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Abstract

We present a polynomial-time algorithm for recognizing quasi-Meyniel graphs. A /hole is a
chordless cycle with at least four vertices. A cap is a cycle with at least five vertices, with a
single chord that forms a triangle with two edges of the cycle. A graph G is quasi-Meyniel
if it contains no odd hole and for some x € V(G), the chord of every cap in G has x as an
endvertex. Our recognition algorithm is based on star cutset decompositions. © 2001 Elsevier
Science B.V. All rights reserved.
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1. Quasi-Meyniel graphs

A cycle is even if it contains an even number of vertices, and it is odd otherwise.
A hole is a chordless cycle with at least four vertices. A cap is a cycle with at least
five vertices, with a single chord that forms a triangle with two edges of the cycle. A
graph G contains a graph H if H is an induced subgraph of G. A graph is H-free if
it does not contain H.

A graph is Meyniel if every odd cycle with at least five vertices has two or more
chords [11]. Clearly, a graph is Meyniel if and only if it contains no odd hole and no
cap. A graph G is quasi-Meyniel if it contains no odd hole, and if it contains a tip:
a vertex x such that the chord of every cap in G has x as an endvertex. This class of
graphs is introduced by Hertz [9], where he gives an efficient coloring algorithm for
Meyniel graphs, by coloring quasi-Meyniel graphs with given tips.
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Every Meyniel graph G is quasi-Meyniel, with every vertex of G being a tip. If G
is quasi-Meyniel but not Meyniel, then G must contain a cap and G has at most two
tips. If G is quasi-Meyniel with tip x, then every induced subgraph of G containing x
is quasi-Meyniel with tip x and every induced subgraph of G not containing vertex x
is Meyniel.

The goal of this paper is to address two algorithmic questions: how to find a tip of
a quasi-Meyniel graph, and how to recognize quasi-Meyniel graphs.

Finding a tip of a quasi-Meyniel graph is important for coloring purposes. The search
for polynomial-time algorithms for classes of graphs defined by chordality conditions
has attracted much interest, especially in the context of Perfect Graph Theory [4-8,10].
A graph G is perfect if, for all induced subgraphs H of G, the size of the largest clique
in H is equal to the chromatic number of H. A long-standing conjecture of Berge [1]
states that G is perfect if and only if neither G nor its complement contain an odd
hole. The existence of a polynomial-time algorithm to test whether G contains an odd
hole implies a polynomial-time algorithm to test whether G is perfect, modulo the
verification of Berge’s conjecture, and it is possible that such an algorithm may itself
prove the conjecture.

Finding a cap in a graph G or verifying that G does not contain one can be done
as follows. For every edge xy in G and for every z € N(x) N N(»), check whether x
and y both have a neighbor in the same component C of G\((N(x) N N(y)) UN(z2)).
If they do, then the node set {x, y,z} U V(P), where P is a shortest path in C whose
one endnode is adjacent to x and the other to y, induces a cap with chord xy. If the
condition fails for all choices of nodes x, y and z, then G does not contain a cap.

Note that by finding chords of all of the caps of a graph G, one can easily find a tip
candidate of G: a node that is an endnode of the chord of every cap. But this is not
sufficient to recognize quasi-Meyniel graphs since one still has to check whether there is
an odd hole that passes through the tip, and this problem is NP-complete in general [2].

The recognition of Meyniel graphs in polynomial time was established by Burlet
and Fonlupt [3] when they defined the amalgam decomposition and proved that the
amalgam of two Meyniel graphs is a Meyniel graph and, conversely, that any Meyniel
graph can be amalgam decomposed in polynomial time into basic Meyniel graphs,
which in turn can be recognized in polynomial time. The polynomial-time algorithm
for recognizing quasi-Meyniel graphs that we propose here is based on a decomposition
through star cutsets which preserves in both senses, ascending and descending, the
property of being quasi-Meyniel. This decomposition for quasi-Meyniel graphs yields
a decomposition tree whose leaves are Meyniel graphs.

2. Decomposition
Given a graph G and S C V(G), we denote by G\S the subgraph of G induced by

the vertex set V(G)\S. A node set S C V' (G) is a cutset of a connected graph G if the
graph G\S is disconnected. A node set S C V(G) is a star cutset with center x of G if
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S is a cutset of G and some x € S is adjacent to all the vertices of S\{x}. Let a node
set S be a cutset of a graph G, and let Cy,...,C, be the connected components of G\S.
The blocks of decomposition by S are graphs Gy, ..., G, where G; is the subgraph of
G induced by the vertex set V(C;)US.

Lemma 1. Suppose that a graph G and a vertex x € V(G) are such that G\{x}
is Meyniel. Let S be a star cutset of G with center x, and let Gy,...,G, be the
blocks of decomposition by S. Then G is quasi-Meyniel with tip x if and only if G;
is quasi-Meyniel with tip x, for every i.

Proof. If G is quasi-Meyniel with tip x, so are all the G;’s, since they are induced
subgraphs of G containing vertex x. To prove the converse, assume that G contains
an odd hole H or a cap H in which x is not an endvertex of a chord. Since G\{x} is
Meyniel, H contains x. But then H\S is contained in some connected component C;
of G\S, and so H is contained in G;. Hence, G; is not quasi-Meyniel with tip x. [J

A wheel, denoted by (H,x), is a graph induced by a hole H and a vertex x € V(H)
having at least three neighbors in H. Vertex x is the center of the wheel. A sector of
the wheel is a subpath of H whose endvertices are neighbors of x and intermediate
nodes are not. A short sector is a sector of length 1, and a long sector is a sector of
length at least 2. A twin wheel is a wheel with three sectors, two of which are short.

Given a triangle {xj,x;,x3} and a vertex y adjacent to at most one vertex in
{x1,%2,x3}, a 3PC(x1x2x3, y) is a graph induced by three chordless paths, P; =x; ...y,
Py=x;...y and P; =x3...y, having no common vertices other than y, and such that
the only adjacencies between the vertices of Pi\{y}, P,\{y}, and P;\{y} are the
edges of the triangle {x;,x»,x3}. Note that V(P;) U V(P;) induces a hole, when i # j.

The following simple facts will be used in the proof of Lemma 2 below:

Fact 1. Let (H, y) be a wheel in a quasi-Meyniel graph G with tip x, such that y # x.
If (H, y) has both a short and a long sector, then (H, y) is a twin wheel.
Fact 2. Odd-hole-free graphs cannot contain a 3PC(x;x2x3, ).

Lemma 2. Let G be a quasi-Meyniel graph with tip x. Suppose G contains a cap in-
duced by a hole H = xxy...x;x and a vertex y adjacent to x and x;. Then
S=WE)U{xP\{»} is a cutset separating y from H\S.

Proof. We prove that 7 = (N(x) U {x})\{»,x1} is a cutset separating y from H\T,
which clearly implies the lemma. Suppose not and let P = p; ... p, be a path in G\T
such that p; is adjacent to y, p, is adjacent to a node of H\7, and no proper subset
of V(P) induces a path with these properties. Note that x does not have a neighbor in
P, but x; possibly does. Let x; be the vertex of H with lowest index adjacent to p,.
Note that i < k. Let H' be the hole induced by the vertex set V(P)U {y,x,x1,...,x;}.
Let x; be the neighbor of p, in H\{x;} with highest index. Note that possibly i = ;.
We now consider the following two cases.
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Case 1: x; is adjacent to a vertex of P. Then (H',x;) is a wheel that contains at least
one short sector (since x; is adjacent to x and y) and at least one long sector (since x
is not adjacent to x;). Hence, by Fact 1, (H’,x;) is a twin wheel. So the only neighbor
of xp in P is pi. If n # 1 or j # k — 1, then the vertex set V(P)U {y,xj,...,x¢}
induces a cap, contradicting the assumption that x is a tip of G. Hence, » =1 and
j=k—1.1f i =, then (H',x;) is a wheel that contradicts Fact 1. Hence, i # j, and
so (H, p1) is a wheel. By Fact 1, (H, p;) is a twin wheel. So the neighbors of p; in
H are x;,x;—; and x;_,. But then the vertex set (V(H)U{y, p1})\{x¢} induces a cap,
contradicting the assumption that x is a tip of G.

Case 2: x; is not adjacent to a vertex of P. If i=j, then the vertex set V(H)UV (P)U
{y} induces a 3PC(xyx,x;), contradicting Fact 2. Hence i # j. If x;x; is an edge, then
the vertex set V(P)U{y,x;,...,x;} induces a cap, contradicting the assumption that x
is a tip of G. Otherwise, the vertex set V' (P)U {x,x1,...,x;,Xj,...,x:} U{y} induces a
3PC(xyxi, pn), contradicting Fact 2. [J

A good star cutset with center x is a cutset of the form S = (N(x) U {xP)\{»},
where y € N(x) (the kind of a cutset used in Lemma 2).

3. Recognition algorithm

To test whether a graph G is quasi-Meyniel, we first test whether G contains a cap.
If it does not, then it is sufficient to test whether G is Meyniel. If a cap with chord
xy is detected, then we apply the recognition algorithm below twice, to check whether
G is quasi-Meyniel with tip x and to check whether G is quasi-Meyniel with tip y.

Algorithm 1
Input: A graph G and a vertex x € V(G)
Output: YES, if G is quasi-Meyniel with tip x, and NO otherwise

if G\{x} is not Meyniel then return NO
Ly — G, Ly — 0
while % # () do
remove a graph F from %,
if there is a good star cutset § with center x in F then
decompose F by S and add the blocks of decomposition to %
else
add F to ¥
if all the graphs in ¥, are Meyniel then
return YES
else
return NO

Lemma 3. Algorithm 1 correctly identifies whether G is quasi-Meyniel with tip x.
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Proof. If G\{x} is not Meyniel, then clearly G is not quasi-Meyniel with tip x, and
Algorithm 1 correctly terminates. So, assume that G\{x} is Meyniel. Correctness of
Algorithm 1 will follow from showing that G is quasi-Meyniel with tip x if and only
if all the graphs in ¥, are Meyniel. Algorithm 1 builds a decomposition tree whose
internal nodes correspond to graphs having a good star cutset with center x, whereas
the leaves correspond to graphs having no such cutset. Applying Lemma 1 to every
graph corresponding to an internal node, we have that G is quasi-Meyniel with tip x if
and only if all the graphs in %, are quasi-Meyniel with tip x. Let F € ¥,. We now
show that F' is quasi-Meyniel with tip x if and only if F' is Meyniel. If F' is Meyniel,
then trivially F is quasi-Meyniel with tip x. To show the converse, assume that F is
quasi-Meyniel with tip x, but that ' is not Meyniel. Then F contains a cap with x
being an endvertex of its chord. But then, by Lemma 2, F has a good star cutset with
center x, contradicting the assumption that F € ¥,. [

3.1. Complexity analysis

Let G be a graph with n vertices and m edges. The above-described test for the
existence of a cap takes time ((n’m). The algorithm in [3] for checking whether a
graph is Meyniel is ()(n7). More recently, Roussel and Rusu [12] showed how to do
this recognition in time ()(m?> + mn). The complexity of the proposed quasi-Meyniel
graph recognition is ((n3m), being dominated by the complexity of Algorithm 1 which
checks whether G is quasi-Meyniel with tip x, whose complexity we now establish to
be O(mn® + m*n + mn?).

Consider an internal node of the decomposition tree and suppose it corresponds to
decomposing the graph H with a good star cutset S = (N(x) U {x})\{y}. Let z be a
node of a component of H\S that does not contain y. Label the corresponding internal
node of the decomposition tree with pair (y,z). Clearly no two internal nodes are
labeled with the same pair, so the number of internal nodes in the decomposition tree
is ()(n*). Decomposition through a good star cutset with center x can be performed in
time @(mn): for every neighbor y of x, test whether (N(x) U {x})\{y} is a cutset in
time ()(m). Thus the total cost of building the decomposition tree is ((mn?).

The leaves in the decomposition tree that do not contain any non-neighbors of x are
clearly Meyniel. The number of leaves that contain a non-neighbor of x is ()(n), since
no two distinct leaves can contain the same non-neighbor of x. So verifying whether the
graphs in %, are Meyniel can be implemented to run in time ((m*n+mn?*), assuming
an ((m* + mn) algorithm for testing whether a graph is Meyniel. Hence, Algorithm 1
can be implemented to run in time O(mn® + m*n + mn?).
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