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Abstract

We present a polynomial-time algorithm for recognizing quasi-Meyniel graphs. A hole is a
chordless cycle with at least four vertices. A cap is a cycle with at least 6ve vertices, with a
single chord that forms a triangle with two edges of the cycle. A graph G is quasi-Meyniel
if it contains no odd hole and for some x ∈ V (G), the chord of every cap in G has x as an
endvertex. Our recognition algorithm is based on star cutset decompositions. ? 2001 Elsevier
Science B.V. All rights reserved.
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1. Quasi-Meyniel graphs

A cycle is even if it contains an even number of vertices, and it is odd otherwise.
A hole is a chordless cycle with at least four vertices. A cap is a cycle with at least
6ve vertices, with a single chord that forms a triangle with two edges of the cycle. A
graph G contains a graph H if H is an induced subgraph of G. A graph is H -free if
it does not contain H .
A graph is Meyniel if every odd cycle with at least 6ve vertices has two or more

chords [11]. Clearly, a graph is Meyniel if and only if it contains no odd hole and no
cap. A graph G is quasi-Meyniel if it contains no odd hole, and if it contains a tip:
a vertex x such that the chord of every cap in G has x as an endvertex. This class of
graphs is introduced by Hertz [9], where he gives an eBcient coloring algorithm for
Meyniel graphs, by coloring quasi-Meyniel graphs with given tips.
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Every Meyniel graph G is quasi-Meyniel, with every vertex of G being a tip. If G
is quasi-Meyniel but not Meyniel, then G must contain a cap and G has at most two
tips. If G is quasi-Meyniel with tip x, then every induced subgraph of G containing x
is quasi-Meyniel with tip x and every induced subgraph of G not containing vertex x
is Meyniel.
The goal of this paper is to address two algorithmic questions: how to 6nd a tip of

a quasi-Meyniel graph, and how to recognize quasi-Meyniel graphs.
Finding a tip of a quasi-Meyniel graph is important for coloring purposes. The search

for polynomial-time algorithms for classes of graphs de6ned by chordality conditions
has attracted much interest, especially in the context of Perfect Graph Theory [4–8,10].
A graph G is perfect if, for all induced subgraphs H of G, the size of the largest clique
in H is equal to the chromatic number of H . A long-standing conjecture of Berge [1]
states that G is perfect if and only if neither G nor its complement contain an odd
hole. The existence of a polynomial-time algorithm to test whether G contains an odd
hole implies a polynomial-time algorithm to test whether G is perfect, modulo the
veri6cation of Berge’s conjecture, and it is possible that such an algorithm may itself
prove the conjecture.
Finding a cap in a graph G or verifying that G does not contain one can be done

as follows. For every edge xy in G and for every z ∈ N (x) ∩ N (y), check whether x
and y both have a neighbor in the same component C of G\((N (x) ∩ N (y)) ∪ N (z)).
If they do, then the node set {x; y; z} ∪ V (P), where P is a shortest path in C whose
one endnode is adjacent to x and the other to y, induces a cap with chord xy. If the
condition fails for all choices of nodes x; y and z, then G does not contain a cap.
Note that by 6nding chords of all of the caps of a graph G, one can easily 6nd a tip

candidate of G: a node that is an endnode of the chord of every cap. But this is not
suBcient to recognize quasi-Meyniel graphs since one still has to check whether there is
an odd hole that passes through the tip, and this problem is NP-complete in general [2].
The recognition of Meyniel graphs in polynomial time was established by Burlet

and Fonlupt [3] when they de6ned the amalgam decomposition and proved that the
amalgam of two Meyniel graphs is a Meyniel graph and, conversely, that any Meyniel
graph can be amalgam decomposed in polynomial time into basic Meyniel graphs,
which in turn can be recognized in polynomial time. The polynomial-time algorithm
for recognizing quasi-Meyniel graphs that we propose here is based on a decomposition
through star cutsets which preserves in both senses, ascending and descending, the
property of being quasi-Meyniel. This decomposition for quasi-Meyniel graphs yields
a decomposition tree whose leaves are Meyniel graphs.

2. Decomposition

Given a graph G and S ⊆V (G), we denote by G\S the subgraph of G induced by
the vertex set V (G)\S. A node set S ⊆V (G) is a cutset of a connected graph G if the
graph G\S is disconnected. A node set S ⊆V (G) is a star cutset with center x of G if
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S is a cutset of G and some x ∈ S is adjacent to all the vertices of S\{x}. Let a node
set S be a cutset of a graph G, and let C1; : : : ; Cn be the connected components of G\S.
The blocks of decomposition by S are graphs G1; : : : ; Gn where Gi is the subgraph of
G induced by the vertex set V (Ci) ∪ S.

Lemma 1. Suppose that a graph G and a vertex x ∈ V (G) are such that G\{x}
is Meyniel. Let S be a star cutset of G with center x; and let G1; : : : ; Gn be the
blocks of decomposition by S. Then G is quasi-Meyniel with tip x if and only if Gi
is quasi-Meyniel with tip x; for every i.

Proof. If G is quasi-Meyniel with tip x, so are all the Gi’s, since they are induced
subgraphs of G containing vertex x. To prove the converse, assume that G contains
an odd hole H or a cap H in which x is not an endvertex of a chord. Since G\{x} is
Meyniel, H contains x. But then H\S is contained in some connected component Ci
of G\S, and so H is contained in Gi. Hence, Gi is not quasi-Meyniel with tip x.

A wheel, denoted by (H; x), is a graph induced by a hole H and a vertex x �∈ V (H)
having at least three neighbors in H . Vertex x is the center of the wheel. A sector of
the wheel is a subpath of H whose endvertices are neighbors of x and intermediate
nodes are not. A short sector is a sector of length 1, and a long sector is a sector of
length at least 2. A twin wheel is a wheel with three sectors, two of which are short.
Given a triangle {x1; x2; x3} and a vertex y adjacent to at most one vertex in
{x1; x2; x3}, a 3PC(x1x2x3; y) is a graph induced by three chordless paths, P1 = x1 : : : y;
P2 = x2 : : : y and P3 = x3 : : : y, having no common vertices other than y, and such that
the only adjacencies between the vertices of P1\{y}; P2\{y}; and P3\{y} are the
edges of the triangle {x1; x2; x3}. Note that V (Pi) ∪ V (Pj) induces a hole, when i �= j.
The following simple facts will be used in the proof of Lemma 2 below:

Fact 1. Let (H; y) be a wheel in a quasi-Meyniel graph G with tip x, such that y �= x.
If (H; y) has both a short and a long sector, then (H; y) is a twin wheel.

Fact 2. Odd-hole-free graphs cannot contain a 3PC(x1x2x3; y).

Lemma 2. Let G be a quasi-Meyniel graph with tip x. Suppose G contains a cap in-
duced by a hole H = xx1 : : : xkx and a vertex y adjacent to x and xk . Then
S = (N (x) ∪ {x})\{y} is a cutset separating y from H\S.

Proof. We prove that T = (N (x) ∪ {x})\{y; x1} is a cutset separating y from H\T ,
which clearly implies the lemma. Suppose not and let P =p1 : : : pn be a path in G\T
such that p1 is adjacent to y; pn is adjacent to a node of H\T , and no proper subset
of V (P) induces a path with these properties. Note that x does not have a neighbor in
P, but xk possibly does. Let xi be the vertex of H with lowest index adjacent to pn.
Note that i¡ k. Let H ′ be the hole induced by the vertex set V (P)∪ {y; x; x1; : : : ; xi}.
Let xj be the neighbor of pn in H\{xk} with highest index. Note that possibly i = j.
We now consider the following two cases.
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Case 1: xk is adjacent to a vertex of P. Then (H ′; xk) is a wheel that contains at least
one short sector (since xk is adjacent to x and y) and at least one long sector (since xk
is not adjacent to x1). Hence, by Fact 1, (H ′; xk) is a twin wheel. So the only neighbor
of xk in P is p1. If n �= 1 or j �= k − 1, then the vertex set V (P) ∪ {y; xj; : : : ; xk}
induces a cap, contradicting the assumption that x is a tip of G. Hence, n = 1 and
j = k − 1. If i = j, then (H ′; xk) is a wheel that contradicts Fact 1. Hence, i �= j, and
so (H;p1) is a wheel. By Fact 1, (H;p1) is a twin wheel. So the neighbors of p1 in
H are xk ; xk−1 and xk−2. But then the vertex set (V (H)∪{y; p1})\{xk} induces a cap,
contradicting the assumption that x is a tip of G.
Case 2: xk is not adjacent to a vertex of P. If i=j, then the vertex set V (H)∪V (P)∪

{y} induces a 3PC(xyxk ; xi), contradicting Fact 2. Hence i �= j. If xixj is an edge, then
the vertex set V (P) ∪ {y; xi; : : : ; xk} induces a cap, contradicting the assumption that x
is a tip of G. Otherwise, the vertex set V (P)∪ {x; x1; : : : ; xi; xj; : : : ; xk} ∪ {y} induces a
3PC(xyxk ; pn), contradicting Fact 2.

A good star cutset with center x is a cutset of the form S = (N (x) ∪ {x})\{y},
where y ∈ N (x) (the kind of a cutset used in Lemma 2).

3. Recognition algorithm

To test whether a graph G is quasi-Meyniel, we 6rst test whether G contains a cap.
If it does not, then it is suBcient to test whether G is Meyniel. If a cap with chord
xy is detected, then we apply the recognition algorithm below twice, to check whether
G is quasi-Meyniel with tip x and to check whether G is quasi-Meyniel with tip y.

Algorithm 1
Input: A graph G and a vertex x ∈ V (G)
Output: YES, if G is quasi-Meyniel with tip x; and NO otherwise

if G\{x} is not Meyniel then return NO

L1 ← G; L2 ← ∅;
while L1 �= ∅ do
remove a graph F from L1

if there is a good star cutset S with center x in F then

decompose F by S and add the blocks of decomposition to L1

else

add F to L2

if all the graphs in L2 are Meyniel then

return YES

else

return NO

Lemma 3. Algorithm 1 correctly identiDes whether G is quasi-Meyniel with tip x.
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Proof. If G\{x} is not Meyniel, then clearly G is not quasi-Meyniel with tip x, and
Algorithm 1 correctly terminates. So, assume that G\{x} is Meyniel. Correctness of
Algorithm 1 will follow from showing that G is quasi-Meyniel with tip x if and only
if all the graphs in L2 are Meyniel. Algorithm 1 builds a decomposition tree whose
internal nodes correspond to graphs having a good star cutset with center x, whereas
the leaves correspond to graphs having no such cutset. Applying Lemma 1 to every
graph corresponding to an internal node, we have that G is quasi-Meyniel with tip x if
and only if all the graphs in L2 are quasi-Meyniel with tip x. Let F ∈L2. We now
show that F is quasi-Meyniel with tip x if and only if F is Meyniel. If F is Meyniel,
then trivially F is quasi-Meyniel with tip x. To show the converse, assume that F is
quasi-Meyniel with tip x, but that F is not Meyniel. Then F contains a cap with x
being an endvertex of its chord. But then, by Lemma 2, F has a good star cutset with
center x, contradicting the assumption that F ∈L2.

3.1. Complexity analysis

Let G be a graph with n vertices and m edges. The above-described test for the
existence of a cap takes time O(n3m). The algorithm in [3] for checking whether a
graph is Meyniel is O(n7). More recently, Roussel and Rusu [12] showed how to do
this recognition in time O(m2 + mn). The complexity of the proposed quasi-Meyniel
graph recognition is O(n3m), being dominated by the complexity of Algorithm 1 which
checks whether G is quasi-Meyniel with tip x, whose complexity we now establish to
be O(mn3 + m2n+ mn2).
Consider an internal node of the decomposition tree and suppose it corresponds to

decomposing the graph H with a good star cutset S = (N (x) ∪ {x})\{y}. Let z be a
node of a component of H\S that does not contain y. Label the corresponding internal
node of the decomposition tree with pair (y; z). Clearly no two internal nodes are
labeled with the same pair, so the number of internal nodes in the decomposition tree
is O(n2). Decomposition through a good star cutset with center x can be performed in
time O(mn): for every neighbor y of x, test whether (N (x) ∪ {x})\{y} is a cutset in
time O(m). Thus the total cost of building the decomposition tree is O(mn3).

The leaves in the decomposition tree that do not contain any non-neighbors of x are
clearly Meyniel. The number of leaves that contain a non-neighbor of x is O(n), since
no two distinct leaves can contain the same non-neighbor of x. So verifying whether the
graphs in L2 are Meyniel can be implemented to run in time O(m2n+mn2), assuming
an O(m2 +mn) algorithm for testing whether a graph is Meyniel. Hence, Algorithm 1
can be implemented to run in time O(mn3 + m2n+ mn2).
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