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a b s t r a c t

The class C of graphs that do not contain a cycle with a unique chord was recently studied
by Trotignon and Vušković (in press) [23], who proved for these graphs strong structure
results which led to solving the recognition and vertex-colouring problems in polynomial
time. In the present paper, we investigate how these structure results can be applied to
solve the edge-colouring problem in the class. We give computational complexity results
for the edge-colouring problem restricted to C and to the subclass C ′ composed of the
graphs of C that do not have a 4-hole. We show that it is NP-complete to determine
whether the chromatic index of a graph is equal to its maximum degree when the input is
restricted to regular graphs ofCwith fixed degree∆ ≥ 3. For the subclassC ′, we establish a
dichotomy: if the maximum degree is∆ = 3, the edge-colouring problem is NP-complete,
whereas, if ∆ 6= 3, the only graphs for which the chromatic index exceeds the maximum
degree are the odd holes and the odd order complete graphs, a characterization that solves
edge-colouring problem in polynomial time. We determine two subclasses of graphs in
C ′ of maximum degree 3 for which edge-colouring is polynomial. Finally, we remark that
a consequence of one of our proofs is that edge-colouring in NP-complete for r-regular
tripartite graphs of degree∆ ≥ 3, for r ≥ 3.

© 2009 Elsevier B.V. All rights reserved.

1. Motivation

Let G = (V , E) be a simple graph. The degree of a vertex v in G is denoted by degG(v), and the maximum degree of a
vertex in G is denoted by∆(G). An edge-colouring of G is a function π : E → C such that no two adjacent edges receive the
same colour c ∈ C. If C = {1, 2, . . . , k}, we say that π is a k-edge-colouring. The chromatic index of G, denoted by χ ′(G), is
the least k for which G has a k-edge-colouring.
Vizing’s theorem [24] states thatχ ′(G) = ∆(G) or∆(G)+1, defining the classification problem: graphswithχ ′(G) = ∆(G)

are said to be Class 1, while graphswithχ ′(G) = ∆(G)+1 are said to be Class 2. The edge-colouring problem or chromatic index
problem is the problem of determining the chromatic index of a graph. Edge-colouring is a challenging topic in graph theory
and the complexity of the problem is unknown for several important well-studied classes. Edge-colouring is NP-complete
for regular graphs [13,17] of degree∆ ≥ 3. The problem is NP-complete also for the following classes [5]:

• r-regular comparability (hence perfect) graphs, for r ≥ 3;
• r-regular line graphs of bipartite graphs (hence line graphs and clique graphs), for r ≥ 3;
• r-regular k-hole-free graphs, for r ≥ 3, k ≥ 3;
• cubic graphs of girth k, for k ≥ 4.
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Table 1
Complexity dichotomy for edge-colouring in the class of graphs with no cycle with a
unique chord.
Class ∆ = 3 ∆ ≥ 4 Regular

Graphs of C NP-complete NP-complete NP-complete
4-hole-free graphs of C NP-complete Polynomial Polynomial
6-hole-free graphs of C NP-complete NP-complete NP-complete
{4-hole, 6-hole}-free graphs of C Polynomial Polynomial Polynomial

Table 2
Complexity dichotomy for edge-colouring in the
class of multipartite graphs.
Class k ≤ 2 k ≥ 3

k-partite graphs Polynomial NP-complete

Graph classes for which edge-colouring is polynomially solvable include the following:

• bipartite graphs [14];
• split-indifference graphs [19];
• series–parallel graphs (hence outerplanar) [14];
• k-outerplanar graphs [2], for k ≥ 1.

The complexity of edge-colouring is unknown for severalwell-studied strong structured graph classes, forwhich only partial
results have been reported, such as cographs [1], join graphs [10,11,18], cobipartite graphs [18], planar graphs [21,25],
chordal graphs, and several subclasses of chordal graphs such as indifference graphs [8], split graphs [7] and interval
graphs [3].
Given a graph F , we say that a graph G contains F if graph F is isomorphic to an induced subgraph of G. A graph G is F-free

if G does not contain F . A cycle C in a graph G is a sequence of vertices v1v2 . . . vnv1, that are distinct except for the first and
the last vertex, such that for i = 1, . . . , n− 1, vivi+1 is an edge and vnv1 is an edge — we call these edges the edges of C . An
edge of Gwith both endvertices in a cycle C is called a chord of C if it is not an edge of C . One can similarly define a path and
a chord of a path. A hole is a chordless cycle of length at least four and an `-hole is a hole of length `. A triangle is a cycle of
length 3 and a square is a 4-hole.
Trotignon and Vušković [23] studied the class C of graphs that do not contain a cycle with a unique chord. The main

motivation to investigate this class was to find a structure theorem for it, a kind of result which is not very frequent in
the literature. Basically, this structure result states that every graph in C can be built starting from a restricted set of basic
graphs and applying a series of known ‘‘gluing’’ operations. Another interesting property of this class is that it belongs to the
family of the χ-bounded graphs, introduced by Gyárfás [12] as a natural extension of perfect graphs. A family of graphs G is
χ-boundedwith χ-binding function f if, for every induced subgraph G′ of G ∈ G, χ(G′) ≤ f (ω(G′)), where χ(G′) denotes the
chromatic number of G′ andω(G′) denotes the size of a maximum clique in G′. The research in this area is mainly devoted to
understanding for what choices of forbidden induced subgraphs, the resulting family of graphs is χ-bounded, see [20] for a
survey. Note that perfect graphs are a χ-bounded family of graphs with χ-binding function f (x) = x, and perfect graphs are
characterized by excluding odd holes and their complements. Also, by Vizing’s theorem, the class of line graphs of simple
graphs is a χ-bounded family with χ-binding function f (x) = x+1 (this special upper bound is known as the Vizing bound)
and line graphs are characterized by nine forbidden induced subgraphs [26]. The class C is also χ-bounded with the Vizing
bound [23]. Also in [23] the following results are obtained for graphs inC: anO(nm) algorithm for optimal vertex-colouring,
an O(n + m) algorithm for maximum clique, an O(nm) recognition algorithm, and the NP-completeness of the maximum
stable set problem.
In the present paper we consider the complexity of determining the chromatic index of graphs in C. In particular, we

investigate how structure results can be used to solve the edge-colouring problem. We also investigate the subclasses
obtained from C by forbidding 4-holes and/or 6-holes. Tables 1 and 2 summarize the main results achieved in the present
work.
The results of Tables 1 and 2 show that, even for graph classes with strong structure and powerful decompositions, the

edge-colouring problem may be difficult.
The class initially investigated in this work is the class C of graphs with no cycle with a unique chord. Each non-basic

graph in this class can be decomposed [23] by special cutsets: 1-cutsets, proper 2-cutsets or proper 1-joins. We prove that
edge-colouring is NP-complete for graphs in C. We consider, then, a subclass C ′ ⊂ C whose graphs are the graphs in C
that do not have a 4-hole. By forbidding 4-holes we avoid decompositions by joins, which are difficult to deal with in edge-
colouring [1,10,11]. That is, each non-basic graph in C ′ can be decomposed of 1-cutsets and proper 2-cutsets. For this class
C ′ we establish a dichotomy: edge-colouring is NP-complete for graphs in C ′ with maximum degree 3 and polynomial for
graphs inC ′withmaximumdegree not 3.We determine also a necessary condition for a graphG ∈ C ′ ofmaximumdegree 3
to be Class 2. This condition is having graph P∗ – a subgraph of the Petersen graph – as a basic block in the decomposition
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tree. As a consequence, if both 4-holes and 6-holes are forbidden, the chromatic index of graphs with no cycle with a unique
chord can be determined in polynomial time. The results achieved in thiswork have connectionswith other areas of research
in edge-colouring, as we describe in the following three observations.
The first observation refers to the complexity dichotomy result found for class C ′. This dichotomy presents great interest

since, to the best of our knowledge, this is the first class for which edge-colouring is NP-complete for graphs with a given
fixed maximum degree ∆ and is polynomial for graphs with maximum degree ∆′ > ∆, as the reader may verify in the
NP-completeness results reviewed in the beginning of the present section. It is interesting to observe that the only regular
graphs in C ′ are the Petersen graph, the Heawood graph, the complete graphs, and the holes. As a consequence, edge-
colouring is NP-complete when restricted to C ′, but polynomial when restricted to regular graphs in C ′.
The second observation is related to the study of snarks [22]. A snark is a cubic bridgeless graph with chromatic index 4.

In order to avoid trivial (easy) cases, snarks are commonly restricted to have girth 5 or more and not to contain three edges
whose deletion results in a disconnected graph, each of whose components is non-trivial. The study of snarks is closely
related to the Four Colour Theorem. By the result of Lemma 8, the only non-trivial snark which has no cycle with a unique
chord is the Petersen graph.
Finally, the third observation refers to the problem of determining the chromatic index of a k-partite graph, that is, a

graph whose vertices can be partitioned into k stable sets. The problem is known to be polynomial [14,16] for k = 2 and for
complete multipartite graphs. However, there is no explicit result in the literature regarding the complexity of determining
the chromatic index of a k-partite graph for k ≥ 3. From the proof of Theorem 2 we can observe that edge-colouring is
NP-complete for k-partite r-regular graphs, for each k ≥ 3, r ≥ 3.
The remainder of the paper is organized as follows. In Section 2, we prove NP-completeness results regarding edge-

colouring in the classes C and C ′. In Section 3, we review known results on the structure of graphs in C and obtain stronger
structure results for graphs inC ′. In Section 4 we show how to determine in polynomial time the chromatic index of a graph
in C ′ with maximum degree ∆ ≥ 4. In Section 5 we further investigate graphs in C ′ with maximum degree 3: we show
that edge-colouring can be solved in polynomial time if the inputs are restricted to regular graphs of C ′ and to 6-hole-free
graphs of C ′.

2. NP-completeness results

In this section, we state NP-completeness results on the edge-colouring problem restricted to the class C of graphs that
do not contain a cycle with a unique chord and to the class C ′ composed of the graphs in C that do not contain a 4-hole.
First, we prove that edge-colouring is NP-complete for regular graphs of C with fixed degree∆ ≥ 3. We observe that it can
be shown that the construction of Cai and Ellis [5] which proves the NP-completeness of r-regular k-hole-free graphs, for
r ≥ 3 and k 6= 4, creates a graph with no cycle with a unique chord. Nevertheless, in the present section, we give a simpler
construction. Second, we prove that edge-colouring is NP-complete for graphs in C ′ with maximum degree∆ = 3. For the
proof of this second result, we construct a replacement graph which is not present in any edge-colouring NP-completeness
proof we could find in the literature.
We use the term CHRIND(P) to denote the problem of determining the chromatic index restricted to graph inputs with

property P . For example, CHRIND(graph of C) denotes the following problem:
INSTANCE: a graph G of C.
QUESTION: is χ ′(G) = ∆(G)?
The following theorem [13,17] establishes the NP-completeness of determining the chromatic index of∆-regular graphs

of fixed degree∆ at least 3:

Theorem 1 ([13,17]). For each∆ ≥ 3, CHRIND(∆-regular graph) is NP-complete.
Please refer to Fig. 1. Graph Qn, for n ≥ 3, is obtained from the complete bipartite graph Kn,n by removing an edge xy, by

adding new pendant vertices u and v, and by adding pendant edges ux and vy. Graph Q ′n is obtained from Qn by identifying
vertices u and v into a vertexw. Observe that Q ′n is a graph of maximum degree n, and has 2n+ 1 vertices and n

2
+ 1 edges.

So, Q ′n is overfull and, hence [9], Class 2. Lemma 1 investigates the properties of graph Qn, which is used as ‘‘gadget’’ in the
NP-completeness proof of Theorem 2.

Lemma 1. Graph Qn is n-edge-colourable, and in any n-edge-colouring of Qn, edges ux and vy receive the same colour.
Proof. We use the notation from Fig. 1. First, we exhibit an n-edge-colouring of Qn. Denote by x0, . . . , xn−1 (resp.
y0, . . . , yn−1) the vertices of Qn which belong to the same partition as x (resp. y), where x = x0 (resp. y = y0). An
n-edge-colouring of Qn is constructed as follows: just let the colour of edge xiyj be (i + j mod n) + 1 and let the colour
of edges x0u and y0v be 1.
Now we prove that, in any n-edge-colouring of Qn, edges ux and vy have the same colour. Suppose there is an n-edge-

colouring π of Qn where ux and vy have different colours. Consider the graph Q ′n = (V
′, E ′) obtained from Qn, by contracting

vertices u and v into vertexw. Thenwe can construct an n-edge-colouringπ ′ ofQ ′n by settingπ
′(e) = π(e) if e ∈ E ′\{ux, vy},

π ′(wx) = π(ux) and π ′(wy) = π(vy), which is a contradiction to the fact that Q ′n is Class 2. �

We prove in Theorem 2 the NP-completeness of edge-colouring regular graphs that do not contain a cycle with a unique
chord for each fixed degree∆ ≥ 3.
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Fig. 1. NP-complete gadget Qn and graph Q ′n .

Theorem 2. For each∆ ≥ 3, CHRIND(∆-regular graph in C) is NP-complete.

Proof. Let G = (V , E) be an input of the NP-complete problem CHRIND(∆-regular graph). Now, let G′ be the graph obtained
from G by removing each edge pq ∈ E and adding a copy of Q∆, identifying vertices u and v of Q∆ with vertices p and q of G.
For each edge pq of G, denote Hpq the subgraph of G′ isomorphic to Q∆ whose pendant vertices are p and q. Observe that G′
is also∆-regular.
Claim 1: G′ can be constructed in polynomial time from G. In fact, we make one substitution – by a copy of Q∆ – for each

edge of G, so that the construction time is linear on the number of edges of G.
Claim 2: if G is∆-edge-colourable, then so is G′. Let π be a∆-edge-colouring of G. We construct a∆-edge-colouring π ′

of G′ in the following way: for each edge pq of G, let the edges of Hpq in G′ be coloured in such a way that the pendant edges
have the colour π(pq) — this colouring exists and is described by Lemma 1.
Claim 3: if G′ is∆-edge-colourable, then so is G. Let π ′ be a∆-edge-colouring of G′. We construct a∆-edge-colouring π

of G as follows: let the colour in π of each edge pq of G be equal to the colour in π ′ of the pendant edges of Hpq (by Lemma 1,
these two pendant edges must receive the same colour).
Claim 4: G′ ∈ C. Suppose G′ has a cycle C with a unique chord αβ . Observe that, by construction, every edge of G′ – and,

in particular, chord αβ – has both endvertices in the same copy of Q∆. Denote by Hp′q′ this copy and observe that cycle C ,
when restricted to Hp′q′ , is a path between p′ and q′, and that αβ is a unique chord of this path. But there is no path with a
unique chord between the pendant vertices of Q∆, so that we have a contradiction. �

Observe that graph G′ in the proof of Theorem 2 is tripartite with vertex tripartition (P1, P2, P3) determined as follows:

• P1 is the set whose elements are the original vertices of G and the vertices denoted by y1, . . . , y∆ in each copy of Q∆;
• P2 is the set whose elements are the vertices denoted by x0 and y0 in each copy of Q∆;
• P3 is the set whose elements are the vertices denoted by x1, . . . , x∆ in each copy of Q∆.

So, the following result holds:

Theorem 3. For each k ≥ 3,∆ ≥ 3, CHRIND(∆-regular k-partite graph) is NP-complete.

We emphasize that C is a class with strong structure [23], yet, it is NP-complete for edge-colouring. We manage in
Section 4 to define a subclass of C where edge-colouring is solvable in polynomial time. Consider the class C ′ as the subset
of the graphs of C that do not contain a square. The structure of graphs in C ′ is stronger than that of graphs in C, and is
described in detail in Section 3. Yet, the edge-colouring problem is still NP-complete for inputs in C ′, as we prove next in
Theorem 4. We recall that the proof of Cai and Ellis [5] for the NP-completeness of edge-colouring cubic square-free graphs
generates a graph which has a cycle with a unique chord. In addition, remark that the gadget Q∆ used in the proof of the
NP-completeness of edge-colouring graphs with no cycle with a unique chord has a square. So, we need an alternative
construction, which is based on the gadget P̃ shown in Fig. 2. Graph P̃ is constructed in such a way that the identification
of its pendant vertices generates a graph isomorphic to P∗, the graph obtained from the Petersen graph by removing one
vertex. Graph P∗ is a non-overfull Class 2 graph [15,6]. The properties of P̃ with respect to edge-colouring are described in
Lemma 2.

Lemma 2. Graph P̃ is 3-edge-colourable, and in any 3-edge-colouring of P̃ , the edges ux and vy receive the same colour.
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Fig. 2. 3-edge-colouring of gadget graph P̃ .

Proof. Fig. 2 shows a 3-edge-colouring of P̃ — observe that edges ux and vy receive the same colour.
The fact that edges ux and vy always receive the same colour is a consequence of P∗ being Class 2. The proof is similar to

that of Lemma 1, except that gadget P̃ is used instead of Q∆. �

Theorem 4. CHRIND(graph in C ′ with maximum degree 3) is NP-complete.

Proof. The proof is similar to that of Theorem 2, except that∆ = 3 and gadget P̃ is used instead of Q∆. �

Observe that the graph G′ constructed in the proof of Theorem 4 is not regular. In fact, as we prove in Section 5.1, the
edge-colouring problem can be solved in polynomial time if the input is restricted to cubic graphs of C ′.

3. Structure of graphs in C and C′

The goal of the present section is to review structure results for the graphs inC and obtain stronger results for the subclass
C ′. These results are used in Section 4 to edge-colour the graphs inC ′ withmaximumdegree at least 4. In the present section
we review the results of Trotignon and Vušković [23] on the structure of graphs in C and obtain stronger results for graphs
in C ′.
Let C be the class of the graphs that do not contain a cycle with a unique chord and let C ′ be the class of the graphs of

C that do not contain a square. Trotignon and Vušković give a decomposition result [23] for graphs in C and graphs in C ′

in the following form: every graph in C or in C ′ either belongs to a basic class or has a cutset. Before we can state these
decomposition theorems, we define the basic graphs and the cutsets used in the decomposition.
The Petersen graph is the graph on vertices {a1, . . . , a5, b1, . . . , b5} so that both a1a2a3a4a5a1 and b1b2b3b4b5b1 are

chordless cycles, and such that the only edges between some ai and some bi are a1b1, a2b4, a3b2, a4b5, a5b3. We denote
by P the Petersen graph and by P∗ the graph obtained from P by removal of one vertex. Observe that P ∈ C.
The Heawood graph is a cubic bipartite graph on vertices {a1, . . . , a14} so that a1a2 . . . a14a1 is a cycle, and such that the

only other edges are a1a10, a2a7, a3a12, a4a9, a5a14, a6a11, a8a13. We denote by H the Heawood graph and by H∗ the graph
obtained from H by removal of one vertex. Observe that H ∈ C.
A graph is strongly 2-bipartite if it is square-free and bipartite with bipartition (X, Y )where every vertex in X has degree 2

and every vertex in Y has degree at least 3. A strongly 2-bipartite graph is inC because any chord of a cycle is an edge between
two vertices of degree at least three, so every cycle in a strongly 2-bipartite graph is chordless.
For the purposes of this work, a graph G is called basic1 if

1. G is a complete graph, a hole with at least five vertices, a strongly 2-bipartite graph, or an induced subgraph (not
necessarily proper) of the Petersen graph or of the Heawood graph; and

2. G has no 1-cutset, proper 2-cutset or proper 1-join (all defined next).

We denote by CB the set of the basic graphs. Observe that CB ⊆ C.
A cutset S of a connected graph G is a set of elements, vertices and/or edges, whose removal disconnects G. A

decomposition of a graph is the removal of a cutset to obtain smaller graphs, called the blocks of the decompositions, by
possibly adding some nodes and edges to connected components of G\ S. The goal of decomposing a graph is trying to solve
a problem on the whole graph by combining the solutions on the blocks. For a graph G = (V , E) and V ′ ⊆ V , G[V ′] denotes
the subgraph of G induced by V ′. The following cutsets are used in the known decomposition theorems of the class C [23]:

1 By the definition of [23], a basic graph is not, in general, indecomposable. However, our slightly different definition helps simplifying some of our
proofs.
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markermarker markermarker

Petersen Graph Petersen Graph Heawood Graph Heawood Graph

Fig. 3. Decomposition trees with respect to proper 1-joins. In the graph on the left, the basic blocks of decomposition are two copies of the Petersen graph.
In the graph on the right, the basic blocks of decomposition are two copies of the Heawood graph.

• A 1-cutset of a connected graph G = (V , E) is a node v such that V can be partitioned into sets X , Y and {v}, so that there
is no edge between X and Y . We say that (X, Y , v) is a split of this 1-cutset.
• A proper 2-cutset of a connected graph G = (V , E) is a pair of non-adjacent nodes a, b, both of degree at least three, such
that V can be partitioned into sets X , Y and {a, b} so that: |X | ≥ 2, |Y | ≥ 2; there is no edge between X and Y , and both
G[X ∪ {a, b}] and G[Y ∪ {a, b}] contain an ab-path. We say that (X, Y , a, b) is a split of this proper 2-cutset.
• A 1-join of a graph G = (V , E) is a partition of V into sets X and Y such that there exist sets A, B satisfying:
– ∅ 6= A ⊆ X , ∅ 6= B ⊆ Y ;
– |X | ≥ 2 and |Y | ≥ 2;
– there are all possible edges between A and B;
– there is no other edge between X and Y .
We say that (X, Y , A, B) is a split of this 1-join.
A proper 1-join is a 1-join such that A and B are stable sets of G of size at least two.

We can now state a decomposition result for graphs in C:

Theorem 5 (Trotignon and Vušković [23]). If G ∈ C is connected then either G ∈ CB or G has a 1-cutset, or a proper 2-cutset,
or a proper 1-join.

The block GX (resp. GY ) of a graph Gwith respect to a 1-cutset with split (X, Y , v) is G[X ∪ {v}] (resp. G[Y ∪ {v}]).
The block GX (resp. GY ) of a graph G with respect to a 1-join with split (X, Y , A, B) is the graph obtained by taking G[X]

(resp.G[Y ]) and adding a node y complete to A (resp. x complete to B). Nodes x, y are calledmarkers of their respective blocks.
The blocks GX and GY of a graph Gwith respect to a proper 2-cutset with split (X, Y , a, b) are defined as follows. If there

exists a node c of G such that NG(c) = {a, b}, then let GX = G[X ∪ {a, b, c}] and GY = G[Y ∪ {a, b, c}]. Otherwise, block GX
(resp. GY ) is the graph obtained by taking G[X ∪ {a, b}] (resp. G[Y ∪ {a, b}]) and adding a new node c adjacent to a, b. Node
c is called themarker of the block GX (resp. GY ).
The blocks with respect to 1-cutsets, proper 2-cutsets and proper 1-joins are constructed in such a way that they remain

in C, as shown by Lemma 3.

Lemma 3 (Trotignon and Vušković [23]). Let GX and GY be the blocks of decomposition of G with respect to a 1-cutset, a proper
1-join or a proper 2-cutset. Then G ∈ C if and only if GX ∈ C and GY ∈ C.

Observe that the Petersen graph and theHeawood graphmay appear as a block of decompositionwith respect to a proper
1-join, as shown in Fig. 3. However, these graphs cannot appear as a block of decompositionwith respect to a proper 2-cutset,
because they have no vertex with degree 2 to play the role of a marker.
Despite the fact that the Petersen graph and the Heawood graph do not appear as a block of decomposition with respect

to a proper 2-cutset, they must be listed as basic blocks, because these graphs, themselves, are in C ′. So, the Petersen
graph (resp. the Heawood graph) appears as a leaf of exactly one decomposition tree, namely, the decomposition tree of
the Petersen graph (resp. the Heawood graph), itself — which is, actually, a trivial decomposition tree. Observe that graphs
P∗ (Petersen graph minus one vertex) and H∗ (Heawood graph minus one vertex) may appear as a block with respect to a
proper 2-cutset decomposition, as shown in Fig. 4.
We reviewed results that show how to decompose a graph of C into basic blocks: Theorem 5 states that each graph in

C has a 1-cutset, a proper 2-cutset or a proper 1-join, while Lemma 3 states that the blocks generated with respect to any
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marker marker marker
marker

Graph P* Graph P* Graph H* Graph H*

Fig. 4. Decomposition trees with respect to proper 2-cutsets. In the graph on the left, the basic blocks of decomposition are two copies of P∗ . In the graph
on the right, the basic blocks of decomposition are two copies of H∗ .

of these cutsets are still in C. We now obtain similar results for C ′. These results are not explicit in [23], but they can be
obtained as consequences of results in [23] and by making minor modifications in its proofs. As we discuss in the following
observation [4], for the goal of edge-colouring, we only need to consider the biconnected graphs of C ′.

Observation 1. Let G be a connected graph with a 1-cutset with split (X, Y , v). The chromatic index of G is χ ′(G) =
max{χ ′(GX ), χ ′(GY ),∆(G)}.

By Observation 1, if both blocks GX and GY are∆(G)-edge-colourable, then so is G. That is, once we know the chromatic
index of the biconnected components of a graph, it is easy to determine the chromatic index of the whole graph. So, wemay
focus our investigation on the biconnected graphs of C ′.

Theorem 6 (Trotignon and Vušković [23]). If G ∈ C ′ is biconnected, then either G ∈ CB or G has a proper 2-cutset.

Theorem 6 is an immediate consequence of Theorem 5: since G has no 4-hole, G cannot have a proper 1-join, and since
G is biconnected, G cannot have a 1-cutset.
Next, in Lemma 4, we show that the blocks of decomposition of a biconnected graph of C ′ with respect to a proper

2-cutset, are also biconnected graphs of C ′. The proof of Lemma 4 is similar to that of Lemma 5.2 of [23]. For the sake of
completeness, the proof, which uses the result of Theorem 7 below, is included here.

Theorem 7 (Trotignon and Vušković [23]). Let G ∈ C be a connected graph. If G contains a triangle then either G is a complete
graph, or some vertex of the maximal clique that contains this triangle is a 1-cutset of G.

Lemma 4. Let G ∈ C ′ be a biconnected graph and let (X, Y , a, b) be a split of a proper 2-cutset of G. Then both GX and GY are
biconnected graphs of C ′.

Proof. We first prove that G is triangle-free. Suppose G contains a triangle. Then, by Theorem 7, either G is a complete graph,
which contradicts the assumption that G has a proper 2-cutset, or G has a 1-cutset, which contradicts the assumption that
G is biconnected. So G is triangle-free, and hence by construction, both of the blocks GX and GY are triangle-free.
Now we show that GX and GY are square-free. Suppose w.l.o.g. that GX contains a square C . Since G is square-free, C

contains the marker node M , which is not a real node of G, and C = MazbM , for some node z ∈ X . Since M is not a real
node of G, we have degG(z) > 2, otherwise, z would be a marker of GX . Let z ′ be a neighbor of z distinct of a and b. Since G is
triangle-free, z ′ is not adjacent to a nor b. Since z is not a 1-cutset, there exists a path P in G[X ∪ {a, b}] from z ′ to {a, b}. We
choose z ′ and P subject to theminimality of P . So, w.l.o.g., z ′Pa is a chordless path. Note that b is not adjacent to the neighbor
of a along P because G is triangle-free and square-free, so that z is the unique common neighbor of a and b in G. So, by the
minimality of P , vertex b does not have a neighbor in P . Now let Q be a chordless path from a to bwhose interior is in Y . So,
bzz ′PaQb is a cycle of Gwith a unique chord (namely az), contradicting the assumption that G ∈ C.
By Lemma 3, GX and GY both belong to C, and since GX and GY are both square-free, it follows that GX and GY both belong

to C ′.
Finally we show that GX and GY are biconnected. Suppose w.l.o.g. that GX has a 1-cutset with split (A, B, v). Since G is

biconnected and G[X ∪ {a, b}] contains an ab-path, we have that v 6= M , whereM is the marker of GX . Suppose v = a. Then,
w.l.o.g., b ∈ B, and (A, B∪ Y , a) is a split of a 1-cutset of G, with possiblyM removed from B∪ Y , ifM is not a real node of G,
contradicting the assumption that G is biconnected. So v 6= a and by symmetry v 6= b. So v ∈ X \{M}. W.l.o.g. {a, b,M} ⊂ B.
Then (A, B∪ Y , v) is a split of a 1-cutset of G, with possiblyM removed from B∪ Y ifM is not a real node of G, contradicting
the assumption that G is biconnected. �
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G

GY

GY

GX=P*

GX\M
~

Fig. 5. Example of decomposition with respect to a proper 2-cutset {a, b}. Observe that the marker vertices and their incident edges – identified by dashed
lines – do not belong to the original graph.

Observe that Lemma 3 is somehow stronger than Lemma 4. While Lemma 3 states that a graph is in C if and only if the
blocks with respect to any cutset are also in C, Lemma 4 establishes only one direction: if a graph is a biconnected graph of
C ′, then the blocks with respect to any cutset are also biconnected graph of C ′. For our goal of edge-colouring, there is no
need of establishing the ‘‘only if’’ part. Anyway, it is possible to verify that, if both blocks GX and GY generated with respect
to a proper 2-cutset of a graph G are biconnected graphs of C ′, then G itself is a biconnected graph of C ′.
Next lemma shows that every non-basic biconnected graph inC ′ has a decomposition such that one of the blocks is basic.

Lemma 5. Every biconnected graph G ∈ C ′ \ CB has a proper 2-cutset such that one of the blocks of decomposition is basic.

Proof. By Theorem 6G has a proper 2-cutset. Consider all possible 2-cutset decompositions ofG and pick a proper 2-cutset S
that has a block of decomposition Bwhose size is smallest possible. By Lemma 4, B ∈ C ′ and is biconnected. So by Theorem 6,
either B has a proper 2-cutset or it is basic. We now show that in fact Bmust be basic.
Let (X, Y , a, b) be a split with respect to S. LetM be the marker node of GX , and assume w.l.o.g. that B = GX . Suppose GX

has a proper 2-cutset with split (X1, X2, u, v). By minimality of B = GX , {a, b} 6= {u, v}. Assume w.l.o.g. b 6∈ {u, v}. Note that
since degGX (u) ≥ 3 and degGX (v) ≥ 3, it follows thatM 6∈ {u, v}. Suppose a 6∈ {u, v}. Then w.l.o.g. {a, b,M} ⊆ X1, and hence
(X1 ∪ Y , X2, u, v), withM removed ifM is not a real node of G, is a proper 2-cutset of G whose block of decomposition GX2
is smaller than GX , contradicting the minimality of GX = B. Therefore a ∈ {u, v}. Then w.l.o.g. {b,M} ⊆ X1, and hence (X1 ∪
Y , X2, u, v), withM removed ifM is not a real node ofG, is a proper 2-cutset ofGwhose block of decompositionGX2 is smaller
than GX , contradicting the minimality of GX = B. Therefore GX does not have a proper 2-cutset, and hence it is basic. �

4. Chromatic index of graphs in C′ with maximum degree at least 4

The first NP-completeness result of Section 2 proves that edge-colouring is difficult for the graphs in C. We consider,
further, the subclassC ′ and verify that the edge-colouring problem is still NP-complete when restricted toC ′. In the present
section we apply the structure results of Section 3 to show that edge-colouring graphs in C ′ of maximum degree ∆ ≥ 4
is polynomial by establishing that the only Class 2 graphs in C ′ are the odd order complete graphs. Remark that the NP-
completeness holds only for 3-edge-colouring restricted to graphs in C ′ with maximum degree 3.
We describe, next, the technique applied to edge-colour a graph in C ′ by combining edge-colourings of its blocks with

respect to a proper 2-cutset. Observe that the fact that a graph F is isomorphic to a block B obtained from a proper 2-cutset
decomposition of G does not imply that G contains F : possibly B is constructed by the addition of a marker vertex. This is
illustrated in the example of Fig. 5, where G is P∗-free, yet, graph P∗ appears as a block with respect to a proper 2-cutset of G.
The reader will also observe that it is not necessary that a block of decomposition of G is∆(G)-edge-colourable in order

that G itself is ∆(G)-edge-colourable: graph G in Fig. 5 is 3-edge-colourable, while block P∗ is not. This is an important
observation: possibly, the edges adjacent to a marker vertex of a block of decomposition are not real edges of the original
graph, or are already coloured by an edge-colouring of another block, so that these edges do not need to be coloured.
Observation 2. Consider a graph G ∈ C ′ with the following properties:

• (X, Y , a, b) is a split of a proper 2-cutset of G;
• G̃Y is obtained from GY by removing its marker if this marker is not a real vertex of G;
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• π̃Y is a∆(G)-edge-colouring of G̃Y ;
• Fa (resp. Fb) is the set of the colours in {1, 2, . . . ,∆} not used by π̃Y in any edge of G̃Y incident to a (resp. b).

If there exists a ∆(G)-edge-colouring πX of GX \ M, where M is the marker vertex of GX , such that each colour used in an edge
incident to a (resp. b) is in Fa (resp. Fb), then G is∆-edge-colourable.
The above observation shows that, in order to extend a ∆(G)-edge-colouring of G̃Y to a ∆(G)-edge-colouring of G, one

must colour the edges of GX \M in such a way that the colours of the edges incident to a (resp. b) are not used at the edges of
G̃Y incident to a (resp. b). This guarantees that we create no conflicts. Moreover, there is no need to colour the edges incident
to the marker M of GX : if this marker is a vertex of G, its incident edges are already coloured by π̃ , otherwise, these edges
are not real edges of G. In the example of Fig. 5, we exhibit a 3-edge-colouring π̃Y of G̃Y . In the notation of Observation 2,
Fa = {2, 3} and Fb = {2, 3}. We exhibit, also, a 3-edge-colouring of GX \ M such that the colours of the edges incident to a
are {2, 3} ⊂ Fa and the colours of the edges incident to b are {2, 3} ⊂ Fb. So, by Observation 2, we can combine colourings
π̃Y and πX in a 3-edge-colouring of G, as it is done in Fig. 5.
Before we proceed and show how to edge-colour graphs in C ′ with maximum degree∆ ≥ 4, we need to introduce some

additional tools and concepts. A partial k-edge-colouring of a graph G = (V , E) is a colouring of a subset E ′ of E, that is, a
function π : E ′ → {1, 2, . . . , k} such that no two adjacent edges of E ′ receive the same colour.
The set of free colours at vertex uwith respect to a partial-edge-colouring π : E ′ → C is the set C \ π({uv|uv ∈ E ′}). The

list-edge-colouring problem is described next. Let G = (V , E) be a graph and letL = {Le}e∈E be a collection which associates
to each edge e ∈ E a set of colours Le called the list relative to e. It is asked whether there is an edge-colouring π of G such
thatπ(e) ∈ Le for each edge e ∈ E. Theorem 8 is a result on list-edge-colouringwhich is applied, in this work, to edge-colour
some of our basic graphs: strongly 2-bipartite graphs, Heawood graph and its subgraphs, and holes.
Theorem 8 (Borodin, Kostochka, and Woodall [4]). Let G = (V , E) be a bipartite graph and L = {Le}e∈E be a collection of lists
of colours which associates to each edge uv ∈ E a list Luv of colours. If, for each edge uv ∈ E, |Luv| ≥ max{degG(u), degG(v)},
then there is an edge-colouring π of G such that, for each edge uv ∈ E, π(uv) ∈ Luv .
We investigate, now, how to ∆(G)-edge-colour a graph G ∈ C ′ by combining ∆(G)-edge-colourings of its blocks with

respect to a proper 2-cutset. More precisely, Lemma 6 shows how this can be done if one of the blocks is basic. Subsequently,
we obtain, in Theorem9 and Corollary 1, a characterization for graphs inC ′ ofmaximumdegree at least 4 of its Class 2 graphs
which establishes that edge-colouring is polynomial for these graphs.
Lemma 6. Let G ∈ C ′ be a graph of maximum degree∆ ≥ 4 and let (X, Y , a, b) be a split of proper 2-cutset, in such a way that
GX is basic. If GY is∆-edge-colourable, then G is∆-edge-colourable.
Proof. Denote by M the marker vertex of GX and let G̃Y be obtained from GY by removing its marker if this marker is not
a real vertex of G. Since G̃Y is a subgraph of GY , graph G̃Y is ∆-edge-colourable. Let πY be a ∆-edge-colouring of G̃Y , i.e.
a partial-edge-colouring of G, and let Fa and Fb be the sets of the free colours of a and b, respectively, with respect to the
partial-edge-colouring πY . We show how to extend the partial-edge-colouring πY to G, as described in Observation 2, that
is, by colouring the edges of GX \M . Since a and b are not adjacent, GX is not a complete graph. Moreover, the block GX cannot
be isomorphic to the Petersen graph or to the Heawood graph, because these graphs are cubic and GX has amarker vertexM
of degree 2. So, GX is isomorphic to an induced subgraph of P∗, or to an induced subgraph of H∗, or to a strongly 2-bipartite
graph, or is a hole.
Case 1. GX is a strongly 2-bipartite graph.
Since degGX (M) = 2, vertexM belongs to the bipartition of GX whose vertices have degree 2. So, vertices a and b belong

to the bipartition of GX whose vertices have degree larger than 2, and |Fa| ≥ degGX \M(a) ≥ 2 and |Fb| ≥ degGX \M(b) ≥ 2.
Associate to each edge of GX \ M incident to a (resp. b) a list of colours equal to Fa (resp. Fb). To each of the other edges of
GX \ M , associate list {1, . . . ,∆}. Now, to each edge uv of GX \ M , a list of colours is associated whose size is not smaller
than max{degGX \M(u), degGX \M(v)} and, by Theorem 8, there is an edge-colouring π1 of GX \ M from these lists. Finally, set
π := π1 for the edges of GX \M .
Case 2. GX is a hole.
In this case, GX \ M is a path. Denote the vertices of GX \ M by a = x1, x2, . . . , xk = b, in such a way that x1x2...xk is a

path. We now show that k ≥ 4. Since a and b are not adjacent, k ≥ 3. Suppose that k = 3. IfM is a real node of G, then GX is
a square and it is an induced subgraph of G, contradicting the assumption that G is square-free. SoM is not a real node of G,
and hence GX \M = X . But, then, |X | = 1, contradicting the definition of a proper 2-cutset. Therefore, k ≥ 4.
Observe that there is at least one colour cα in Fa and one colour cβ in Fb. We construct a 3-edge-colouring π of CX \ M

by setting π(x1x2) := cα and π(xk−1xk) := cβ , and by colouring the other edges of GX \ M as follows. If k = 4, let π(x2x3)
be some colour in {1, 2, 3} \ {cα, cβ}, which is clearly a non-empty set. If k ≥ 5, let L2 = {L2, L3, . . . , Lk−2} be a collection
which associates to each edge xixi+1 a list of colours Li such that:

• Li = {1, 2, 3} \ {cα}, for i = 2, 3, . . . , k− 3, and
• Lk−2 = {1, 2, 3} \ {cβ}.

Observe that GX \ {M, a, b} is a path, hence bipartite of maximum degree 2, and that |Li| ≥ 2 for each i = 2, . . . , k − 2, so
that by, Theorem 8, there is an edge-colouring π2 of GX \ {M, a, b} from the lists L2. Moreover, this colouring creates no
conflicts with the colours cα of x1x2 and cβ of xk−1xk, so that we can set π := π2 for edges x2x3, x3x4, . . . , xk−2xk−1.
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Fig. 6. Extending the colouring to the edges of GX .

Fig. 7. Graph P∗∗ and three edge-colourings of P∗∗ \M subject to each possible free colour restriction.

Case 3. GX is an induced subgraph of the Heawood graph.
Observe that a and b have only M as common neighbor in GX , otherwise GX has a square (recall that Heawood graph is

square-free). We construct a 4-edge-colouring of GX \ M . Denote the neighbors of a (resp. b) in GX \ M by a1, . . . , ax (resp.
b1, . . . , by), where x = degGX \M(a) (resp. y = degGX \M(b)). Note that x, y ∈ {1, 2}. Observe that Fa (resp. Fb) contains at
least x (resp. y) colours, which we denote by ca1 , . . . , cax (resp. cb1 , cb2 , . . . , cby ). Set the colour π of edge aai (resp. bbj),
for i = 1, . . . , x (resp. for j = 1, . . . , y), to cai (resp. cbj ). Now, associate to each edge incident to ai and different from
aai a list of colours {1, 2, 3, 4} \ {cai}. Similarly, associate to each edge incident to bj and different of bbj a list of colours
{1, 2, 3, 4} \ {cbj}. Finally, associate to each of the other edges of GX \ {M, a, b} the list of colours {1, 2, 3, 4}. Observe that
GX \ {M, a, b} is bipartite of maximum degree at most 3 and that each of the lists has 3 or 4 colours, so that, by Theorem 8,
there is an edge-colouring π3 of GX \ {M, a, b} from these lists, and we set π := π3 for the edges of GZ \M .
Case 4.a: GX = P∗.
Observe that there are at least two colours ca1 , ca2 in Fa and two colours cb1 , cb2 in Fb, and that exactly one of the following

three possibilities holds:

• |{ca1 , ca2} ∩ {cb1 , cb2}| = 0;
• |{ca1 , ca2} ∩ {cb1 , cb2}| = 1; or
• |{ca1 , ca2} ∩ {cb1 , cb2}| = 2.

In the three cases, it is possible to extend the∆-edge-colouring πY to G by colouring the edges of GX \M , as it is shown
on Fig. 6.
Case 4.b: GX is a proper induced subgraph of P∗.
We need to investigate which are the proper induced subgraphs of P∗. We invite the reader to verify that, except for

graph P∗∗ shown on the left of Fig. 7, each proper induced subgraph of P∗ either has a 1-cutset or a proper 2-cutset, and we
do not consider it because GX is assumed basic, or is a hole, which is already considered in Case 2.
There is only one possible choice for the marker M of GX = P∗∗, in the sense that, for any other choice of marker M ′,

we have GX \ M ′ = GX \ M . As in Case 4.a, there are at least two colours ca1 , ca2 in Fa and two colours cb1 , cb2 in Fb, and
|{ca1 , ca2} ∩ {cb1 , cb2}| = 0, 1 or 2. In Fig. 7 we exhibit three edge-colourings for P

∗∗
\M , one for each possibility. �

Using Lemma 6 we can determine in polynomial time the chromatic index of the graphs of C ′, as we show in Theorem 9
and its Corollary 1.
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Theorem 9. If λ is an integer at least 4 and G is a connected non-complete graph of C ′ with maximum degree∆(G) ≤ λ, then G
is λ-edge-colourable.

Proof. We prove the theorem by induction. Let G ∈ C ′ be a connected graph with k vertices such that ∆(G) ≤ λ and G is
not a complete graph. By Theorem 6 either G is basic, or G has a 1-cutset, or G is biconnected and has a proper 2-cutset.
Suppose G is basic. If G is strongly 2-bipartite, then G is λ-edge-colourable because bipartite graphs are Class 1 and

∆(G) ≤ λ. If G is not strongly 2-bipartite, then G is a hole or a subgraph of the Petersen graph or of the Heawood graph,
so that ∆(G) ≤ 3 ≤ λ − 1 and G is λ-edge-colourable by Vizing’s theorem. Assume, as induction hypothesis, that every
connected non-complete graph G′ ∈ C ′ with k′ < k vertices such that∆(G′) ≤ λ is λ-edge-colourable.
Suppose G has a 1-cutset with split (X, Y , v). Note that blocks of decomposition GX and GY are induced subgraphs of G

and hence both belong to C ′. If GX (resp. GY ) is complete, then its maximum degree is at most λ− 1, so that GX (resp. GY ) is
λ-edge-colourable by Vizing’s theorem. If GX (resp. GY ) is not complete, GX (resp. GY ) is λ-edge-colourable by the induction
hypothesis. In any case, both GX and GY are λ-edge-colourable, and hence by Observation 1, graph G is λ-edge-colourable.
Finally, suppose G is biconnected and has a proper 2-cutset. Let (X, Y , a, b) be a split of a proper 2-cutset such that block

GX is basic (note that such a cutset exists by Lemma 5). By Theorem 7, block GX is not a complete graph. By Lemma 4, block
GY is in C ′. By the induction hypothesis, block GY is λ-edge-colourable. By Lemma 6, graph G is λ-edge-colourable. �

Corollary 1. A connected graph G ∈ C ′ of maximum degree∆ ≥ 4 is Class 2 if and only if it is an odd order complete graph.

Proof. If G is complete, then the result clearly holds. So, wemay assume G is not complete. Just choose λ = ∆ in Theorem 9
to prove that every connected non-complete graph of C ′ with maximum degree ∆(G) ≥ 4 is λ-edge-colourable, hence
Class 1. �

5. Graphs of C′ with maximum degree 3

ClassC ′ has a stronger structure thanC, yet, edge-colouring problem is NP-complete for inputs inC ′. In fact, the problem
is NP-complete for graphs in C ′ with maximum degree ∆ = 3. In this section, we further investigate graphs in C ′ with
maximum degree ∆ = 3, providing two subclasses for which edge-colouring can be solved in polynomial time: cubic
graphs of C ′ and 6-hole-free graphs of C ′.

5.1. Cubic graphs of C ′

In the present section, we prove the polynomiality of the edge-colouring problem restricted to cubic graphs of C ′. This
is a direct consequence of Lemma 7, that states that every non-biconnected cubic graph is Class 2, and Lemma 8, that states
that the Petersen graph is the only biconnected cubic Class 2 graph in C ′. We remark that the bipartite Heawood graph and
the complete graph on four vertices are both cubic Class 1 graphs.

Lemma 7. Let G be a connected cubic graph. If G has a 1-cutset, then G is Class 2.
Proof. Denote by (X, Y , v) a split of a 1-cutset of G. Observe that v has degree 1 in exactly one of the blocks GX and
GY ; assume, w.l.o.g. that this block is GX . Let G′X be the graph obtained from GX by removing vertex v. Observe that
G′X has exactly one vertex of degree 2 and each of the other vertices has degree 3. Since the sum of the degrees of the
vertices is even, G′X has an even number of vertices of degree 3, say n. So, the number of edges in G

′

X is (3n + 2)/2. Since
3b(n+ 1)/2c = 3n/2 < (3n+ 2)/2, graph G′X is overfull and hence Class 2. Since G

′

X is a subgraph of G, and both G
′

X and G
have maximum degree 3, the graph G is itself Class 2. �

Lemma 8. Let G ∈ C ′ be biconnected graph. If G is cubic, then G is isomorphic to the Petersen graph or to the Heawood graph or
is a complete graph on four vertices.

Proof. Suppose G is not basic. By Lemma 5, G has a proper 2-cutset such that one of the blocks is basic. Let (X, Y , a, b) be
a split of such cutset, in such a way that GX is basic, and denote byM the marker vertex of GX . If degGX (a) = 1, vertex M is
the only neighbor of a and, clearly, is a 1-cutset of GX . By Lemma 4, GX is a biconnected graph of C ′. Since GX is biconnected
degGX ≥ 2. Let a

′ be a neighbor of a in GX that is distinct fromM . Since {M, a, b, a′} cannot induce a square, b is not adjacent
to a′, and hence (since G is cubic) a′ has two neighbors in GX \ {a, b,M}. If degGX (a) = 2 then {a

′, b} is a proper 2-cutset of G,
contradicting the assumption that GX is basic. Hence degGX (a) ≥ 3, and by symmetry degGX (b) ≥ 3. Observe that each of the
other vertices – different from a, b andM – has degree∆(G). In otherwords,GX is a graphwith exactly one vertex of degree 2,
and each of the other vertices has degree 3. But there is no graph in CB with this property, and we have a contradiction to
the fact that GX is basic. So, G is basic and the statement of the lemma clearly holds. �

Theorem 10. Let G ∈ C ′ be a connected cubic graph. Then G is Class 1 if and only if G is biconnected and is not isomorphic to the
Petersen graph.

Proof. If G is not biconnected, then, by Lemma 7, G is Class 2. If G is biconnected, then, by Lemma 8, G is isomorphic to the
Petersen graph P or to the Heawood graph H or is a complete graph K4 on four vertices. Remark that H is Class 1, because it
is bipartite, and K4 is Class 1, because it is a complete graph with even number of vertices. Hence, G is Class 2 if and only if
it is isomorphic to the Petersen graph. �
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Fig. 8. A 3-edge-colouring of H∗ \M such that the sets of the colours incident to vertex a and vertex b are the same.

Fig. 9. Non-basic proper induced subgraphs of H∗ .

5.2. 6-hole-free graphs of C ′

In the present section, we prove the polynomiality of the edge-colouring problem restricted to 6-hole-free graphs of C ′.
This is a consequence of Lemma 9, a variation for 3-edge-colouring of Lemma 6.

Lemma 9. Let G ∈ C ′ be a graph of maximum degree at most 3 and (X, Y , a, b) be a split of a proper 2-cutset, in such a way that
GX is basic but not isomorphic to P∗. If GY is 3-edge-colourable, then G is 3-edge-colourable.

Proof. Assume GY is 3-edge-colourable. Denote byM the marker vertex of GX and let G̃Y be obtained from GY by removing
its marker if this marker is not a real vertex of G. Since G̃Y is a subgraph of GY , graph G̃Y is 3-edge-colourable. Let πY be a 3-
edge-colouring of G̃Y , i.e. a partial-edge-colouring of G, and let Fa and Fb be the sets of the free colours of a and b, respectively,
with respect to the partial-edge-colouring πY . We show how to extend the partial-edge-colouring πY to G, as described in
Observation 2, that is, by colouring the edges of GX \M . Since a and b are not adjacent, GX is not a complete graph. Moreover,
the block GX cannot be isomorphic to the Petersen graph or to the Heawood graph, because these graphs are cubic and GX
has a marker vertex M of degree 2. Also, by assumption, block GX is not isomorphic to P∗. So, GX is isomorphic to a proper
induced subgraph of P∗, or to an induced subgraph of H∗, or to a strongly 2-bipartite graph, or is a hole.
Case 1. GX is a strongly 2-bipartite graph.
Similar to the Case 1 of the proof of Lemma 6, which also works for∆ = 3.
Case 2. GX is a hole.
Similar to the Case 2 of the proof of Lemma 6, where at most three colours are used in the edges of GX \M .
Case 3. GX is an induced subgraph of H∗.
First, observe that degGX \M(a) = 2 and degGX \M(b) = 2, otherwise GX has a decomposition by a 1-cutset or a proper

2-cutset and is not basic. Observe, also, that there are at least two colours ca1 , ca2 in Fa and two colours cb1 , cb2 in Fb, and that
|{ca1 , ca2} ∩ {cb1 , cb2}| = 1 or 2. We consider each case next.
If |{ca1 , ca2} ∩ {cb1 , cb2}| = 1, we must exhibit a 3-edge-colouring π of GX \ M such that the free colours at a and b are

different. If M is a real node of G, then GX is an induced subgraph of G, and hence ∆(GX ) ≤ 3. If M is not a real node of G,
then by definition of proper 2-cutset both a and b have a neighbor in Y , and hence ∆(GX ) ≤ 3. So ∆(GX ) ≤ 3. Since GX is
bipartite, GX has a 3-edge-colouring π ′. So, let π be the restriction of π ′ to GX \M .
If |{ca1 , ca2}∩ {cb1 , cb2}| = 2, wemust exhibit a colouring of GX \M such that the free colours at a and b are the same. We

exhibit these colourings for each possible induced subgraph of the Heawood graph. First, consider the case GX = H∗, whose
colouring is given in Fig. 8.
Now, observe that each non-basic proper subgraph of H∗ is a subgraph of the graph H1 of Fig. 9, which is obtained from

H∗ by removing a vertex of degree 2. Graph H2 of Fig. 9 is obtained from H1 by removing one of the four vertices of degree 2
(any choice yields the same graph up to an isomorphism). Finally, the last non-basic proper subgraph of H∗ is the graph H3
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Fig. 10. 3-edge-colourings of H1 and H2 , for each possible choice of marker.

of Fig. 9. Observe that there is only one possible choice M for the marker when GX = H1, in the sense that, for any other
choice M̃ , we have GX \ M̃ = GX \M . If GX = H2, there are two possible choicesM ′ andM ′′ for the marker, in the sense that,
for any other choice M̃ ′, we have GX \ M̃ ′ = GX \M ′ or GX \ M̃ ′ = GX \M ′′. We show, in Fig. 10, one edge-colouring of H1 \M ,
and two edge-colourings of H2 \ M , one for each possible choice of marker M . We do not consider here that case GX = H3
because H3 is a strongly 2-bipartite graph, considered in Case 1.
Case 4. GX is a proper subgraph of P∗.
As we already discussed in Case 4 of Lemma 6, except for graph P∗∗ shown on the left of Fig. 7, each of the other proper

induced subgraphs of P∗ either has a 1-cutset or a proper 2-cutset, and we do not consider because GX is basic, or is a hole,
which are considered in Case 2. There is only one possible choice of markerM1 for the case GX = P∗∗, in the sense that for
any other choice of marker M ′1, we have GX \ M

′

1 = GX \ M1. Observe, also, that there are at least two colours ca1 , ca2 in Fa
and two colours cb1 , cb2 in Fb, and that |{ca1 , ca2} ∩ {cb1 , cb2}| = 1 or 2. These two possibilities are considered in the first two
colourings of Fig. 7. �

Remark that the NP-Complete gadget P̃ of Fig. 2 is constructed from P∗. The NP-completeness of edge-colouring graphs
in C ′ is obtained as a consequence of P∗ ∈ C ′. Using Lemma 9, we can prove that if the special graph P∗ does not appear
as a leaf in the decomposition tree, i.e., as a basic block when we recursively apply the proper 2-cutset decomposition to a
biconnected graph G ∈ C ′ of maximum degree 3, then G is Class 1.

Theorem 11. Let G ∈ C ′ be a connected graph of maximum degree 3. If G does not contain a 6-hole all of whose nodes are of
degree 3, then G is Class 1.

Proof. Assume the theorem does not hold and let G be a counterexample with fewest number of nodes. So G is a connected
graph of C ′ of maximum degree 3, it does not contain a 6-hole all of whose nodes are of degree 3, and it is not 3-edge-
colourable. By Theorem 6 either G is basic, or it has a 1-cutset, or it is biconnected and has a proper 2-cutset.
Suppose G is basic. G cannot be strongly 2-bipartite nor an induced subgraph of Heawood graph, since bipartite graphs

are Class 1 [26]. Graph G cannot be a complete graph on four vertices, because such a graph is 3-edge-colourable. G cannot
be a hole since it has maximum degree 3. So Gmust be an induced subgraph of the Petersen graph. G cannot be isomorphic
to P nor P∗, because both of these graphs contain a 6-hole all of whose nodes are of degree 3. But all the other induced
subgraphs of the Petersen graph are in fact 3-edge-colourable [6]. Therefore G cannot be basic.
Now suppose thatG has a 1-cutset with split (X, Y , v). Note that blocks of decomposition are induced subgraphs ofG, and

hence both are connected graphs ofC ′ that do not contain a 6-hole all ofwhose nodes are of degree 3. If∆(GX ) = 3 then since
G is a minimum counterexample, GX is 3-edge-colourable. If∆(GX ) ≤ 2 then GX is 3-edge-colourable by Vizing’s theorem.
So GX is 3-edge-colourable, and similarly so is GY . But then by Observation 1, G is also 3-edge-colourable, a contradiction.
Therefore G is biconnected and has a proper 2-cutset. Let (X, Y , a, b) be a split of a proper 2-cutset such that block GX is

basic (note that such a cutset exists by Lemma 5). By Lemma 4 both of the blocks GX and GY are biconnected graphs of C ′.
Since the marker nodeM is of degree 2 in both GX and GY , and GX \M and GY \M are both induced subgraphs of G, it follows
that neither GX nor GY can contain a 6-hole all of whose nodes are of degree 3. If M is a real node of G, then GX and GY are
both induced subgraphs of G, and hence∆(GX ) ≤ 3 and∆(GY ) ≤ 3. IfM is not a real node of G, then by definition of proper
2-cutset both a and b have a neighbor in both X and Y , and hence ∆(GX ) ≤ 3 and ∆(GY ) ≤ 3. Since both GX and GY have
fewer nodes than G, it follows either from minimality of counterexample G or by Vizing’s theorem that both GX and GY are
3-edge-colourable. Since GX does not contain a 6-hole all of whose nodes are of degree 3, GX is not isomorphic to P∗, and
hence by Lemma 9, G is 3-edge-colourable, a contradiction. �

Corollary 2. Every connected 6-hole-free graph of C ′ with maximum degree 3 is Class 1.

A natural question in connection with Theorem 12 is whether forbidding 6-holes would make it easier to edge-colour
graphs of C, and the answer is no. By observing graph G′ of the proof of Theorem 2, one can easily verify that this graph has
no 6-hole, so that the following theorem holds:

Theorem 12. For each∆ ≥ 3, CHRIND(∆-regular 6-hole-free graph in C) is NP-complete.
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