in P\ {p1,pg}.
By Claim 1 it suffices to consider the following cases.

Case 2.1: p; is of type pl or p2 w.r.t. H.

By Claim 1, N(px) N H C Hy. If N(p1) N H C Hy, then H and P contradict Lemma 9.5.
So N(p1) N H C Py, Uvs.

First suppose that p; is not strongly adjacent to H, and let v be its neighbor in H. By
definition of P, v € P,,,,. Note that by Claim 1, p; is not adjacent to v;. W.Lo.g. p; has a
neighbor in Py,,U(P,,,\v2). Let P’ be the chordless path from py, to by in PyyyU(Pyyy \v2)Upg.
Then P’ U P U P,,p, U Payuy Uwu induces a 3PC(be,v). Therefore p; is of type p2 w.r.t. H.

Let H' (resp. H") be the hole induced by P,,p, U Pyp, (resp. Py, U Py ). I py s
of type p2, d or Ha-crossing w.r.t. H, then either H' U P or H” U P induces a 3PC(A, A)
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or a 4-wheel with center v2. So by Claim 1, pg is not strongly adjacent to H. Let v be the
neighbor of py in H. W.lo.g. v € (Pyy U P,,y) \ {b2,v2}. Recall that if y = vy then yby
and yb,, are not edges, and hence (H',u) is a bug. If N(p;) N H = {v1, v}, then bug (H', u),
p1 and P\ p; contradict Lemma 6.2. So N(p;) " H C P,,,,. By Lemma 2.1 applied to
H', uand P, v = v,. By Lemma 2.1 applied to H”, u and P U (P, \ b2), yb, is an edge.
Hence v, # y and since {ba, b, y, vbé} cannot induce a 4-hole, v,y is not an edge. But then
(Pasby U Pyypy, U P) \ ag contains a 3PC(vp,, y).

Case 2.2: p; is of type B or t3 w.r.t. H.

W.lo.g. p1 is adjacent to by. By definition of P, py has a neighbor in 3\ {bs, b}, b1 }, and
by Claim 1, py is of type pl, p2, d or crosspath (in the case where pj, is an Hy-crossing w.r.t.
H) w.r.t. 3. By Lemma 6.3 applied to X, p; and P\ pq, it follows that py is not strongly
adjacent to X, and hence it is not strongly adjacent to H. Let v be the neighbor of p; in H.

Suppose that v € Py, \ b5. If by is not an edge, then Py, U P,y U (B, \ by) U P Uu
contains a 3PC(by,y). So boy is an edge and hence vy # y. Let H' be the hole contained
in Paypy U (Payey, \ b5) U P that contains Pyyp, U P. Then (H',b2) is a bug and u is its
center-crosspath. So v ¢ Py, \ bj.

Suppose that v € Py,,\{b2,y}. Let H' be the hole induced by P, UP,,,UP together with
the vy-subpath of Py,,. If byv is not an edge, then H' U Parlbrl induces a 3PC(bab1p1, ajaias).
So byv is an edge, and hence (H’, by) is a bug and Pa/l b, its center-crosspath, a contradiction.

Therefore v € P,y \ {v2,y}. But then P, ; UPUu together with the agv-subpath of P,
induces a 3PC(b1bap1, v1uve).

Case 2.3: p; is of type A or a w.r.t. H.

W.lo.g. p; is adjacent to aj. If p; is not adjacent to a;, then by Claim 1, either ¥, p;
and P\ p; or ¥y, p; and P\ p; contradict Lemma 6.2. So p; is adjacent to a;. W.lo.g.
pr has a neighbor in (Py,y U Py, ) \ {5, v2}. By Claim 1 and Lemma 6.3 applied to 33, p1
and P\ p1, node pj is not strongly adjacent to ¥o. Let v be the unique neighbor of py in
Y. By our assumption v € (Puyy U Py,) \ {05, v2}. If vby is not an edge, then the hole
induced by Py U Py, and paths u and P contradict Lemma 2.1. So vbl, is an edge. Since
{b2, b5, p, v} cannot induce a 4-hole, py is not adjacent to by. If yby is not an edge, then
(Pa2b/2 \ 05) U Pyyp, U P U{u,be} induces a 3PC(uviva,ajagpr) or a 4-wheel with center as.
So ybe is an edge, and hence yb), is not. Since {be, ), v,y} cannot induce a 4-hole, vy is not
an edge. If follows by Claim 1 that N(px) N H = v, and hence Hy U P induces a 3PC(v,y).

Case 2.4: p; is of type s2, s3 or s4 w.r.t. H.

If py is of type s3 we may assume w.l.o.g. that p; is adjacent to a)j. Let H' be the hole
induced by Pa’l b, U Pa2b/2. Then (H’,p1) is a bug such that b/, is the node-attachment of p; to
H'.

Suppose that pg is not strongly adjacent to H, and let v be its neighbor in H. Then
S (Pbe U Pb’Qy U PUQy) \ {bg, /2,2)2}. If v € (Pb’Qy U Pv2y) \ {b/ ,7)2}, then Pb’Qy U Py UP
contains a 3PC(p1,v). So v € Py, \ {b2,y}, and hence the vy-subpath of P,,, together with
P,y U Pbéy U P contains a 3PC(p1,y). Therefore, py must be strongly adjacent to H.

Suppose that py, is of type p2 w.rt. H. If N(py) NH C P,y U (Pbéy \ b,), then po, ..., pg is
a center-crosspath of (H',py). If py, is adjacent to b5, then P, U Pbéy U P induces a 4-wheel
with center b5. So py is not adjacent to b5, and hence N(py) N H C B,,,. Note that p; is not
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adjacent to y, and hence (H \ (H; Uby)) U P contains a 3PC(p1,y). So py is not of type p2
w.r.t. H.

Suppose that py is of type d w.r.t. H. First suppose that pj is not adjacent to b,. Then
N(py) N H = {y,y@,ybé}, else po,...,px is a center-crosspath of (H',p;). If k > 2, then
PU(H\ (Hy U Py,y)) contains a 3PC(p1,pr). So k = 2, and hence (H' \ y) U P induces
a a 4-wheel with center p;. Therefore py is adjacent to b5. If py is not adjacent yp,, then
Pyyy U Py U P induces a 4-wheel with center by. So py is adjacent to yp,. Since ybl is an
edge, yby is not an edge, i.e. yp, # ba. So Py p, U Pyyp, Up: induces a bug with center p; and
P\ p; is its center-crosspath. Therefore, py is not of type d w.r.t. H.

So by Claim 1, pg is an Ha-crossing w.r.t. H. First suppose that |N(pg) N Pbéy\ = 2.
Then pryp, is an edge and yp, # bo. If either k > 2 or pibl, is not an edge, then P\ p; is either
a center-crosspath or an ear of (H',p1). So k = 2 and pib) is an edge. But then P, U P
contains a 3PC(p1,yp,). Therefore |[N(py) N Pyy,| = 1, and hence pryy, is an edge, yy, # b
and |N(pg) N Py,y| = 2. But then P, ,;; U P contains a 3PC(p1, yy,)- O

Lemma 9.8 Let G be a 4-hole-free odd-signable graph that does not have a star cutset. Let
H(Aq, A, B, Bs) be a short connected diamond of G. Then no node of G\ H is of type s3
or s4 w.r.t. H.

Proof: Assume that GG does not have a star cutset. Then by Theorems 3.3, 4.3, 4.4, 4.5 and
4.6 G does not contain a proper wheel, a bug with a center-crosspath, a 3PC(A, ) with a
hat, a bug with an ear nor a 3PC(A,-) with a type s2 node.

Assume that G has a node u of type s3 or s4 w.r.t. H. Then |As| = 1, and if u is of type
s4, then agby and asb,, are not edges. Let S = N[u]\ (A1 U By). Since S is not a star cutset,
there exists a direct connection P = py, ..., pg from Hy to Hs \ {ag,be,bs} in G\ S. So p; has
a neighbor in Hy, py in Hy \ {ag, ba, b5}, and the only nodes of H that may have a neighbor
in P\ {p1,pr} are as, bo and b,. We choose H, v and P so that |P| is minimized.

Claim 1: No node of P is of type Ad w.r.t. H, nor a pseudo-twin w.r.t. H of a node of
By Uas. In particular, k > 1.

Proof of Claim 1: By Lemma 9.1, k = 1 if and only if p; is of type Ad w.r.t. H, or it is a
pseudo-twin w.r.t. H of a node of By U as. We now show that none of these types of nodes
can occur.

Suppose that p; is of type Ad w.r.t. H. Then ao = y and w.l.o.g. P1Yp, 1s an edge. If wis
adjacent to ap, then Pa2b/2 U{u, a1, p1} induces a 4-wheel with center ay. So u is not adjacent
to a1, and hence N(u)NH = {b1, b2, b}, a),as}. But then Poyp, U {u, a’, p1} induces a 4-wheel
with center as.

Suppose that p; is a pseudo-twin of a node of By w.r.t. H. W.l.o.g. p; is a pseudo-twin
of by. Let H' be the short connected diamond obtained by substituting p; into H. Since u is
not adjacent to py, u cannot be of type s3 or s4 w.r.t. H', so by Remark 9.2 (applied to H’
and u), |N(u) N{by,b],b5,p1}] < 1. So u is of type s4 w.r.t. H, and hence azbe and asb), are
not edges. But then H' and u contradict Lemma 9.1.

Finally suppose that p; is a pseudo-twin of as w.r.t. H, and let H' be the short connected
diamond obtained by substituting p; into H. Since u is not adjacent to pp, it follows that
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H’ and u contradict Lemma 9.1. This completes the proof of Claim 1.

Claim 2: Node p; is of type p1, p2, B, A1, A, a, t3 (with neighbors in B) or Hj-crossing
w.r.t. H, and p is of type pl, p2, d or Hy-crossing w.r.t. H.

Proof of Claim 2: By Lemmas 9.6 and 9.7 no node is of type sl nor s2 w.r.t. H. Since
{ag,be,u,p;} cannot induce a 4-hole, no node of P is of type s3 nor s4 w.r.t. H. Since
|A2| = 1, no node is of type t3 (with neighbors in A) w.r.t. H.

Suppose that py is a pseudo-twin of y w.r.t. H in the case as # y, and let H' be the
short connected diamond obtained by substituting p; into H. Note that w is of the same
type w.r.t. H' as it is w.r.t. H, and hence H', u and P\ py contradict our choice of H,u and
P. So no node of P is a pseudo-twin of y w.r.t. H in the case as # y.

By analogous argument, no node of P is of type p3 w.r.t. H.

Suppose that p; is a pseudo-twin w.r.t. H of a node of Ay U By and let H' be the short
connected diamond obtained by substituting p; into H. By Lemma 9.1 u is of the same type
w.r.t. H' as it is w.r.t. H, and hence H',u and P \ p; contradict our choice of H,u and P.
So no node of P is a pseudo-twin w.r.t. H of a node of Ay U Bj.

By Claim 1, no node of P is a pseudo-twin w.r.t. H of a node of By U aq, nor of type Ad
w.r.t. H. By definition of P, p; and p; cannot be of type Bs w.r.t. H. By Lemma 9.1, the
proof of Claim 2 is complete.

Claim 3: At most one of the node sets By or {as} may have a neighbor in P\ {p1,pr}. So,
if a node p; € P\ {p1,pr} has a neighbor in H, then either p; is of type By w.r.t. H or it is
not strongly adjacent to H with a neighbor in {ba, by, as}.

Proof of Claim 3: Since be, b, and ag are the only nodes of H that may have a neighbor in
P\ {p1,px}, by Lemma 9.1 if p; € P\ {p1, pr} has a neighbor in H, then p; is either of type
By w.r.t. H or it is not strongly adjacent to H with a neighbor in {be, b}, as}. Suppose that
both ay and a node of By have a neighbor in P\ {p1,pr}. Then there is a subpath P’ of
P\ {p1,pr} of length at least 1, whose one endnode is adjacent to ag, the other to a node of
By, w.l.o.g. say to by, and no intermediate node of P’ has a neighbor in H. If asby is not
an edge, then P, U P’ U P,,;, induces a 3PC(ag,bs). So agby is an edge, and hence by
definition of type s3 and s4 nodes w.r.t. H, N(u) N H = By U {ag,a),b1}. Then ayb is not
an edge.

Suppose that b, has a neighbor in P\ {p1,pr}. Then there exists a minimal subpath
P" of P\ {p1,pr} such that one endnode of P” is adjacent to ag, the other to b, and no
intermediate node of P” has a neighbor in H \ b2. But then Ppy,p, U P,y U P” induces a
3PC(ag,b,). So b, has no neighbor in P\ {p1,pr}

Since asbs is an edge, pi cannot be an Ho-crossing w.r.t. H. So by Claim 2, py is of type
pl,p2ordw.r.t. H. Note that since az = y if py is of type d w.r.t. H, N(pg)NH = {b2,y, yy, }-
By definition of P, if py is of type pl or p2 w.r.t. H, then N(py) N H C P, and py has a
neighbor in the interior of Py,

Let p; (resp. pj) be the node of P\ {p1,pr} with highest (resp. lowest) index adjacent
to a node of H. Suppose that py is of type d w.r.t. H, ie. N(pp) N H = {bQ,y,ybIQ}. If py
is of type B or t3 w.r.t. H, then (Pa2b/2 \ a2) U P U by induces a proper wheel with center bs.
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If py is of type A1, A or a wr.t. H, then either Py U Py U P (if p; is adjacent to a})
or Py p U Pa2b/2 U P (if py is not adjacent to a}) induces a proper wheel with center as. So
by Claim 1, p; must be of type pl, p2 or Hj-crossing w.r.t. H. Then pi,...,p; contradicts
Lemma 9.5. Therefore p; cannot be of type d w.r.t. H.

So by Claim 2, py is of type pl or p2 w.r.t. H, and hence by definition of P, N(py)NH C
Py, and py has a neighbor in P,y \ {a2,b5}. Let vi (resp. v2) be the neighbor of py
in P, that is closer to by (resp. az). Let Py, (resp. Pya,) be the byvi-subpath (resp.
vaag-subpath) of Pa2b/2. If p; is adjacent to bo, then X, p; and p;i1, ..., pr contradict Lemma
6.1. So p; is adjacent to as.

Suppose that N(p1) N H C Hy. Then by Lemma 9.5 applied to H and py, ..., pj, node p;
is of type Ay w.r.t. H and p; is adjacent to as. In particular, as has at least two neighbors
in P\ {p1,pr}- Note that since by has a neighbor in P\ {p1,pr}, j # ¢ and j # i+ 1. But
then Py U Py, U P Uaz induces a proper wheel with center ap. Therefore N (p1) N H is
not contained in Hj.

Suppose that p; is of type A or a w.r.t. H. If p; is not adjacent to a}, then Paflb/l U
Pbév1 U P U {a1, a2} induces a proper wheel with center ag. So p; is adjacent to o}, and
Pa’l v, U Pb/2v1 U P U ay induces a wheel with center as, and hence as has exactly one neighbor
in P\ {p1,px} and az does not have a neighbor in P, . Let p; be the neighbor of by
in P\ {p1,pr} with highest index. Then Py U {p1, .-y Dk, a2, b2} induces a 3PC(by,p;).
Therefore, p; is not of type A nor a w.r.t. H.

So by Claim 2, p; is of type B or t3 w.r.t. H. PU Pl,/2v1 U by induces a wheel with center
by, and hence (since this wheel cannot be proper) N(bs) N P = {p1,p;}. Let py be the
neighbor of as in {p;+1,...,p;} with lowest index. If ag has no neighbor in {ps,...,p_1},
then Pa2b/2 U {ba,p1,...,pi} induces a proper wheel with center by. So as has a neighbor in
{p2,...,p—1}, and let p;; be such a neighbor with highest index. Then {pj,...,py,a2,b2}
induces a 3PC(p;, ag). This completes the proof of Claim 3.

By Claim 2, it suffices to consider the following cases.

Case 1: p; is of type pl, p2, A1 or Hi-crossing w.r.t. H.

Then N(p;) N H C Hy. Let p; be the node of P with lowest index that has a neighbor
in Hy. By Claim 2 N(p;) N H C Hs and no node of {ps,...,pi—1} has a neighbor in H. By
Lemma 9.5 applied to H and py, ..., p;, and by symmetry w.l.o.g. one of the following holds:

(a) N(p1)NH = A; and p; is either of type p2 w.r.t. H with neighbors in P,,, or N(p;)NH =
{y7 ybzvybé}a

(b) N(p1)NH = A; and N(p;) N H = ag,
(¢c) N(p;) N H = By and p; is of type p2 w.r.t. H with neighbors in P,,;,, or

(d) N(pi) N H = By and N(p;) N H =10].

Suppose that (a) holds. W.lo.g. u is adjacent to aj. Then Py U (Poyyy \ a2) U P Uu
contains a 3PC(b, a}).
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Suppose that (c) holds. Then (H \ b1) U {p1, ..., p;} contains a short connected diamond
H'(A1, A, B}, By) where By = {V),p;}. By Lemma 9.1, u is of type s3 or s4 w.r.t. H', and
hence H',u and p;y1, ..., pr contradict our choice of H, u and P.

Suppose that (d) holds. By Claim 3, ay does not have a neighbor in P\ p;. Let P’ be a
chordless path from py, to ag in (Hy\ B2)Upy, and let H' be the hole induced by PlUPa’lb’l UP.
Since H' U b}, cannot induce a 3PC'(b),p;), (H',b5) is a bug. If u is adjacent to a}, then u is
a center-crosspath of (H’,b}). So u is not adjacent to a}, and hence it is adjacent to b;. But
then H' Uw induces a 3PC(ag,b)).

So (b) must hold. By Claim 3, be and b, do not have neighbors in P\ py. W.lo.g. u is
adjacent to a;. If py and by are connected in G[(Hz \ {az, b5}) Upg], then let P’ be a chordless
path from py to by in G[(Hz \ {a2,b5}) Upg]. Then P, p, UP U P Uwu induces a 3PC(aq,by).
So py and by are not connected in G[(Hz \ {az,b5}) Upgl, L.e. az =y and N(py) N H C P,y .
Let P’ be a chordless path from pj, to by in G[(Py,p, \ a2) U pg]. Then Py UP U P Uu
induces a 3PC (a1, b).

Case 2: p; is of type A or a w.r.t. H.

W.l.o.g. we may assume that p; is adjacent to a; and as. First we show that by and b’2
cannot have a neighbor in P\ p;. Assume otherwise, and let p; be the node of P with lowest
index adjacent to a node of By. By Claim 3, as does not have a neighbor in P\ {p1,px}. If p;
is not of type Ba, then ¥ and py, ..., p; contradict Lemma 6.1. So N(p;) N H = Bs, and hence
by Lemma 6.2 applied to ¥’ and p1, ..., p;, N(p1)NH = A. Let H'(A}, Aa, B}, By) where A} =
{p1,d}} and B} = {b},p;}, be the short connected diamond induced by (H\ Py,s,)U{p1, ..., pi }-
Then H' and u contradict Lemma 9.1. Therefore, no node of By has a neighbor in P\ p.

First suppose that either as # y, or ags = y and py has a neighbor in P,,;, \ag. Let P’ be the
chordless path from py to by in (Ha\ {b, as})Upg. If u is adjacent to a1, then P, ,, UP'UPUu
induces a 3PC(ba,a1). So u is not adjacent to a;, and hence N(u) N H = {by,ba, b, a},as}.
If p; is not adjacent to a}, then P’UP U AUw induces a proper wheel whith center ay. So py
is adjacent to a}. But then P, ; UPUP U{a},u} induces a 3PC(ub1by, ajaip;). Therefore
az =y and pi does not have a neighbor in P,,;, \ a2. So by Claim 2, py, is of type pl or p2
w.r.t. H and N(py)NH C P,,p,. In particular, agbl, is not an edge. If p; is not adjacent to a}
then 3, p1 and P\ p; contradict Lemma 6.2. So p; is adjacent to a}, and hence (H \ az) U P
contains a short connected diamond H'(Ay, A}, B1, Bs) where A} = {p1}. But then H' and
u contradict Lemma 9.1.

Case 3: p; is of type B or t3 (with neighbors in B) w.r.t. H.

W.lo.g. we may assume that p; is adjacent to b;. Suppose that as has a neighbor in
P\ pg, and let p; be such a neighbor with lowest index. By Claim 3, by and b do not
have neighbors in P\ {p1,pr}. If asbs is not an edge, then Pp,p, U {u,p1,...,p;} induces a
3PC(ag,bs). So asbs is an edge, and hence agb), is not. But then Py, U {u,p1, ..., pi} induces
a 3PC(ag,b,). Therefore, as does not have a neighbor in P \ p.

Suppose that a node of By has a neighbor in P\ {p1,px}, and let p; be such a neighbor
with highest index. W.l.o.g. p; is adjacent to bs. Let P’ be the chordless path from p; to as
in (Hy \ Ba) Upy and let H' be the hole induced by P’ U P U P, ;,. Then (H',b) is a twin
wheel or a bug. In particular, p; is not adjacent to by, ashs is not an edge and H' does not
contain vy,, i.e. pi has a neighbor in Hs \ (B2 U vy,).

68



Suppose that p; is of type By w.r.t. H. Then by symmetry, agbl, is not an edge, H’
does not contain vy, i.e. py has a neighbor in Hy \ (Bz U {vp,, vy }). So by Claim 3 and
Lemma 6.2 applied to %, p; and p;i1,...,pr, node pg is either of type p2 w.r.t. H with
neihgbors contained in F,,,, or py is of type d w.r.t. H adjacent to y, Yoo Ypy,- In both cases
(H\ Pa,p,) UA{pi,....,pr} induces a connected diamond whose side-2-paths have fewer nodes
in common than the side-2-paths of H.

Therefore N(p;) N H = by. Since pi is not adjacent to by, and it has a neighbor in
H>\ (B2Uwy,), by Claim 2 and by Lemma 6.1 applied to X, p; and p;t1, ..., pg, it follows that
either py, is of type p2 w.r.t. H and N(py) N H C P,y \ ba, or py is of type d w.r.t. H and
N(pk) N H = {Y, Ya, Yy, } (in particular as # y). In both cases (H \ vy,) U{p;, ..., px} contains
a short connected diamond H'(A;, A, By, B2) that contains p;,...,px. But then H' u and
P1, ..., pi—1 contradict our choice of H,u and P.

Therefore no node of H has a neighbor in P\ {p1,pr}. Note that by definition of P, py
has a neighbor in ¥\ {bs, b, b;}. By Lemma 6.3 applied to X, p; and P \ p;, node pj, cannot
be of type p2, d nor Hs-crossing w.r.t. H. Hence by Claim 2, py is not strongly adjacent to
H. Let v be the neighbor of p; in H.

Suppose that pib) is not an edge. Then by Lemma 6.2 applied to ¥, p; and P \ py,
either asgby is an edge and v = Vpy,, OF asbl, is an edge and v = wp,. In the first case
Py U Pa2b/2 U P induces a bug with center b, and Pa’l y, 1s its center-crosspath. In the second
case Py,p, UPoyp, UP induces a bug with center by and P,y is its center-crosspath. Therefore
p1b) is an edge.

W.lo.g. uis adjacent to a1, and hence by definition of type s3 and s4 nodes w.r.t. H it
is not adjacent to by and asbs is not an edge. Let P’ be the chordless path from py to as in
(Hz \ Ba) Upg. If v # vp,, then P"U P U Py p, U {u, by} induces a 3PC(b1bap1, ajuaz). So
v = vp,. Let H' be the hole induced by (P,p, \ b2) U Pyp, UP. Then (H',by) is a bug and u
its center-crosspath. O

Lemma 9.9 Let G be a 4-hole-free odd-signable graph that does not have a star cutset. Let
H(Ay, Ag, By, Ba) be a short connected diamond of G. If a node u is of type a, t3, p3 w.r.t.
H or it is a pseudo-twin of a node of BU Ay w.r.t. H, or a pseudo-twin of y w.r.t. H when
y & {a1,az}, or it is a pseudo-twin of a node of Ag w.r.t. H when |As| = 2, then there exists
a short connected diamond H' such that one of the following holds:

(1) Hy C H', we H{ = H'\ Hy, H{|Hz is a 2-join of H' with special sets A}, Aa, B}, B
such that Ay N Ay # @ and B] N By # @.

(it) Hi C H and w € Hy = H'\ Hy, Hi|H) is a 2-join of H' with special sets Ay, Al, By,
B, such that AY N Ay # @ and B, N By # &.

Proof: Assume that G does not have a star cutset. Then by Theorems 3.3, 4.3, 4.4, 4.5 and
4.6 G does not contain a proper wheel, a bug with a center-crosspath, a 3PC(A,-) with a
hat, a bug with an ear nor a 3PC(A, -) with a type s2 node. We consider the following cases.

Case 1: u is of type p3 w.r.t. H or it is a pseudo-twin w.r.t. H as in the statement of the
lemma.

Let H' be the short connected diamond obtained by substituting u into H. Then clearly
H' satisfies (i) or (ii).
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Case 2: Node u is of type a w.r.t. H.

Then |A3] =1 and w.lo.g. N(u) N H = {a1,a2}. Let S = (Nazg] \ (H Uu))U A. Since
S cannot be a star cutset, there exists a direct connection P = pq, ..., pg from u to H \ S in
G\ S. So p; is adjacent to u, pi to a node of H \ S, and a; and o) are the only nodes of H
that may have a neighbor in P \ py.

(1) pg is of type pl, p2, p3, d, B, Ba, t3 (with neighbors in B), Hj-crossing or Ha-crossing
w.r.t. H, orit is a pseudo-twin w.r.t. H of a node of B, or y when y # ao. In particular,
pi is adjacent to at most one node of A.

Proof of (1): By Lemmas 9.6, 9.7 and 9.8, no node is of type sl, s2, s3 nor s4 w.r.t. H. Since
|A2| = 1, pg is not adjacent to ay and it has a neighbor in H \ S, p; cannot be of type Ay,
A a, t3 (with neighbors in A), Ad nor a pseudo-twin of a node of A w.r.t. H. So the result
follows by Lemma 9.1. This proves (1).

(2) a1 cannot have a neighbor in P\ pg.

Proof of (2): Suppose it does. Let R be a chordless path from py to ag in (H \ A1) U pg, and
let H' be the hole induced by RU P Uu. Since (H',a;) cannot be a proper wheel, a; has
exactly one neighbor p; in P and j < k.

Suppose that @} does not have a neighbor in P\ p;. By Lemma 9.5 applied to H and
Djs .- Dk, DOde py, must have a neighbor in Hy. So by (1), pi, has a neighbor in H;\ A;. Recall
that by definition of a connected diamond at least one of agba, agbf is not an edge. W.l.o.g.
assume that asbl is not an edge. Let T be a chordless path from py to a} in (Hy\a1)U{pg, b5 }.
Recall that no node of P is adjacent to ay and hence T'U P U {ay,as,u} induces a proper
wheel with center a;. So a} has a neighbor in P\ py.

If @} is not adjacent to p;, then a subpath of P\ pj is a hat of X1, a contradiction. So a
is adjacent to p;. If | does not have a neighbor in p,...,p;_1, then {p1,...,p;j,u,a1,as,a}}
induces a proper wheel with center a;. So a) has a neighbor in p,...,pj—1. So (H',a1) and
(H',d)) are both bugs. In particular, N(a;) N P = p; and N(a}) NP = {p;,pj—1}.

Suppose that N(py) N H C Hy. Then by Lemma 9.5 applied to H and pj, ..., p, node
pr is either of type p2 w.r.t. H with neighbors in P,,, or of type d w.r.t. H such that
N(pk) " H = {y, Yb,, Y, }- In both cases Pyyp, U Poyp, U P Uwu induces a bug (H',a1) with a
center-crosspath, a contradiction.

So pi has a neighbor in Hy, and hence by (1), it has a neighbor in Hy \ A;. By (1) pg
has at most one neighbor in A and hence by Lemma 6.2 applied to X1, p; and pjy1, ..., P,
N(pr) N X1 = {b2, b1, ] }. But then P, p, U Py, UP Uw induces a bug (H', a1) with center-
crosspath P, 5, \ a1, a contradiction. This proves (2).

We now consider the following two cases.

Case 2.1: a} has a neighbor in P\ py.

Let p; be such a neighbor with highest index. If p; is of type d, B, B, Ha-crossing, a
pseudo-twin of y when y # ao, or a pseudo-twin of a node of By Uby w.r.t. H, then ¥4, p;
and pji1, ..., pi contradict Lemma 6.1.

Suppose that py is a pseudo-twin of b} w.r.t. H. Then by (2), Ho U P,,p, U P Uu induces
a short connected diamond H'(A}, Ag, B}, Ba) where A} = {a1,u} and B} = {b1,px} and H'
satisfies (i). So we may assume that py is not a pseudo-twin of b} w.r.t. H.
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If py, is an Hi-crossing w.r.t. H, then by Lemma 6.1 applied to ¢, p; and pjy1, ..., pk,
node py, is adjacent to by and o}, and hence Py U Py, U PUw induces a proper wheel with
center a.

So by (1), px is of type pl, p2, p3 or t3 (with neighbors in B) w.r.t. H. If N(px) N H C
Py, then by (2), (H \ a})U (P Uu) contains a short connected diamond H'(A}, Az, By, Ba),
where A} = {a1,u}, that satisfies (i). So we may assume that p; has a neighbor in H'\ Py .
But then by Lemma 6.1 applied to p;, path p;i1,...,pr and either ¥y or Yo, node p, must be
of type t3 w.r.t. H such that N(pg) N H = {b, ba, b5}. But then by (2), Ho U P, UP Uu
induces a short connected diamond H'( A}, As, By, B2), where A] = {a1,u} and B} = {b1,pr},
and hence (i) holds.

Case 2.2: a} does not have a neighbor in P\ py.

So by (2), no node of H has a neighbor in P \ p;. If p; does not have a neighbor in
Y1\ {a1,d],as}, then it has a neighbor in X9 \ {a1,d],a2} and hence (since py is adjacent
to at most one node of {a1,a},as} by (1)) g, u and P contradict Lemma 6.2. So p; has a
neighbor in 5 \ {a1,a},a2}. By Lemma 6.2 applied to X1, u and P, and since by (1) py is
adjacent to at most one node of {ai,a},as}, one of the following holds:

N(pk) Ny = {bQ, bll}
N(pr) NYXq = {v1,v2} where vivs is an edge of Py,
N

(a)
(b)
(¢) N(pg)NE1 = {by, b2, vp, ).
(d)
)

b

d) agbsy is an edge and N (pg) N X1 = {vg, }-
(e) agby is an edge, py is of type p3 w.r.t. ¥, and py is adjacent to aj.

By (1) in fact (c¢) cannot happen. Suppose that (b) holds. Then by (1), py is of type p2
w.r.t. H, and hence (H \ a})UPUu contains a short connected diamond H'(A}, A2, By, Ba),
where A} = {u,a;}, that satisfies (i).

Suppose that (a) holds. By Lemma 6.2 applied to X9, u and P, and since by (1) py is
adjacent to at most one of {a1,a},as}, N(px)NXe = {b), b }. So N(p)NH = {b},ba, by} and
hence HyU P,,, UPUw induces a connected diamond H'(A], Az, B, B2), where A} = {u,a1}
and B} = {b1,p}, that satisfies (i).

Suppose that (d) holds. Then by (1), N(px) N H = {v,, }. Since agby is an edge, asb), is
not an edge, and hence H; U P U {ag, by, u} induces a 4-wheel with center a;.

Suppose that (e) holds. Then by (1), px is of type p3 w.r.t. H. Since agby is an edge,
agbl, is not an edge, and hence (Hi \ vq, ) U P U {ag,b),u} induces a 4-wheel with center a;.

Case 3: Node u is of type t3 w.r.t H.
W.lo.g. we may assume that N(u) N H = {by,ba,b5}. Assume that the result does not
hold.

(1) Let S = (N[ba] \ (HUw))UB, and let P = p,...,px be a direct connection from u to

H\ Sy in G\ S1. Then k =1 and py is an Hy-crossing w.r.t. H adjacent to by. In
particular, there exists a node that is an Hi-crossing w.r.t. H adjacent to by and u.
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Proof of (1): Since G does not have a star cutset, there exists a direct connection P as in
statement of (1), so we just need to show that £ = 1 and p; is an Hj-crossing w.r.t. H
adjacent to by. By definition of P, node p; is adjacent to u, py to a node of H \ Sy, and the
only nodes of H that may have a neighbor in P\ py are by, b}, and b].

(1.1) pg is of type pl, p2, p3, A1, A, a, d, Ad, t8 (with neighbors in A), Hy-crossing, Hs-
crossing w.r.t. H or a pseudo-twin of a node of AUy w.r.t. H. In particular, pj is
adjacent to at most one node of B.

Proof of (1.1): By Lemmas 9.6, 9.7 and 9.8, pi cannot be of type sl, s2, s3 nor s4 w.r.t. H.
Since py is not adjacent to by, it cannot be of type B, Bs, t3 (with neighbors in B) nor a
pseudo-twin of a node of B w.r.t. H. By Lemma 9.1, the proof of (1.1) is complete.

(1.2) No node of H \ {b1,b},b,} has a neighbor in P\ py and at most one node of {by, b, b5}
has a neighbor in P\ py.

Proof of (1.2): We have already established that no node of H \ {b1,b},b,} has a neighbor in
P\ pi. By Lemma 9.1 and Lemma 9.6, no node of P \ py is adjacent to more than one node
of {b1,b],b5}. If at least two nodes of {by, ], b5} have a neighbor in P\ p, then a subpath
of P\ pi is a hat of ¥ or ¥, a contradiction. This proves (1.2).

If a node of {b1, b}, b5} has a neighbor in P \ p, then let p; (resp. p;) be such a neighbor
with highest (resp. lowest) index.

(1.3) V) does not have a neighbor in P\ py.

Proof of (1.8): Assume it does. Then by (1.2) HyU{u, p1, ..., p;, b2} induces a bug with center
by, and P,,p, \ b2 is its center-crosspath, a contradiction. This proves (1.3).

(1.4) by does not have a neighbor in P\ pg.

Proof of (1.4): Assume it does. By (1.2) no node of H \ b; has a neighbor in P \ px. By
(1.1) py is adjacent to at most one node of B, and hence if N(py) N H C Hy, then H and
Pj, ---» i contradict Lemma 9.5. So pj, has a neighbor in H;. In particular, py is not of type
d, Hy-crossing nor a pseudo-twin of y when y ¢ {a1,a2} w.r.t H.

Suppose that p;, is of type A; w.r.t. H. By Lemma 6.1 applied to X, p; and pji1, ..., px,
a1by is an edge. But then P, U FPy,p, U P Uu induces a proper wheel with center b;. So py
is not of type A; w.r.t. H.

Suppose py, is of type a w.r.t. H. So |As] =1 and N(pg) N H = {ag,d}} or {az,a1}. In
the first case ¥, p; and pj41, ..., p contradict Lemma 6.1, and in the second case ¥, u and P
contradict Lemma 6.2. So py is not of type a w.r.t. H.

Suppose that pg is of type A or it is a pseudo-twin of a node of A; w.r.t. H. If p; has a
neighbor in Py \ @}, then ¥’ v and P contradict Lemma 6.2. So N(py) N H C AU Py, .
But then (H \ P,,5,) U P Uu induces a short connected diamond H'(A], As, B}, B2) where
Al = {d)|,pr} and B} = {b},u}, and H' satisfies (i), contradicting our assumption. So py is
not of type A nor a pseudo-twin of a node of Ay w.r.t. H.
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Suppose that py is of type t3 w.r.t. H. Then by (1.1) |A2| = 2 and N(px)NH = {a1,a}, a5}
or {a1,a),az}. In the first case ¥, p; and p; i1, ..., pr, contradict Lemma 6.1, and in the second
case ¥/, u and P contradict Lemma 6.2. So py is not of type t3 w.r.t. H.

Node py is not of type Ad nor a pseudo-twin of a node of As w.r.t. H, since otherwise
%, p;j and pjy1, ..., py contradict Lemma 6.1.

Suppose that py is an Hj-crossing w.r.t. H. If py is adjacent to b}, then (Pup, \ a1) U
{61, b5, pj, ..., i} contains a 3PC(by, px). So py is adjacent to by. But then (Pyy \ aj) UPU
{th,b1,u} contains a proper wheel with center by. So py is not an Hj-crossing w.r.t H.

By (1.1) pg is of type pl, p2 or p3 w.r.t. H. Since p; has a neighbor in Hj, it follows
that N(py) N H C P, or Py, By definition of P, p; has a neighbor in Hy \ {b1,b}}. If
N(py)NH C Py, then ¥, p; and pji1, ..., pg contradict Lemma 6.1. So N(px) NH C Pyp,-
But then (H \ b;) U P Uwu contains a short connected diamond H'(Aj, Ag, B}, Bs) where
B = {u,b}}, and H’ satisfies (i), contradicting our assumption. This proves (1.4).

(1.5) b, does not have a neighbor in P\ py.

Proof of (1.5): Assume it does. By (1.2) no node of H \ b, has a neighbor in P \ pg. If
N(px) " H C Hy, then H and pj, ..., p; contradict Lemma 9.5. So pj has a neighbor in H».
In particular, pg is not of type A nor Hi-crossing w.r.t. H.

Node pg is not of type A nor a pseudo-twin of a node of A; w.r.t. H, since otherwise
¥, p; and pji1, ..., pg contradict Lemma 6.1.

Suppose that py, is of type a w.r.t. H. Then by Lemma 6.1 applied to ¥/, p; and p;1, ..., pk,
y = ag and yb) is an edge. But then P,,,, U P U {u, b} induces a proper wheel with center
b5. So py is not of type a w.r.t. H.

Suppose that py is of type t3 (with neighbors in A), Ad or a pseudo-twin of a node of As
w.r.t. H. So N(px) N Hy = {a1,a}}. By definition of P, pj, is not adjacent to by, and hence
Hy U P U{u,by} induces a 3PC(b1bau, a1a)pr). So pg is not of type type t3 (with neighbors
in A), Ad nor a pseudo-twin of a node of Ay w.r.t. H.

Suppose that py is of type d or a pseudo-twin of y when y ¢ {a1,a2} w.r.t. H. Let H' be
the hole contained in P,,, U P,,, U P Uu that contains P, ;, UP Uu. Note that if H' contains
y, then py has a neighbor in B, \ y. Since by definition of P, by is not adjacent to any node
of P, it follows that N(by) N H' = {u, by }. But then H’UParlbll induces a 3PC(b1bau, ajajaz).
So pg is not of type d nor a pseudo-twin of y when y ¢ {aj,a2} w.r.t. H.

Suppose that pj is an Hs-crossing w.r.t. H. By Lemma 6.1 applied to ¥',p; and
Pj+1,---» Pk, node pg is adjacent to by. Let H' be the hole contained in P,,,, U P U u that
contains P U {u,bs}. Then (H’, b)) is a proper wheel. So py is not an Ha-crossing w.r.t. H.

So by (1.1) and since py has a neighbor in Hs, N(px) N H C Hy and py is of type pl,
p2 or p3 w.r.t. H. By definition of P, p; has a neighbor in Hy \ {b2,0,}. By Lemma
6.1 applied to ¥/, p; and pji1,..., pk, either |As] = 2 and N(py) N H C Py, or |Ao| =1
and N(py) N H C Py,. 1If [As] = 2, then Hy U (Pyy, \ by) U P U {u,by} contains a
3PC(bibau, a1ayas). So [Az| = 1. Let H' be the hole contained in Py, p, U (P \ b5) U P Uu
that contains P, U P U wu. If yby is not an edge, then H' U Paflb/l U by induces a
3PC (bibau, ayalaz). So ybe is an edge, and hence (H',bs) is a bug. But then Py, is either
a center-crosspath or an ear of (H’,bg). This proves (1.5).
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By (1.2), (1.3), (1.4) and (1.5), no node of H has a neighbor in P \ py.

Node pj cannot be of type A;, A, t3 (with neighbors in A), Ad nor a pseudo-twin of a
node of As w.r.t. H, since otherwise N(pg) N Hy = A; and since py is not adjacent to bo,
Hy U P U {u,by} induces a 3PC(b1bou, a1a)pg).

Suppose that p; is of type a or a pseudo-twin of a node of A7 w.r.t. H. If p; is adjacent
to a1 and ag, and it does not have a neighbor in P, \ a1, then P,,,, U P, U P Uu induces
a 3PC(bibau,ajaspy). Otherwise (H \ P,yp,) U P U w induces a short connected diamond
H'(A}, A, B}, By) where A} = {a},pr} and B} = {u, )}, and satisfies (i), contradicting our
assumption. So p; is not of type a nor a pseudo-twin of a node of A1 w.r.t. H.

Suppose that py is of type d w.r.t. H. By Lemma 6.2 applied to X', u and P, N(py)NH =
{y, be,ybé}, Yb, 7# b2 and yy, # by. But then (H \ P,,p,) U PUwu induces a connected diamond
whose side-2-paths have fewer nodes in common than the side-2-paths of H, a contradiction.
So pg is not of type d w.r.t. H.

Node pj cannot be an Hs-crossing nor a pseudo-twin of y when y ¢ {ai,a2} w.rt. H,
since otherwise ¥/, u and P contradict Lemma 6.2.

Suppose that pg is of type pl, p2 or p3 w.r.t. H. Note that by definition of P, p; has a
neighbor in H \ B. If N(px) N H C P, then (H \ b1) U P U u contains a short connected
diamond H'(A1, Ag, By, B2) where By = {u,b}}, that contains Hy U Py, and H' satisfies
(i), contradicting our assumption. So pi has a neighbor in ¥’ \ B. By Lemma 6.2 applied
to ¥, u and P w.l.o.g. one of the following holds: (a) |A2| = 1, boy is an edge, and either
N(py) N H = {vbé} or pi is of type p3 w.r.t. H adjacent to b5, (b) pg is of type p2 w.r.t.
H and its neighbors are contained in Py, or (c) |Az| = 1, pg is of type p2 w.r.t. H, and
N(pk) N H C Pgyy. If (a) holds, then Pyyp, U Pyypy U P U u contains a bug with center b5,
and Py is its center-crosspath or an ear. If (b) holds, then H; U P U {u,bs} induces a
3PC(bibau, A). So (c) holds. But then 3, u and P contradict Lemma 6.3. So pj is not of
type pl, p2 or p3 w.r.t. H.

Therefore, by (1.1) pg is an Hy-crossing w.r.t. H. By Lemma 6.3 applied to X, u and P,
node p, must be adjacent to by. If k > 1, then Hy U P U {u, by} induces a bug with center py
with an ear. So k = 1. This proves (1).

Let Sy = (N[b1] \ (H Uu)) U {b1,ba,bs}. Since Sy cannot be a star cutset, there exists a
direct connection P = py,...,pr from v to H \ Se in G \ S2. So p; is adjacent to u, py to a
node of H \ Sy, and the only nodes of H that may have a neighbor in P\ pj are be and b}.
By (1) there exists a node v adjacent to u that is an Hj-crossing w.r.t. H adjacent to b;.

(2) pr has a neighbor in H \ B.

Proof of (2): Suppose that N(py) N H C B. By definition of P, p; must be adjacent to b}.
By Lemma 9.6, p; cannot be of type sl w.r.t. H. N(pp) N H # {b}} nor {b},bs,b,}, since
otherwise Hy U P U {u,v} induces a proper wheel with center v. Since py is not adjacent to
by and it is adjacent to b], it follows that pj cannot be of type By nor B w.r.t. H, and if it
is of type t3 w.r.t. H then its neighbors in H are contained in A. Hence, p; has a neighbor
in H \ B. This proves (2).

(3) px is either not strongly adjacent to H or it is of type p1, p2, p3, A1, A, a, d, Ad, t3
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(with neighbors in A), Hi-crossing (adjacent to V), Ha-crossing or a pseudo-twin of a
node of AU By Uy w.r.t. H.

Proof of (3): By Lemmas 9.6, 9.7 and 9.8, p cannot be of type sl, s2, s3 nor s4 w.r.t H. By
(2) pr cannot be of type By nor B w.r.t H, and if it is of type t3 w.r.t. H, then its neighbors
in H are contained in A. Since p;, is not adjacent to by, it cannot be a pseudo-twin of a node
of By w.r.t. H, and if it is an Hj-crossing w.r.t. H, then it is adjacent to bj. The result
follows from Lemma 9.1. This proves (3).

(4) If by does not have a neighbor in P\ pk, then py is adjacent to by and it is of type p2,
p8, d, Ad, Ha-crossing, a pseudo-twin of a node of By U As or a pseudo-twin of y when
y & {ay,a2} w.r.t. H.

Proof of (4): Assume that by does not have a neighbor in P\ pg. By (2) px has a neighbor in
H \ B. If py is not adjacent to b, then P is a direct connection from u to H \ S7 in G \ Sy,
and hence by (1) px is adjacent to by, a contradiction. So py is adjacent to be. In particular,
pr. cannot be of type Aj, A, a, t3 (with neighbors in A), Hj-crossing nor a pseudo-twin of a
node of A} w.r.t. H. Also since py, is adjacent to by and it has a neighbor in H \ Ss, py, must
be strongly adjacent to H. The result now follows from (3). This proves (4).

(5) by does not have a neighbor in P\ py.

Proof of (5): Assume it does. Let p; be the node of P\ p; with highest index adjacent
to a node of H. By (2), pr has a neighbor in H \ B and hence in the graph induced by
(H \ B)U{by,px} there is a chordless path from by to px, and this path together with P Uu
induces a hole H'. Since by has at least three neighbors in H', (H’,by) must be a twin wheel
or a bug, i.e. by has a unique neighbor in P and this neighbor is contained in P \ pj. Since
(H',b,) cannot be a proper wheel, b, has at most one neighbor in P. If p; is not adjacent to
by, then a subpath of P\ py, is a hat of X. So p; is adjacent to by. Also N(b5) NP C {p;,pr}
else a subpath of P\ py is a hat of X.

Next we show that v does not have a neighbor in P. Assume it does. Then (H’, v)
is a wheel, and hence it must be a twin wheel or a bug. In particular, v has exactly one
neighbor p; in P. Let H” be the hole induced by the p;p;-subpath of P together with by, by
and v. If i = 1 or j = 1 then (H"” ,u) is a proper wheel. So i # 1 and j # 1. But then
(H"\b1) U{u,p1,...,p;} induces a 3PC(u,p;) if i < j and a 3PC(u, p;) otherwise. Therefore,
v does not have a neighbor in P.

Next we show that p; does not have a neighbor in Hy. Assume it does. Suppose that
N(px)NHy = vp,. Then by (3), N(pr)N(H1Ub2) = vy, , and hence Hy U{bs, pj, ..., pr} induces
a 3PC(b2,vp,). So pi has a neighbor in H; \ vp,, and hence by (2) and (3) and since py, is
not adjacent to by, py has a neighbor in Hy \ {v,,b1,b)}. Let P’ be a chordless path from py,
tovin (Hy \ {b1,0], v, }) U{v,pi}. If j # 1, then P U P' U {u, by} induces a 3PC(u,p;). So
j = 1. But then PU P"U{u,b1,bs} induces a proper wheel with center u. Therefore py does
not have a neighbor in H;.

If N(px) N H = wy,, then P, p, U Py, U P Uwu induces a proper wheel with center ba.
So pi has a neighbor in H \ vp,. It follows, by (2) and since p; does not have a neighbor in
H; Ubsg, that py has a neighbor in Ha \ {vp,, b, b3 }. Let P’ be a chordless path from py to v in
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(Ha \{vpy, 02,05 1) U (Par gy \01) U{v, pi}. If j # 1, then P'UPU{u, by} induces a 3PC(u, p;).
So j = 1. But then P’ U P U {by, bz} induces a 4-wheel with center u. This proves (5).

(6) by, does not have a neighbor in P\ py.

Proof of (6): Assume it does. Let p; be the node of P\ p; with highest index adjacent to
b5. By (5) no node of H \ b, has a neighbor in P\ p;. By (4) px is adjacent to by. Since
P U {u, by, by} cannot induce a proper wheel with center b, N(b5) N P = p;.

Next we show that v does not have a neighbor in P. Assume it does. By (2) py has a
neighbor in H \ B and hence in (H \ B) U {b1, px} there is a chordless path from b; to py,
and this path together with P Uw induces a hole H’'. Since (H’,v) cannot be a proper wheel,
N(v) NP = p; for some i € {1,...,k}. Let H” be the hole induced by the p;p;-subpath of
P together with b1, b} and v. Since (H”,u) cannot be a 4-wheel, i # 1 and j # 1. But then
(H" \ b1) U{u,p1,...,p;} induces a 3PC(u,p;) if i < j or 3PC(u, p;) otherwise. Therefore v
does not have a neighbor in P.

Suppose that py has a neighbor in H \ (B Uw,). Let P’ be a chordless path from py
to v in (H \ (BUw,)) U{pk,v}. Then P'U P U {u,by} induces a 3PC(py,u). Therefore
N(px) " H C B Uuy,, and hence by (2) py is adjacent to vp,. But then P, 3, U Pyyp, UP Uu
induces a 4-wheel with center by. This proves (6).

By (5) and (6) no node of H has a neighbor in P\ p;. By (4) pi is adjacent to bs.

Suppose pi is of type p2, d, Ad, Ho-crossing or a pseudo-twin of a node of As or y when
y & {a1,a2} w.r.t. H. Since py is adjacent to be, it follows that ¥/, u and P contradict Lemma
6.2. Therefore py cannot be any of these types, and hence by (4) py, is either of type p3 w.r.t.
H or it is a pseudo-twin of a node of By w.r.t. H.

Suppose that pj is of type p3 w.r.t. H. Since p; is adjacent to by, by Lemma 6.2 applied
to ¥, u and P, it follows that |As] = 1 and bSy is an edge. Let w be the neighbor of py in
Py,, that is closest to y. Let P’ be the wy-subpath of P,,,, and let H' be the hole induced
by PUP"U Payy U Poyp, Uu. Then (H',b5) is a bug and Py, its center-crosspath or ear, a
contradiction.

So pi is a pseudo-twin of a node of By w.r.t. H. Suppose that p; is not adjacent to a
node of By. If k # 1, then Hy U P U {u,b,} induces a bug with center py with an ear (where
the ear is the path induced by (P \ px) Uu). So k = 1. Since {p1,v,b1,ba} cannot induce a
4-hole, piv is not an edge. Note that both p; and v have a neighbor in Hy \ {b1, 0], v, }. Let
P’ be a chordless path from p; to v in (Hy \ {b1,b],vp, }) U {p1,v}. Then P" U {u,v,b1,bs}
induces a 4-wheel with center u. So p; must be adjacent to a node of Bj.

By definition of P, py is not adjacent to by, and hence it is adjacent to b}. Therefore,
pk is a pseudo-twin of b} w.r.t. H. Suppose that v does not have a neighbor in P. Let P’
be the path from py to v in (Pyy, \ b)) U {pk,v}. If & > 1, then P'U P U {u,b5} induces
a 3PC(pg,u). So k = 1, and hence P’ U P U {u,by,by} induces a 4-wheel with center wu.
Therefore v has a neighbor in P. Let P’ be the chordless path from py to by in (Hy \ b)) Upy.
Since P’ U P U {b1,u,v} cannot induce a proper wheel with center v, N(v) N (P’ U P) = p;
for some i € {1,...,k}. But then P’ U {p;, ..., pk, bz, v} induces 3PC (b1, pi). O

Proof of Theorem 1.6: Assume G does not have a star cutset. Then by Theorems 3.3, 4.3, 4.4,
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4.5 and 4.6 G does not contain a proper wheel, a bug with a center-crosspath, a 3PC(A,-)
with a hat, a bug with an ear nor a 3PC(A,-) with a type s2 node. We prove that for some
connected diamond H of G, the 2-join Hq|Hy of H extends to a 2-join of G. Assume not.
Then by Theorem 8.5 every connected diamond H of G has a blocking sequence for H;|Hj.
Consider all short connected diamonds H, and amongst them choose an H with a shortest
blocking sequence S = z1, ..., x,, for H1|H,.

By Lemmas 9.1, 9.6, 9.7 and 9.8 the following holds:

(1) If anode of G\ H has a neighbor in H, then it is of type pl, p2, p3, 41, A, B, Bs, a, t3,
d, Ad, Hi-crossing, Ho-crossing w.r.t. H or it is a pseudo-twin of a node of AU B Uy
w.r.t. H.

By (1), Lemma 9.9, Theorem 8.9 and our choice of H and S, the following holds:

(2) If a node of S has a neighbor in H, then it is of type pl, p2, A1, A, B, By, d, Ad,
H-crossing or Ho-crossing w.r.t. H, or |A3| =1 and it is a pseudo-twin of ag w.r.t. H.

So by Remark 8.2 and since neither Hy|Hs Uz nor Hy Ux,|Hs is a 2-join, N(z1) N Hy #
@, A1, B; and N(x,) N Hy # &, Ag, Bs and hence by (2) the following hold:

(3) n>1.
(4) x1 has a neighbor in Hy, and it is of type pl, p2 or Hy-crossing w.r.t. H.

(5) =, has a neighbor in Hs, and it is of type pl, p2, d, Ad, He-crossing w.r.t. H, or it is
a pseudo-twin of ay w.r.t. H when |As| = 1.

Let x; be the node of S with lowest index adjacent to a node of Hy. By (4), N(z1)NH C H;
and hence [ > 1. By Lemma 8.8, x1,...,2; is a chordless path. Let x; be the node of S\ x;
with lowest index that has a neighbor in H. Clearly j <[ and hence x1,...,x; is a chordless
path. Note that nodes xg,...,2;-1 have no neighbors in H. Furthermore by (2), (5) and
Lemma 8.3, the following holds:

(6) Either j = n and z; is one of the types in (5), or j < n and z; is of type A1, A, B or
By wrt. H.

Let C (resp. C’) be the hole induced by P, U Pyrpr U ba (vesp. Poyp, U Py Uby).
Claim 1: z1 is not an Hyi-crossing w.r.t. H.

Proof of Claim 1: Assume it is. W.Lo.g. 7 is adjacent to b;. Then (C,x1) and (C’, 1) are
both bugs. If z; is of type A1, A, Ad or a pseudo-twin of ay when |As| =1 w.r.t. H, then z;
is not adjacent to at least one of by, b, and hence z3, ..., x; is a center-crosspath of (C,z) or
(C',x1), a contradiction. If x; is of type By w.r.t. H, then (C'\ A1) U{z,...,z;} contains a
3PC(b2, a;l).

Suppose that x; is of type B w.r.t. H. If j = 2, then bug (C,z;1) and x5 contradict
Lemma 4.1. So j > 2 and hence (C'\ A1) U{z1,...,x;} contains a 3PC(x1,z;). So by (6),
x; has a neighbor in Hs and it is of type pl, p2, d or Hy-crossing w.r.t. H. In particular,
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N(z1)NH C Hy and N(xzj) N H C Hy, and hence H and z1,...,z; contradict Lemma 9.5.
This completes the proof of Claim 1.

Claim 2: z; is not of type p2 w.r.t. H.

Proof of Claim 2: Assume it is. W.lo.g. the neighbors of x; in H are contained in Py, .
If z; is of type A1, A, Ad or a pseudo-twin of as when |A3] = 1 w.r.t. H, then z; is not
adjacent to at least one of by, b5, and hence either C'U {z1,...,z;} or C' U{x,...,x;} induces
a 3PC(A,A) or a 4-wheel with center a;.

Node z; cannot be of type B, p2, d nor Hs-crossing w.r.t. H, since otherwise either
Payby U Paypy, o Pypy U Py, induces a 3PC(A, A) or a 4-wheel with center by.

Suppose that z; is of type Bs w.r.t. H. Let P be the chordless path from z; to a1 in
G[Puyb, U{z1, ...,z }]. Let H' be the short connected diamond induced by P U Py U Ho.
Then by Theorem 8.9 applied to H' and S, our choice of H is contradicted.

So by (6), N(xzj) N H =r and r € Hy. But then H and 1, ...,2; contradict Lemma 9.5.
This completes the proof of Claim 2.

Claim 3: If N(xz1) N H = by, then there exists a chordless path P = p1,...,pi in G\ H such
that py is adjacent to x1, no node of P\ py is adjacent to x1, no node of P\ py has a neighbor
i H and one of the following holds:

(i) N(px) N H = vy, or

(ii) pr is of type p2 w.r.t. H and its neighbors in H are contained in Pa/lb/l.

Proof of Claim 3: Let S = NJ[bi] \ {1, vp, }. Since S cannot be a star cutset, there exists a
direct connection P = pq,...,p; from x; to H in G\ S. So p; is adjacent to x1, no node of
P\ py is adjacent to x1, pr has a neighbor in H \ {b1, b2, b5} and it is not adjacent to by, and
the only nodes of H that may have a neighbor in P \ py are bg and bj.

Case 1: by and b, do not have neighbors in P\ pg.

Case 1.1: p; has a neighbor in ¥\ {b2, b,}.

By Lemma 6.1 applied to ¥, ;1 and P, and since no node of P is adjacent to b1, one of
the following holds: (a) N(pg) N3 = wp,; (b) py is of type p2 w.r.t. ¥ with neighbors in Py,
path of ¥; or (c) py is of type d w.r.t. ¥ and it has no neighbor in Py, \ y.

Suppose that (a) holds. By (1) either N(py) N H = v, and hence (i) holds, or a;b; is an
edge and N(px) N H = {a1,a)}. The second case cannot hold, since then P, p, U Py, U P U
{z1,d}} induces a 4-wheel with center a;.

Suppose that (b) holds. First suppose that N(py) VX C Pgp,- Then by (1), py is of type
p2 or Hi-crossing w.r.t. H. If py is an Hj-crossing w.r.t. H, then (P,,p, \a1)UPU{z1,ba, b} }
contains a 3PC (b1, p). So pg is of type p2 w.r.t. H. Note that py is not adjacent to by, and
hence (H \ vy, ) UPUx; contains a short connected diamond H'(A;, Aa, By, B2) that contains
x1, and hence by Theorem 8.9 our choice of H and S is contradicted. Therefore N(p;) N3
is not contained in P, ;,, and hence |As| = 1. Suppose that N(py) N X C P,,,. So by (1), pk
is of type p2 w.r.t. H. But then (H \ (Pup, \ b1)) U P Uz contains a connected diamond
whose side-2-paths have fewer nodes in common than the side-2-paths of H, contradicting
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our choice of H. Therefore N(py) N ¥ = {a1,a2}. By (1) pg is of type a, A or it is a
pseudo-twin of a} w.r.t. H. By Lemma 6.2 applied to ¥’, b; and path z1, P, node py must
in fact be of type A w.r.t. H. But then (H \ (Py,5, \ b1)) U PUx; induces a short connected
diamond H'(A!, As, By, B2) where A} = {a},px} that contains z1. But then by Theorem 8.9
our choice of H and S is contradicted.

So we may now assume that (c) holds. Suppose that |Az2| = 2. Then N(py) N X =
{a1,a2,aL} and so by (1) px is of type A or it is a pseudo-twin of a} w.r.t. H. If py is a
pseudo-twin of aj w.r.t. H, then Py p, U(FPyy \ai)UPU{x1,b5} contains a 3PC (by, py). So
N(pk)NH = A. Let H' be the short connected diamond induced by Py UPUHyU{x1,b1}.
Then by Theorem 8.9 applied to H' and S, our choice of H is contradicted. So |As| =1, and
hence N(pk) N2 = {y, Yn,, vpy - By (1), N(pr) N H = {y,Yb,, Ypy, }- Suppose that py, is not
adjacent to a node of By. Let H' be the connected diamond induced by (H\(Pa,p, \b1))UPUz1.
Then the two side-2-paths of H' have fewer nodes in common than the two side-2-paths of H,
contradicting our choice of H. So pg is adjacent to a node of By, w.l.o.g. say it is adjacent to
ba. Then byy is an edge, and hence byy is not an edge. But then PU Pyry U Pogy U {21, b2, b5}
induces a proper wheel with center bs.

Case 1.2: p; has no neighbor in ¥\ {bo, 0}}.

Then N (px)NH C Py UBa. So by (1) either N(pg) NH C Py, or py is of type t3 w.r.t.
H (adjacent to b)) or py is a pseudo-twin of b} w.r.t. H. If py is a pseudo-twin of b w.r.t.
H, then P, U (Pa/lb’l \ b)) UPU{x1,by} contains a 3PC(by,px). If pi is of type t3 w.r.t. H,
then H; U P U {xz1,bs} induces a bug with center by, and P,,p, \ b2 is its center-crosspath. So
N(pk) N H C Pyy,. If N(px) N H = b}, then CU P Uy, induces a 3PC(by,b}). So py, has a
neighbor in 3"\ {b2,b5,0)}. Note that b; is of type t2 w.r.t. ¥’. By Lemma 6.2 applied to
¥/, by and P, (ii) holds.

Case 2: by or b, has a neighbor in P\ py.

Let p; be the node of P\ p; with highest index that has a neighbor in {bs,b5}. W.l.o.g.
we may assume that p; is adjacent to bs.

Suppose that pi does not have a neighbor in X\ {b2,b,}. Then py has a neighbor in Py -
Let C be the hole contained in H; U PUx; that contains P, ;, UP Uzy. Since C'Uby cannot
induce a 3PC(b1,p;), (C,b2) is a wheel and hence it must be a bug. But then P,,;, \ b2 is its
center-crosspath. Therefore py, has a neighbor in ¥\ {b2,b,}. We now consider the following
cases.

Case 2.1: N(p;) N H = bo.

Since py is not adjacent to by and it has a neighbor in X\ {be, b}}, it cannot be of type
B, By nor a pseudo-twin of a node of Bo Ub) w.r.t. H. If py is of type Ay, A, a, Hj-crossing,
a pseudo-twin of a node of A; w.r.t. H or a pseudo-twin of a), when |As| = 2 w.r.t. H, then
>, p; and p;i1, ..., pi contradict Lemma 6.1.

Suppose that py is of type d or it is a pseudo-twin of y when y ¢ {ay,a2} w.r.t. H. Note
that |As| = 1. By Lemma 6.1 applied to X, p; and p;11, ..., pr, node pyi is either adjacent to by
or N(px) VH = {y, s, Yas }- Let P’ be the chordless path from py, to az in G[Fy,, Upk| and
let C be the hole induced by P’ U P U P,,, Ux;. Since C U by cannot induce a 3PC (b1, p;),
(C,b2) is a wheel, and hence it is a bug. But then Py is a center-crosspath of bug (C, bs).

Suppose that p; is of type t3, Ad or it is a pseudo-twin of as w.r.t. H. Note that if py is

79



of type t3 w.r.t. H, then since py has a neighbor in ¥\ {bo, b5}, N(px) N H C A. So in all
three cases, N(px) N Hy = A;. Let C be the hole induced by P, U P U z;. Since C'U by
cannot induce a 3PC(by,p;), (C,b2) is a wheel, and hence it is a bug. But then Py, is a
center-crosspath of bug (C, by).

Suppose that pp is an Hs-crossing w.r.t. H. First suppose that |[As| = 2. If py is
adjacent to ag (resp. ab), then let C' be the hole induced by P, U P U {a2,z1} (resp.
Pyp, UP U{dh,z1}). Since C' U by cannot induce a 3PC(p;,b1), (C,be) is a wheel and hence
it must be a bug. But then Pa’l p, 1s its center-crosspath. So |As| = 1. Let P’ be the chordless
path from py to ag in G[(Pa,p, \ b2) Upk), and let C be the hole induced by P'UPUx;. Then
again (C,b9) is a bug and Py, 1s its center-crosspath.

Suppose that py is a pseudo-twin of by w.r.t. H. Since py, is not adjacent to by, N(px)NH =
{b2, b5, v1,v2} where vivg is an edge of P, p, \ bi. Let P’ be the chordless path from pj to by
in G[P,,», Upgl, and let C be the hole induced by P’ U P Ux;. Then (C,b2) must be a bug,
and hence Hy U P U {by, x1} induces a bug (C,bs) and its center-crosspath.

Therefore by (1), pi is of type pl, p2 or p3 w.r.t. H. By Lemma 6.1 applied to X, p; and
Dit1s s Pky N(px)NVH C P,p,. Let P’ be the chordless path from py to ag in G[(Paysp, \b2)Upk],
and let C' be the hole induced by P’ U P U x;. Since C' U by cannot be a 3PC(by,p;), (C,bs)
must be a bug, and hence P is its center-crosspath.

Case 2.2: N(p;) N H = {by,b,}.

Since pg is not adjacent to by and it has a neighbor in X\ {bs,b,}, it cannot be of type
B, By nor a pseudo-twin of a node of By Ub}. If py is of type A;, Ad, Hy-crossing or a
pseudo-twin of a node of Ay U{ay,y} w.r.t. H, then X, p; and p;11, ..., px contradict Lemma
6.2.

Suppose that py is of type A w.r.t. H. Let C be the hole induced by F,,;, UPUx;. Since
C U bg cannot induce a 3PC(b1,p;), (C,by) is a wheel, and hence it is a bug. But then Py,
is its center-crosspath.

If py is of type a w.r.t. H, then by Lemma 6.2 applied to X, p; and p;1, ..., pg, N(px) NH =
{a1,as}. But then Hy U {p;, ..., pg, b2} induces a 3PC(ay, bs).

Suppose that py is of type t3 w.r.t. H. Since py, is not adjacent to by and it has a neighbor
in ¥\ {ba,b5}, N(px) N H C A. But then X, p; and pjt1, ..., p contradict Lemma 6.2.

Suppose that pg if of type d w.r.t. H. By Lemma 6.2 applied to X, p; and p;i1, ..., Dk,
N(pe)NH = {y, ys,, y, } and py, is not adjacent to by and b. But then (H\ Py,p, ) U{pi, ..., P}
induces a connected diamond whose side-2-paths have fewer nodes in common than the side-
2-paths of H, contradicting our choice of H.

If p is an Hi-crossing w.r.t. H, then it must be adjacent to b}, and hence (Py,p, \ a1) U
{pi,...pk, b}, b2} contains a 3PC(be, p).

If py, is a pseudo-twin of @} w.r.t. H, then (Hy\a})U{pi, ..., pk, ba} contains a 3PC (ba, pi).

Suppose that pg is of type pl w.r.t. H. By Lemma 6.2 applied to X, p; and p;11, ..., Dk,
|A2| = 1 and either yby is an edge and py is adjacent to Uy, OF ybl, is an edge and py is
adjacent to vp,. In the first case (H \ (Pyyy Ub5)) U P Uz induces a proper wheel with center
ba. In the second case, P, p, U Py,p, U P Ux; induces a proper wheel with center bs.

Suppose that py is a pseudo-twin of by w.r.t. H. Since py is not adjacent to by, N(px)NH =
{b2, b5, v1,v2} where vive is an edge of P, p, \ bi. Let P’ be the chordless path from pj to by
in G[P,,p, Upgl, and let C be the hole induced by P’ U P U ;. Then (C,be) must be a bug,
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and hence H; U P U {by, z1} induces a bug (C,b2) and its center-crosspath.

Suppose that pg is of type p3 w.r.t. H. By Lemma 6.2 applied to X, p; and p;y1,..., Dk,
|As| =1 and py, is adjacent to bg or by, w.l.o.g. say to by. Let P’ be the chordless path from
Pk to y in G[(Ph,y \ b2) U pi], and let C be the hole induced by P' U P U P,y U Py, U 1.
Then (C, by) must be a bug and Py, is its center-crosspath.

Therefore by (1), py is of type p2 w.r.t. H. By Lemma 6.2 applied to X, p; and p;41, ..., Pk,
either N (px)NH C Py, or |As| =1 and N(py)NH C P,,,. Let P’ be the chordless path from
Pk t0 b1 in G[ Py, p, U(Payb, \b2)Upk], and let C be the hole induced by P'UPUz;. Since C'Ubsy
cannot induce a 3PC(by,p;), (C,b2) is a wheel, and hence it is a bug. If N(py) N H C Py,,,
then Py is a center-crosspath of (C,b2). So N(px)NH C P,p,. But then H1 UP U {bg, 21}
induces a bug (C,b9) and its center-crosspath. This completes the proof of Claim 3.

Claim 4: If N(z1) N H = a1, then there exists a chordless path P = py,....,px in G\ H such
that p1 is adjacent to x1, no node of P\ p1 is adjacent to x1, no node of P\ py has a neighbor
in H and N (pr) N H = vg, .

Proof of Claim 4: Let S = Nla1] \ {1, vq, }. Since S cannot be a star cutset, there exists a
direct connection P = py,...,p; from z; to H in G\ S. So p; is adjacent to x1, no node of
P\ p; is adjacent to 1, px has a neighbor in H \ A and it is not adjacent to a;, and the only
nodes of H that may have a neighbor in P\ p; are ag, a5, and af.

Since py, is not adjacent to a; and it has a neighbor in H \ A, p; cannot be of type A,
A, a, Ad, t3 (with neighbors in A), nor a pseudo-twin of a node of Ay Ua)} w.r.t. H. So by
(1) the following holds.

(4.1) pg is not adjacent to ai, and it is of type pl, p2, p3, B, Bs, t3 (with neighbors in B),
d, Hi-crossing, Ha-crossing or a pseudo-twin of BUay or y when y ¢ {aj,as} w.r.t. H.

Case 1: ay and a) do not have a neighbor in P\ py.

Then ), is the only node of H that may have a neighbor in P\ pg. If af has a neighbor
in P\ pg, then (P \ pi) Uz contains a hat of X9, a contradiction. So no node of H has a
neighbor in P\ py.

If p. is of type Bs, B, d, Hi-crossing, Ho-crossing or it is a pseudo-twin of a node of BUa;
or y when y ¢ {aj,a2} w.r.t. H, then since py is not adjacent to ay, Lemma 6.1 applied to
1,21 and P is contradicted.

Suppose that py is an Ha-crossing w.r.t. H. If [As| = 1 or py is adjacent to afy, then X, zq
and P contradict Lemma 6.1. So |A2| = 2 and py, is adjacent to ag. But then z;, P is a hat
of 21.

Suppose that py is of type t3 (with neighbors in B) w.r.t. H. By Lemma 6.1 applied
to X1, 1 and P, N(p) N H = {be,b,,b1}. But then H \ (P, \ a1) U P U x; induces a
short connected diamond H'(A;, As, By, Bs) where By = {py,b}}, which by Theorem 8.9
contradicts our choice of H.

So by (4.1), px is of type pl, p2 or p3 wort. H. W.log N(pry) NH C ¥;. By
Lemma 6.1 applied to X1, 1 and P, N(px) N H = v,,, or pi is of type p2 w.r.t. H and
N(px) NH C P,,p,. Suppose that py is of type p2 w.r.t. H. Then, since pj is not adjacent to
ay, (H \ vg,) U P Uz contains a short connected diamond H'(A;, As, By, B) that contains
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x1, and hence by Theorem 8.9 our choice of H is contradicted. So N(pi) N H = v,, and the
result holds.

Case 2: ay or @} has a neighbor in P\ py.

Let p; (resp. p;) be the node of P\ p; with lowest (resp. highest) index adjacent to a
node of {ag,a}}. Since x1,p1,...,p; cannot be a hat of ¥y, p; is adjacent to both ay and a].
Then by (1), p; is of type a w.r.t. H. In particular, |As| = 1. W.l.o.g. pr has a neighbor in
¥\ A

First suppose that p; is adjacent to ag but not aj. Then [ > i. By Lemma 6.1 applied
to X1, p; and pii1, ..., Pk, node pi has a neighbor in (Py,p, U Py, ) \ {a1,a2}. Let P’ be a
chordless path from py to a1 in G[Py,p, U (Payp, \ a2) U pk], and let C' be the hole induced by
P'UPUx;. Then (C,az) is a wheel, and hence it must be a bug, i.e. [ =i+ 1. So pg is not
adjacent to ag. If py is adjacent to a), then by (4.1), pi is an Hy-crossing w.r.t. H adjacent
to by or a pseudo-twin of b} w.r.t. H. But then ¥y, p; and p;11, ..., pr contradict Lemma 6.1.
So py is not adjacent to af, and hence C' U a} induces 3PC (a1, p;).

Now suppose that p; is adjacent to a}, but not ay. Then | > i. By Lemma 6.1 applied
to X1, pr and pi41, ..., p, node py has a neighbor in ((Payp, U Py, ) \ {a1,a1}) Ubs. Let P’
be a chordless path from py, to a1 in G[Pyp, U (P, \ @1) U {pk, b2}], and let C be the hole
induced by P’ UP U zy. Then (C,a}) is a wheel, and hence it must be a bug, i.e. I =i+ 1.
So pi is not adjacent to a). If py is adjacent to ag, then by (4.1), pg is of type d w.r.t. H
or it is a pseudo-twin of a node of By or y when y ¢ {aq,as} w.r.t. H. But then 31, p; and
Dii1, - Pk contradict Lemma 6.1. So py is not adjacent to as, and hence C U as induces a
3PO(CL1 s pi)'

Therefore, p; must be adjacent to both ag and af, and hence p; is of type t2 w.r.t. X;. If
pi is of type Bo, B, d, Hi-crossing, Ho-crossing or a pseudo-twin of a node of By U by or y
when y ¢ {ay1,as} w.r.t. H, then ¥q, p; and pyy1, ..., pr contradict Lemma 6.2.

Suppose that py is of type p3 w.r.t. H. By Lemma 6.2 applied to X1, p; and p;41, ..., Dk,
agby is an edge and py, is adjacent to a)j. Then agbl, is not an edge. Let P’ be the chordless
path from py, to b} in G[(Pyy \ a}) U pg], and let C be the hole induced by P'U Py, U
{ty,a2,p1,...,pr}. Then (C,a)) is a 4-wheel.

If py is of type t3 w.r.t. H with neighbors in B, then by Lemma 6.1 applied to X1, p;
and i1, ..., Pk, N(pr) N H = {bo,b5,b1}. If p is of type p2 w.r.t. H, then by Lemma 6.2
applied to X1, p; and pi11,...,pk, N(px) N H C P, p,. In both cases let P’ be the chordless
path from py to a1 in G[Py,p, U pk], and let C be the hole induced by P’ U P U ;. Since
C'Ua) cannot induce a 3PC(ay, p;), (C,a}) is a wheel and hence it must be a bug. But then
Hy U PU{x1,be} induces a bug (C,a}) with its center-crosspath. Therefore pj cannot be of
type p2 nor t3 (with neighbors in B) w.r.t. H.

Suppose that py is a pseudo-twin of b} w.r.t. H. By Lemma 6.2 applied to X, p; and
Pi+1, ---» Pk, node py is adjacent to a). Let C' be the hole induced by P,,;, UPU{x1,ba}. Then
(C,d}) must be a bug, and hence i = and k = [+ 1. But then C'Uag induces a 3PC(a1,p;),
or a proper wheel with center ay (in the case when asbs is an edge).

Suppose pi is a pseudo-twin of a; w.r.t. H. Note that since pg is not adjacent to aq,
N(pr) N H = {ay,a},vi,va} where v1vy is an edge of Py, \ a1. Let C be the hole contained
in (Payp, \ b1) UP Uz, Then (C,a}) must be a bug, and hence Hy U P U {b2, 21} induces a
bug (C,a}) and its center-crosspath.
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Therefore by (4.1), pg is of type pl w.r.t. H. By Lemma 6.2 applied to ¥, p; and
Dl+1, -, Pk, G2bo is an edge and N(py) N H = Vg But then Hy U P U {b2, 1} induces a
proper wheel with center a}. This completes the proof of Claim 4.

By (4) and Claims 1 and 2, N(x1) N H = r where r € H;. W.lo.g. r € P,3,. By (6) it
suffices to consider the following cases.

Case 1: z; is of type pl, p2, d or Hy-crossing w.r.t. H.
Then N(z;) N H C Hy, and H and 1, ..., x; contradict Lemma 9.5.

Case 2: z; is of type Ad or a pseudo-twin of ap when [As| =1 w.r.t. H.

Suppose that r # ay. If 2; has a neighbor in P,,, \ ag, then (Pp,p, \a2)UP,,p, U{z1, ..., 2;}
contains a 3PC(r, x;). Otherwise (Pyyp, \ a5) U Py U {z1,...,z;} contains a 3PC(r, z;). So
r=a.

Let P be the path from Claim 4. If no node of P is adjacent to or coincident with a node
of {z3,...,x;}, then P, U Py, UPU {x1,...,z;} together with either by or b, induces a
4-wheel with center a;. So a node of P is adjacent to or coincident with a node of {z», ..., x;}.
Let p; be the node of P with highest index that has a neighbor in {z2,...,z;}, and let z; be
the node of {zy,...,x;} with highest index adjacent to p;. If x; has a neighbor in Py, \ as,
then P, p, U (Pagb, \ a2) U {pi, .., Pk, 21, ..., xj} contains a 3PC(vg,, ;). So z; does not have
a neighbor in P, \ az, and hence z; is of type Ad w.rt. H, |As] = 1, y = ag and
N(z;)NH = {a’l,al,ag,ybé}. But then P, 3, U (Pa2b/2 \ a2) U {pi, ..., Pk, Z1, ..., xj } contains a
3PC(vgy, ;).

Case 3: z; is of type A; wr.t. H.

If » # a1, then ¥1,2; and 1, ...,2;_1 contradict Lemma 6.2. So r = a;. Let P be the
path from Claim 4. Then P, U Payp, U P U{x1,...,x;} contains a proper wheel with center
aj.

Case 4: z; is of type A w.r.t. H.

First suppose that  # a;. Let P be the chordless path from z; to by in G[(Py,p, \ a1) U
{z1,...,;z;}]. Then HoUPU Py, induces a short connected diamond H " which by Theorem
8.9 contradicts our choice of H. So r = ay. Let P be the path from Claim 4. Let P’ be the
chordless path from x; to by in G[(Pab, \a1) UPU{x1,...,z;}]. Then HoUP' U P,y induces
a short connected diamond H’ which by Theorem 8.9 contradicts our choice of H.

Case 5: x; is of type By w.r.t. H.

By Lemma 9.5 applied to H and 1, ...,xj, r = b;. Let P be the path from Claim 3.

Suppose that P satisfies (i) of Claim 3. Let P’ be a chordless path from z; to a; in
G[(Payo, \b1) UPU {21, ...,z;}]. Then HyUP'U P,y induces a short connected diamond H’
which by Theorem 8.9 contradicts our choice of H.

So P satisfies (ii) of Claim 3. If no node of P is adjacent to or coincident with a node
of {x2,...,x;}, then (Pyry \ ay) U P U {b1,b),z1,...;x;} contains a 3PC (b, v1). Otherwise,
there exists a chordless path P’ from z; to aj in G[(Pyy \ b1) U P U {2, ...,z;}], and hence
HyU P'U P,,3, induces a short connected diamond H’ which by Theorem 8.9 contradicts our
choice of H.
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Case 6: z; is of type B w.r.t. H.

If r # by, then P, U Py U {z1,...,z;} induces a 3PC(r,z;). So r =b;. Let P be the
path from Claim 3. Suppose that P satisfies (i) of Claim 3. If no node of P is adjacent to or
coincident with a node of {x,...,z;}, then P, 3, U Pyp, U P U{x,...,z;} induces a 4-wheel
with center by. Otherwise, FPy,p, U Py, UPU{xa, ..., x;} contains a 3PC(x;,vp, ). So P must
satisfy (ii) of Claim 3.

If a node of P is adjacent to or coincident with a node of {x, ..., ;}, then Py,p, U (Pyry; \
b)) U Payp, U P U {xa,...,z;} contains a 3PC(x;b1be, a1ajaz). So no node of P is adjacent to
or coincident with a node of {za,...,x;}. If j =2, then (Pyy, \ a}) U P U {b1,ba, 71,..., 25}
contains a 4-wheel with center ;. So j > 2. But then (Pyy \a})UPU{b1, 21, ..., x;} contains
a 3PC(x1,z;). O

10 Recognition algorithm for even-hole-free graphs

In this section we give a new recognition algorithm for even-hole-free graphs. As already
discussed in Section 1, two different recognition algorithms are given in [12] and [5].

Let H be a hole, and v € V(G) \ V(H). We say that v is major w.r.t. H if there exist
three of its neighbors in H that are parwise nonadjacent. This is the terminology from [5].

Let H be a smallest even hole of a graph G. We say that H is clean if no vertex of G is
major w.r.t. H.

Let H be a smallest even hole of G. Let u € G\ H. We say that u is of type gi, for
i=1,2,3,if [IN(u)NV(H)| =4 and N(u) NV (H) induces a path on ¢ nodes. We say that u
is of type bl if V(H)U{u} induces a 3PC(+,-); u is of type b2 if (H,u) is a 4-wheel that has
exactly two long sectors and these two long sectors do not have a node in common; and u is
of type b3 if (H,u) is a 4-wheel that has exactly two long sectors and these two long sectors
have a node in common. This is the terminology from [12].

Let H be a smallest even hole of G. Let u be a type g3 node w.r.t. H, with neighbors
u1, ug, usg in H such that ujuy and ugug are edges. Let H' be the hole induced by (V(H) \
{usg}) U {u}. We say that H' is obtained from H by a type-g3-node-substitution. Let Cq(H)
be the set of all holes obtained from H through a sequence of type-g3-node-substitutions.

A graph G is clean if it is either even-hole-free or it contains a smallest even hole H such
that all holes of Cq(H) are clean.

A short 4-wheel is a 4-wheel (H, x) such that either exactly three of the four sector are of
length 1, or exactly two of the four sectors are of length 1 and they do not have a common
endnode and one of the sectors is of length 3.

In both [12] and [5] a “cleaning procedure” is given, that takes an input graph G and
produces a clean graph G’ that is even-hole-free if and only if G is even-hole-free. In [12]
a smallest even hole is “cleaned” in the sense that all major nodes are eliminated but also
the type bl, b2 and b3 nodes. Here we give the cleaning from [5] that cleans just the major
nodes, and hence has better complexity.

Theorem 10.1 [5] There ezists an algorithm with following specifications:

Input A graph G.
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Output  : A sequence of subsets X1,..., X, of V(G) with r < |V(G)|° such that for
every smallest even hole H of G, one of Xy,..., X, is disjoint from V(H)
and includes all major vertices for H.

Running : O(|V(G)|'?).
Time

Lemma 10.2 Let H be a smallest even hole of G. If v € V(G) \ V(H) has an odd number
of neighbors in H, then x is of type g1 or g3 w.r.t. H.

Proof: Assume that x has an odd number of neighbors in H, and that it is not of type gl or
g3 w.r.t. H. Then (H,z) is a wheel. If S is any sector of (H,z), then V(S) U {z} induces
either a triangle or a hole that is of length smaller than H. So every sector of (H,x) is of odd
length, and since (H,z) has an odd number of sectors, it follows that H is of odd length, a
contradiction. a

Lemma 10.3 Assume that G does not contain a short 4-wheel nor a smallest even hole with
a type b3 node. Let H be a smallest even hole of G. If H is clean, then all holes in Cq(H)
are clean.

Proof: Assume that H is clean. Let u be a node that is of type g3 w.r.t. H, with neighbors
u1,ug,u3 in H such that ujus and ugug are edges. Let H' be the hole induced by (V(H) \
{uz}) U {u}. To prove the result, it suffices to show that H’ is clean.

Suppose that there exists a vertex v that is major w.r.t. H’. Since v cannot be major
w.r.t. H, it follows that v is adjacent to u, it has at least two nonadjacent neighbors in H,
and it is not adjacent to us.

Since v is major w.r.t. H', by Lemma 10.2 v has an even number of neighbors in H'. So
v has an odd number of neighbors in H. Since v has at least two neighbors in H, by Lemma
10.2, v is of type g3 w.r.t. H. But then either (H’,v) is a short 4-wheel or v is of type b3
w.r.t. H’', a contradiction. O

Lemma 10.4 [12] Let G be a graph that does not contain a 4-hole nor a short 4-wheel.
Let H be a smallest even hole of G, and suppose that node u is of type b3 w.r.t. H. Let
N(u) NV (H) = {u1,us,us,us} such that uyus and usus are edges. If v is major w.r.t. H,
then N(v) N {ug,uqs,u} # @.

Theorem 10.5 There exists an algorithm with following specifications:

Input ;A graph G that does not contain a 4-hole, nor a short 4-wheel.

Output  : A family L of induced subgraphs of G such that if G contains an even hole,
then for some smallest even hole H of G and some G' € L, G’ contains H
and all holes in Cqr(H) are clean. Furthermore, |L| is O(|V(G)|?).
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Running : O(|V(G)[]19).
Time

Proof: Consider the following algorithm:
Step 1: Set £ = {G}.

Step 2: For every (Pi, Py, u), where Py = x1, x9, 3 and Py = y1, Y2, y3 are disjoint chordless
paths in G and v € N(z2) N N(y2), add to £ the graph obtained from G by removing
the node set N({z2,y2,u}) \ (V(P1) UV (P)).

Step 3: Apply the algorithm from Theorem 10.1 to G, and let Xq,..., X, be the output
sequence of subsets of V(G). For i = 1,...,r add to £ the graph obtained from G by
removing X;.

Clearly this algorithm runs in time O(|V(G)|'Y), and |£] is O(]V(G)|°). Suppose that G
contains an even hole.

First suppose that G contains a smallest even hole H with a type b3 node u. Let N(u)N
V(H) = {u1,u2, ug, us} such that ujus and ugus are edges. Let uf (resp. u) be the neighbor
of uy in the sector of wheel (H,u) whose endnodes are uy and ug (resp. wui). Let G’ be
the graph obtained from G by removing the node set N({uz,uq,u}) \ V(H). Clearly G’
contains H and is one of the graphs added to £ in Step 2. Let H' be any hole of Cq(H).
By construction of G’ and since G does not contain a 4-hole, H' contains uy, ua, us, uj, ug, v}
and hence u is of type b3 w.r.t. H’. So by Lemma 10.4 and since no node of G’ is adjacent
to any of the nodes of {ug,us,u}, it follow that no node of G’ is major w.r.t. H’'. Therefore
Cq(H) is clean, proving the theorem.

Now we may assume that G does not contain a smallest even hole with a type b3 node.
Let H be any smallest even hole of G. By Theorem 10.1, for some graph G’ added to £ in
Step 3, G’ contains H and H is clean in G'. By Lemma 10.3, all holes in C¢/ (H) are clean,
and the theorem holds. a

10.1 Star decomposition

In this section we decompose clean graphs with star cutsets.

Let S = Nlz| be a full star cutset of a graph G, and let C,...,C,, be the connected
components of G\ S. The blocks of decomposition of G by S are graphs Gj, ..., G;,, where G;
is the subgraph of G induced by V(C;) U S.

Lemma 10.6 Assume that G is a graph that does mot contain a theta, a short 4-wheel nor
a 4-hole. If H* is a smallest even hole of G and it is clean, then H* contains two nodes that
are at distance at least 3 in G.

Proof: Since G does not contain a 4-hole, H* is of length at least 6, and hence it contains
two nodes v and v that are at distance 3 in H*. Suppose that v and v are not at distance
3 in G. Then there exists a node w € G\ H* that is adjacent to both u and v. Since G
does not contain a theta, w has at least 3 neighbors in H*. By Lemma 10.2, w has at least
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4 neighbors in H*. Since G does not contain a 4-hole nor a short 4-wheel, it follows that w
is major w.r.t. H*, contradicting the assumption that H* is clean. O

We note that for the result of the above lemma to hold it is not neccessary to exclude
thetas, there is a way to just deal with type bl nodes as in [12], but since thetas can be
recognized in time O(|V(G)['1) [7], for simplicity of the argument we exclude them here.

We say that u is dominated by v if u is adjacent to v and N(u) C N[v].

Lemma 10.7 Let G be a clean graph such that for some smallest even hole H* of G, all
holes of Cq(H*) are clean. Assume that G does not contain a short 4-wheel. If node u is
dominated by node v, then G \ {u} contains a hole of Ca(H™).

Proof: Assume that H* contains u, and let w1 and uo be the neighbors of u in H*. Since u
is dominated by v, node v is adjacent to uq, us and u. Since H* is clean and G does not
contain a short 4-wheel, v is of type g3 w.r.t. H*. But then (H*\u)Uwv is in Cq(H*) and in
G\ u. O

A 4-wheel (H,z) is decomposition detectable w.r.t. a full star cutset S if S = Nlx], x is
of type b2 w.r.t. H and the interior nodes of the two long sectors of (H,z) are contained in
different connected components of G\ S.

Lemma 10.8 Let G be a clean graph such that for some smallest even hole H* of G, all
holes of Cq(H™*) are clean. Assume that G does not contain a short 4-wheel nor a theta.
When decomposing G with a full star cutset S, then either some hole in Cq(H™) is entirely
contained in one of the blocks of decomposition, or there exists a decomposition detectable
4-wheel w.r.t. S.

Proof: Let S = NJz] and suppose that nodes of H* are contained in different connected
components of G\ S. Then z ¢ H* and x has at least two nonadjacent neighbors in H*.
Since G does not contain a theta, x has at least three neighbors in H*.

First suppose that = has an odd number of neighbors in H*. Then by Lemma 10.2, x
is of type g3 w.r.t. H*. Let H be the hole obtained by substituting « into H*. Then H is
contained in Cg(H™*) and in one of the blocks of decomposition by S.

So we may now assume that = has an even number of neighbors in H*, and hence |N(x)N
H*| > 4. Since G does not contain a short 4-wheel, and = cannot be major w.r.t. H*, it
follows that x is of type b2 w.r.t. H*. But then (H*, x) is a decomposition detectable 4-wheel
w.r.t. S. O

Theorem 10.9 There exists an algorithm with the following specifications:

Input ;A connected graph G that does not contain a short 4-wheel, a theta, nor a
4-hole.
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Output  : Fither G is identified as not being even-hole-free, or a list L of induced
subgraphs of G with the following properties.

(1) The graphs in L do not have a star cutset.

(2) If G contains a smallest even hole H* such that all holes of Cq(H™)
are clean, then one of the graphs in L contains a hole in Cq(H™).

(3) The number of graphs in L is O(|V(G)|?).

Running : O(|V(G)|'?).
Time

Proof: The algorithm is as follows. Initialize £L = & and £ = {G}, and perform the following
iterative step. If £’ = @, then stop. Otherwise, remove a graph F from £’. If the distance
between every pair of vertices of F' is strictly less than 3 in GG, then discard F' and iterate. If
F contains a dominated node u, then add F'\ u to £" and iterate. If F' does not have a full
star cutset, then add F' to £ and iterate. Otherwise, let S be a full star cutset of F. If there
is a decomposition detectable 4-wheel w.r.t. S, then output that G is not even-hole-free and
stop. Otherwise construct the blocks of decomposition by S, add them to £’ and iterate.

Note that if a 4-wheel is found, then clearly G is not even-hole-free. (1) holds by the
construction of the algorithm (note that, as was first observed by Chvatal [8], a graph has a
star cutset if and only if it has a dominated node or a full star cutset). (2) holds by Lemma
10.6, 10.7 and 10.8.

We prove (3) by showing that the number of graphs in £ is bounded by the number of
pairs of vertices at distance at least 3 in G. Let S be a full star cutset of a graph F', and
let Fi,..., F,, be the blocks of decomposition. Let u and v be two vertices of F' that are at
distance at least 3 in G (and hence in F'). The pair of vertices {u,v} cannot be contained in
two different blocks of decompostion, since otherwise they would both have to be in S, but
since S is a star, all vertices of S are at distance at most 2. Therefore, no pair of vertices
that are at distance at least 3 in G can be contained in different graphs in L.

Finding a dominated node, or finding a full star cutset and construting blocks of decompo-
sition can be done in time O(|V (G)[?). For a given full star cutset S = N[z], checking whether
there exists a decomposition detectable 4-wheel can be done in time O(|V(G)|®) as follows:
let C4,...,C) be the connected components of G \ S; for every 4-tuple (x1,x2,x3,x4), where
{z1,29,23,24} C N(x) and G[{x1, 2, 3,24} consists of exactly two edges, z1z2 and x3x4;
and for every 2-tuple (Cj,Cj), where i,j € {1,...,k} and ¢ # j; check whether z; and x4
both have a neighbor in the same connected component of C; \ (N (z2) U N (z3)), and whether
x2 and z3 both have a neighbor in the same connected component of C; \ (N(z1) U N(x4)).
All this is performed at most O(|V(G)|?) times, giving O(|V (G)|'?) time complexity. O

10.2 2-join decomposition

In this section we decompose a clean graph that has no star cutset using 2-join decompositions,
without creating any new star cutsets.
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Let V1|V; be a 2-join with special sets (A1, Ag, B1, B2). For i = 1,2, let P; be the family of
chordless paths P = x4, ..., x,, where z1 € A;, x,, € B; and z; € V;\(A4;UB;) for2 < j <n—1.

The blocks of a 2-join decomposition are graphs G; and G5 defined as follows. Block G
consists of the subgraph of GG induced by node set V; plus a marker path P> = as, ..., by that
is chordless and satisfies the following properties. Node a9 is adjacent to all nodes in Aq,
node by is adjacent to all nodes in By and these are the only adjacencies between P and the
nodes of V1. Furthermore, let QQ € Ps. The marker path P, has length 3 if ) is of odd length,
and length 4 otherwise. Block G5 is defined similarly.

Theorem 10.10 [12] Let G be a graph that does not contain a 4-hole. Let Gi and Gz be
the blocks of a 2-join decomposition of G. G is even-hole-free if and only if G1 and Go are
even-hole-free. Furthermore, if G does not have a star cutset, then neither do G1 and Gs.

Theorem 10.11 There exists an algorithm with the following specifications:

Input ;A connected graph G that does not have a 4-hole nor a star cutset.

Output  : FEither an even hole of G, or a list L of graphs with the following properties:
(1) The graphs in L do not contain a 4-hole, a star cutset nor a 2-join.
(2) G is even-hole-free if and only if all graphs in L are even-hole-free.
(8) The number of graphs in L is O(|V(G)]).

Running : O(|V(G)|?).
Time

Proof: The algorithm is as follows. Initialize £ = & and £ = {G}, and perform the following
iterative step. If £’ = &, then stop. Otherwise, remove a graph F from £'. If F' does not
have a 2-join, then add F' to £ and iterate. Otherwise, let V1|V be a 2-join of F'. Construct
the blocks of the 2-join decomposition of F', say Fy and Fy. For i = 1,2, if |V;| < 7, then
check directly whether F; contains an even hole. If it does, output this result and stop, and
otherwise discard F;. If |V;| > 7, add F; to L', and iterate.

By constructing blocks of decomposition we do not create any 4-holes, and by Theorem
10.10 we do not create any star cutsets. So by the construction of the algorithm, (1) holds.
(2) holds by Theorem 10.10.

In [3] and [12] it is shown how with this construction of the algorithm (3) holds.

Finding a 2-join takes time O(|V(G)|") using the crude implementation in [12], and this
algorithm is applied at most O(|V (G)|) times, yielding an overall complexity of O(|V(G)[®).
O

10.3 Recognition Algorithm

Theorem 10.12 There exists an algorithm with the following specifications:
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Input ;A graph G.

Output : FEVEN-HOLE-FREE when G is even-hole-free, and NOT EVEN-HOLE-
FREE otherwise.

Running : O(|V(G)|*?).
Time

Proof: Consider the following algorithm:

Step 1: Test whether G contains a short 4-wheel, a theta, or a 4-hole. If it does, then output
NOT EVEN-HOLE-FREE and stop.

Step 2: Apply algorithm from Theorem 10.5, and let £ be the output family of graphs.

Step 3: Let Lo = &. For every graph in Li, apply the algorithm from Theorem 10.9. If
the graph is identified as not being even-hole-free, then output the same and stop.
Otherwise merge the output family of graphs with Ls.

Step 4: Let L3 = @. For every graph in Lo, apply the algorithm from Theorem 10.11.
If the graph is identified as not being even-hole-free, then output the same and stop.
Otherwise merge the output family of graphs with L3.

Step 5: Check whether every graph in L3 is an extended clique tree. If some is not then
output NOT EVEN-HOLE-FREE. Otherwise, for each graph in L3 check whether it
contains an even hole. If some does, then output NOT EVEN-HOLE-FREE, and
otherwise output EVEN-HOLE-FREE.

The correctness of the algorithm follows from Corollary 1.3. Testing whether a graph
contain a short 4-wheel or a 4-hole can be done by brute force in time O(|V(G)|?). Testing
whether a graph contains a theta can be done in time O(|V(G)[*!) [7]. So Step 1 can be
implemented to run in time O(|V(G)[*).

By Theorem 10.5, Step 2 can be implemented to run in time O(|V(G)|'°) and |£{| =
O(|[V(G)|°). By Theorem 10.9 and since |£1| = O(|[V(G)]?), Step 3 can be implemented
to run in time O(|V(G)[*) and |L2] = O(|V(G)|*). By Theorem 10.11 and since |Ls| =
O(|V(G)|') Step 4 can be implemented to run in time O(|V(G)|*) and |L3| = O(|V(G)[*?).

It is easy to see that in a clique tree there is at most one chordless path between any pair
of vertices. So if G\ z is a clique tree, then to determine whether G contains an even hole we
need only test for every pair of neighbors of x whether the chordless path between them in
G \ x contains no other neighbor of x and is of even length. Similarly one can test whether
an extended clique tree contains an even hole. So, since |L3] = O(|V(G)|'?), Step 5 can be
implemented to run in time O(|V(G)|'"). Therefore the overall running time is O(|V (G)|'?).
a
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