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Abstract. We study the complexity of computing Nash equilibria in
games where players arranged as the vertices of a graph play a sym-

metric 2-player game against their neighbours. We call this a pairwise

interaction game. We analyse this game for n players with a fixed num-
ber of actions and show that (1) a mixed Nash equilibrium can be com-
puted in constant time for any game, (2) a pure Nash equilibrium can
be computed through Nash dynamics in polynomial time for games with
symmetrisable payoff matrix, (3) determining whether a pure Nash equi-
librium exists for zero-sum games is NP-complete, and (4) counting pure
Nash equilibria is #P-complete even for 2-strategy games. In proving (3),
we define a new defective graph colouring problem called Nash colouring,
which is of independent interest, and prove that its decision version is
NP-complete. Finally, we show that pairwise interaction games form a
proper subclass of the usual graphical games.

Key words: Nash equilibrium, graphical game, computational complex-
ity, pairwise interaction

1 Introduction

1.1 Overview

Von Neumann and Morgenstern [30] proposed game theory as a mathematical
tool for analysing the behaviour of rational players in strategic games. In such a
game, each player has a set pure strategies (actions) and a player’s payoff depends
on the strategies chosen by him and his opponents. Players endeavour selfishly
to maximise their own payoff. A player can play one of the pure strategies or a
mixed strategy in which a pure strategy is selected at random. Strategic games
are analysed so as to determine how the game may be played “optimally”. Several
solution concepts have been developed for this purpose; central among them is
the Nash equilibrium due to Nash [31]. A set of strategies, with one strategy
for each player, is in Nash equilibrium if no player can benefit by unilaterally
changing his strategy. A Nash equilibrium is called pure if each player plays
a pure strategy and mixed if players play mixed strategies. While mixed Nash
equilibria are guaranteed to exist in any finite game by the celebrated theorem
of Nash [31], pure Nash equilibria are not guaranteed to exist in general.
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Plausibility of an equilibrium concept like the Nash equilibrium is partly de-
termined by the complexity of computing equilibria [20]. As a result, many recent
studies have focused on the complexity of finding Nash equilibria (see, for ex-
ample, [1, 8, 15, 18, 20]). For the complexity problem to be meaningful, however,
the game, particularly its payoffs, should allow a compact representation [37].

Many succinctly representable games have been studied in the literature (see
[32, p.40] for a list) of which graphical games proposed by Kearns et al. [26] has
received much attention (e.g. [7, 16, 17, 22]). In these games, players are arranged
as the vertices of a graph and can play the game only with their immediate
neighbours. In effect, a vertex k of degree dk plays a (dk + 1)-player game. If
the number of pure strategies available to k is r, payoffs for k can be specified
using rdk+1 numbers. Thus, an n-player game requires at most nr∆+1 numbers
to describe the game where ∆ is the maximum degree of the graph. This is a
huge improvement over the representation size of normal-form games especially
if the graph is sparse (i.e. when ∆≪ n).

The representation can be further simplified using symmetries in games. A
game is symmetric if every player has the same payoff matrix and a player’s pay-
off depends only on the player’s strategy and the number of other players playing
each pure strategy available. Symmetric games have important applications in
areas like automated-agent designs, game theoretic auction modelling [9] and
evolutionary game theory. Indeed, the study of symmetric games started during
the initial development of game theory (see, for instance, [30, 31]). In this paper
we consider only symmetric games.

The idea of playing games on graphs predates the idea of the graphical games.
Nearly a decade before the graphical games were introduced by [26], Nowak and
May [33] empirically studied the impact that placing players at the vertices of a
grid graph has in the emergence of cooperation. Their work stimulated research
in this area, and a spate of new studies followed, studying the impact of many
other types of graph, often with the conclusion that interaction graphs influence
the evolution of cooperation (see [12, 34, 36, 39] and the references therein). In
this setting, every vertex plays a symmetric 2-player game with all its immediate
neighbours. This captures the natural tendency of players to treat each interac-
tion as a separate 2-player game when the interactions are pairwise. This game,
which we call a pairwise interaction game (formal definition is provided in the
next section), is the subject of this paper. There is a sharp contrast between
this game and the graphical games: in a single instance of this game, vertex k of
degree dk plays a 2-player game with each of its dk neighbours and receives the
accumulated payoff, whereas in a graphical game, k receives a payoff by engaging
in a (dk + 1)-player game once with all its neighbours.

Predictably, pairwise interaction games can be represented even more suc-
cinctly than symmetric graphical games. More precisely, the payoffs for an n-
player game with r strategies can be simply described by an r × r matrix. It
can be assumed that players know how to compute the payoff for a given strat-
egy combination of his neighbours using this matrix. Clearly, this can always be
computed in polynomial time. Despite its extremely compact representation, this
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model has many applications. It is often the case that strategic interactions in
political, social and economic situations are pairwise [4]. As a result, this model
is popular, for example, in Complex System Theory (e.g. [3]), in Artificial In-
telligence (e.g. [27]) and in Evolutionary Game Theory (e.g. [39]). Furthermore,
there are studies that use this model with 2 × 2 symmetric coordination games
to investigate the emergence of contagion and Nash equilibria (e.g. [2, 4, 6]).

Surprisingly though, to the best of our knowledge, a systematic study of pair-
wise interaction games has not been carried out from the computational game
theory perspective. That is the main purpose of this paper. Perhaps unsurpris-
ingly, it turns out that the set of pairwise interaction games is in fact a proper
subclass of the graphical games. What makes our study even more interesting,
but surely disappointing from a game-theoretic point of view, is the fact that
even for this simple subclass, the problem of deciding whether a pure Nash equi-
librium exists is hard for zero-sum games with more than two strategies. On the
other hand, we show that the problem of computing a mixed Nash equilibrium
is trivial, so computing a pure Nash equilibrium in a pairwise interaction game
is much harder than computing a mixed Nash equilibrium. Furthermore given
recent negative results for the graphical games (e.g. [16, 17, 22]), our study is
interesting since it identifies a large class of pairwise interaction games for which
a pure Nash equilibrium always exists and is easy to compute.

1.2 Our results

In this paper, we study n-player pairwise interaction games with a fixed number
of strategies r. Clearly, Nash’s theorem [31] that there exists a mixed Nash
equilibrium in all finite games holds for pairwise interaction games. Thus, we have
the following easy theorem about mixed strategies. The proof of this theorem
and all other omitted proofs are given in Appendix.

Theorem 1. For any pairwise interaction game with a fixed number of pure
strategies, a symmetric mixed Nash equilibrium can be computed in constant
time. This strategy corresponds to all players playing the symmetric mixed Nash
equilibrium strategy for the 2-player game.

Although mixed Nash equilibria exist in any game, there is no convincing justi-
fication for players deliberately randomising their actions [35, p.37]. Hence, the
pure Nash equilibrium is considered a better solution concept for games where
one exists. This gives rise to two computational problems: (1) does a given game
have any pure Nash equilibrium?, and (2) if one exists, can it be computed in
polynomial time? We address these questions for pairwise interaction games. We
first prove the following theorem that Nash dynamics converges for games with
symmetric matrices. It is the simple dynamics in which, at every iteration, some
player switches to the best response to the current strategies of their neighbours,
and its convergence implies the existence of a pure Nash equilibrium.

Theorem 2. For any pairwise interaction game with r strategies and a symmet-
ric payoff matrix, the Nash dynamics converges in at most n2K/2(2∆ + 1)K+1

steps, where K = r(r + 1)/2− 2 and ∆ is the maximum vertex degree.
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We show further that adding a constant to any column of the payoff matrix
does not affect the Nash equilibria. So, the above result applies to games with
payoff matrices that can be symmetrised using this operation. This, in particular,
means that the above result applies to all 2-strategy games.

Perhaps more significantly, in Section 4 we prove the following theorem for
zero-sum games.

Theorem 3. For all r ≥ 3, and all antisymmetric r× r payoff matrices A such
that the 2-player game has a unique mixed strategy which is not a pure strategy,
deciding whether there is a pure Nash equilibrium in the pairwise-interaction
game with payoff matrix A on a ∆-regular graph is NP-complete.

That the mixed strategy cannot be a pure strategy is clear, since otherwise all
players playing this strategy would give a pure Nash equilibrium by Theorem 1.
The condition of having a unique mixed strategy is made for technical reasons,
and we believe the theorem to be true without this assumption. However, we
note that having a unique mixed strategy is generic, and we give a short proof
of this in Lemma 5.

In Section 5 we show that even for some 2-strategy pairwise interaction games
for which the problem of finding a pure Nash equilibrium is in P, the problem
of exactly counting them is #P-hard. Surprisingly, it turns out that even ap-
proximately counting them in polynomial time is not possible unless NP=RP.
Finally, we have the following theorem that pairwise interaction games form a
(small) proper subset of symmetric graphical games. Thus our hardness results
are stronger than those previously known for graphical games.

Theorem 4. For given r > 2 and ∆ = Ω(r), pairwise interaction games form
only a small fraction of symmetric graphical games on ∆-regular graphs.

1.3 Related Work

Two-strategy games The parity affiliation game [18] with all edge weights
−1’s and the cut game [5, 10] with all edge weights +1’s correspond to the pair-
wise interaction game with payoff matrix P =

(

0 1
1 0

)

. Any pure Nash equilibrium
in these games is a STABLE-CONFIGURATION and a MAX-CUT, in the sense
of Schäffer and Yannakakis [40]. Thus, finding a pure Nash equilibrium for these
games is P-complete [40]. On the other hand, if all edge weights are equal to +1
in the parity affiliation game, it is equivalent to the pairwise interaction game
with P =

(

0 1
1 0

)

which is an easier game to solve as we will see later.
We also note that some 2-strategy games considered here are essentially

equivalent to the defective 2-colouring problem [14]. Similar results to those we
give are known for the defective 2-colouring problem by a result of Lovász [29].

Our convergence proof in Theorem 2 employs a potential function similar to
that used in the convergence of Hopfield’s neural networks [24] and other related
problems. However, our proof applies to more than two strategies. In addition,
due to the simplified nature of pairwise interaction games, we are able to show
that a pure Nash equilibrium can be computed in polynomial time.
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Complexity of games The problem of computing mixed Nash equilibria of
n-player normal-form games is PPAD-complete for all n ≥ 2 [8, 15]. When n ≥
4, this problem is equivalent to the problem of computing Nash equilibria in
graphical games of maximum degree ∆ ≥ 3, with two strategies per player [21].
Hence, the latter is also PPAD-complete [15]. Some positive results are known
when these games are symmetric. A mixed Nash equilibrium of a symmetric n-
player normal-form game with r strategies can be computed in polynomial time
if r = O(log n/ log logn) [37]. Using this result, it is shown in [7] that for the
symmetric graphical games with degree ∆, the equilibrium can be computed in
polynomial time if r = O(log∆/ log log∆). Moreover, a mixed Nash equilibrium
of graphical games on a path can be computed in polynomial time [17].

For symmetric n-player normal-form game with a two strategies, it is known
that there always exists a pure Nash equilibrium [9]. Ryan et al. [38] consider
circuit symmetric game [41], in which payoff functions are represented as cir-
cuits, and extend the results of [9] by showing that a pure Nash equilibrium can
be computed in polynomial time with two strategies. They show further that
determining the existence of a pure Nash equilibrium is NP-complete with more
than two strategies. For graphical games, the problem of determining whether
there exist a pure Nash equilibrium is NP-complete, in general, even if all play-
ers have only two strategies and neighbourhoods of size 2 [19]. Interestingly, a
dichotomy result was proved in [16] for a class of symmetric graphical games on
a d-dimensional torus, that the problem of determining whether the game has a
pure Nash equilibrium is polynomial if d = 1 and NEXP-complete if d > 1.

Finally, the problem of counting Nash equilibria is generally hard. Counting
the number of (mixed) Nash equilibria is #P-hard even for symmetric 2-player
games [11]. For graphical games, counting the number of pure Nash equilibria is
#P-hard even for symmetric games with neighbourhood size of 2 [7].

2 Preliminaries

2.1 Notations

If all elements of a matrix A or a vector n are positive, we write A ≥ 0 or n ≥ 0

respectively. Here and elsewhere, matrices and column vectors with all 1’s and 0’s
are denoted by 1 and 0 respectively. By AT and nT , we denote the transpose of
A and n respectively. We write column vectors as row vectors with the transpose
operation, e.g. (n0, . . . , nr−1)

T . An integer set {0, . . . , n− 1} is denoted by [n].
Interchangeably, we refer to a participant in the game as a player or vertex, since
each participant is represented by a graph vertex in pairwise interaction games.

2.2 Strategic games

Definition 1. A normal-form game is given by a set of players Q, and for
each player k ∈ Q a finite set of pure strategies Sk and a payoff function uk :
(×k∈QSk) → R.
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A pure strategy of player k is an element of Sk. A mixed strategy for player
k is a probability distribution Σk over Sk, so is a nonnegative vector of length
|Sk|. A set of strategies s = (s1, . . . , sk, . . . , sn) (sk ∈ Sk) is called a pure strategy
profile, and σ = (σ1, . . . , σk, . . . , σn) (σk ∈ Σk) is called a mixed strategy profile.

A 2-player normal-form game can be conveniently represented by two real
matricesA = (aij) andB = (bij). The game is symmetric ifB = AT , and is zero-
sum if A+B = 0. Hence for a symmetric zero-sum game, A is antisymmetric.
Thus, one payoff matrix A is sufficient to describe any symmetric 2-player game.

Let G = (V,E) be a graph. Let N (k) = {v ∈ V | (k, v) ∈ E}, and dk =
|N (k)|. By s−k and σ−k we denote the pure and mixed strategies of all neighbours
of k respectively. Then, the pairwise interaction game is defined as follows.

Definition 2. A pairwise interaction game G is defined by

– An undirected, connected graph G = (V,E), where the vertices V = {0, ..., n− 1}
represent players.

– A symmetric 2-player game 〈S,A〉, where S = {0, . . . , r − 1} is the set of
pure strategies available to each vertex and A = (aij) (i, j ∈ [r]) is the payoff
matrix. We shall denote the set of mixed strategies over S by Σ. To avoid
trivialities, we will always assume r ≥ 2. If the 2-player game is zero-sum,
we refer to the pairwise interaction game as zero-sum.

– The payoff for any player k (k ∈ [n]) is defined as

u
(

σk;σ−k

)

=
∑

p∈N (k)

σT
k Aσp . (1)

Let B(σ−k) be the set of mixed strategy best responses of vertex k to the
neighbour strategies σ−k. Then we have

B(σ−k) = {σk ∈ Σ | u(σk;σ−k) ≥ u(σ′
k;σ−k) ∀σ

′
k ∈ Σ } . (2)

Definition 3. A strategy profile σ∗ =
{

σ∗
0 , . . . , σ

∗
k, . . . , σ

∗
n−1

}

(σ∗
k ∈ Σ) is a

mixed Nash equilibrium if σ∗
k ∈ B(σ−k) ∀k ∈ V . We say σ∗ is a pure Nash

equilibrium if it is a pure strategy profile. We say σ∗ is a strict Nash equilibrium
if σ∗

k is the unique best response for all k ∈ V , and a weak Nash equilibrium if
there is any vertex w for which σ∗

w is not the unique best response.

Let n
(k)
j denote the number of neighbours of k playing strategy j ∈ S. We

shall call a combination of neighbour strategies a neighbourhood. Then, instead
of using s−k to denote it, for symmetric games, it is convenient to use a column

vector of n
(k)
j with one entry for each j ∈ [r], e.g. nk =

(

n
(k)
0 , . . . , n

(k)
r−1

)T
where

∑r−1
j=0 n

(k)
j = dk. Using this notation, for pure strategies, (1) can be rewritten as

u
(

sk;n
(k)
0 , . . . , n

(k)
r−1

)

=
∑

j∈S

n
(k)
j askj . (3)

Similarly, (2) could be written as B(n
(k)
0 , . . . , n

(k)
r−1). We will use these notations

in the analysis of pure Nash equilibria, and (1) and (2) for mixed Nash equilibria.
Now the following proposition holds.
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Proposition 1. Adding an arbitrary constant to all entries of any column of A
does not affect the Nash equilibria of pairwise interaction games.

We next define Nash dynamics and provide a proposition that links its con-
vergence and the existence of a pure Nash equilibrium (see, for example, [18]).

Definition 4. Nash Dynamics or Best Response Dynamics: In this dynamics,
at every step, some player playing a suboptimal strategy improves his payoff by
switching to the best response.

Proposition 2. If the Nash dynamics converges, then there is a pure Nash equi-
librium.

We use the following notion of equivalence of games throughout the paper.

Definition 5. Two games are equivalent if they have identical best responses
to every combination of opponents’ strategies.

3 Symmetric payoff matrices

In this section we prove Theorem 2 about pairwise interaction games with sym-
metrisable payoff matrix A. The following lemma shows that there always exists
a pure Nash equilibrium for these games.

Lemma 1. An r-strategy pairwise interaction game with symmetric payoff ma-
trix A has a pure Nash equilibrium.

Proof (Sketch). We prove this using a potential function ψ : Sn → R. Let
s = (s1, . . . , sk, . . . , sn) ∈ Sn be a pure strategy profile. Then ψ(s) is defined as

ψ(s) =
∑

k∈V

u
(

sk;n
(k)
0 , . . . , n

(k)
r−1

)

=
∑

k∈V

∑

j∈S

n
(k)
j askj .

Thus, the value of the potential function ψ is equal to the sum of the payoffs of
all players. It is then easy to show that whenever a player improves his payoff
by θk > 0, the potential function increases in value by 2θk.

The Nash dynamics converges for these games, but how long does this take?
Unfortunately, most of the results known about the convergence of the Nash dy-
namics are negative (e.g. [18]). The Hopfield’s neural networks [24], for example,
has a similar convergence and is known to take exponential time in the worst
case [42]. On the contrary, as Theorem 2 states, the convergence is fast for the
games considered in Lemma 1. To prove this, we need the following lemma.

Lemma 2. Any r × r payoff matrix A can be rescaled such that the minimum
difference between any two payoffs is one, and at least one payoff is zero. This
can be done without affecting the Nash equilibria or the symmetry of A, if A is
symmetric. The rescaling requires only constant time for fixed r.
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Proof Sketch of Theorem 2:We first rescale the payoff matrix using Lemma 2.
Then, there is at least one payoff 0 and another ±1. We consider the remaining
payoffs as variables. Let v = (v1, . . . , vK)T denote the vector containing these
variables, where K is the total number of variables. As A is symmetric, we have
K = r(r + 1)/2− 2. Consider a vertex k with degree d. Let P (r, d) =

(

d+r−1
r−1

)

be the number different neighbourhood configurations for k. Let ai (i ∈ [r])
denote the rows of the payoff matrix. For each configuration of the neighbour
strategies np (p ∈

[

P ]), the best response is determined by the ordering of ainp

(i ∈ [r]). Now, for each neighbourhood np (p ∈
[

P ]), and each pair of strategies
i and j (0 ≤ i < j ≤ r − 1), we add the inequality (ai − aj)

Tnp ≥ 1 if i
yields a higher payoff than j, and we add (ai − aj)

Tnp = 0 if both strategies
yield the same payoff. These inequalities form a convex nonempty polyhedron
in K-dimensional. It is nonempty because the original payoffs satisfy all these
inequalities. This polyhedron defines a class of games that are equivalent to A

and have the property that every best response move improves the player’s payoff
by at least 1. Let Nv = b be the set of K inequalities that are tight at a vertex
of the polyhedron. Applying Cramer’s rule on this, we can find the coordinates
of this vertex in terms the elements of np’s. Then, the Hadamard’s inequality
can be used to bound these coordinates in terms of ∆ and r, which actually are
the payoffs of an equivalent game. In this context, we may allow exponential
dependence on r, since this is assumed to be constant. For the new, equivalent
game, ψ(s) is polynomially bounded and its value increases by at least 2 at every
step. It can then be shown that the Nash dynamics converges as claimed. �

As mentioned before, the payoff matrix of any 2-strategy game can be sym-
metrised. Let A =

(

P T
S R

)

be the original payoff matrix. This can be symmetrised

to give P =
(

α 0
0 β

)

, where α = P − S and β = R − T (see Proposition 1). So,
Theorem 2 applies to these games. However, in the following theorem, we get
tighter results than that of Theorem 2 and 6 for regular graphs by exploiting
the unique properties of the game, albeit using essentially similar techniques.

Theorem 5. For any 2-strategy pairwise interaction game on a ∆-regular graph
G = (V,E) with n vertices and m edges, starting from an arbitrary initial state,
the Nash dynamics converges in at most 3n/2 steps if α+β and β are of opposite
signs and m steps if they are of the same sign.

It might be possible to extend the above result to non-regular graphs. As an
evidence, consider the unweighted cut game where α = β = −1. In this game,
we have 0 ≥ ψ(s) ≥

∑

k∈V −dk = −2m, so it takes only m steps for convergence
on any graph. However, we give an alternative proof for general graphs.

Theorem 6. For any 2-strategy pairwise interaction game with payoff matrix
A =

(

P T
S R

)

on a graph with n vertices and m edges, starting from an arbitrary
initial state, the Nash dynamics converges in at most (i) 3m− n steps if T > R
and S > P , (ii) 3m steps if T < R and S < P , (iii) n steps, otherwise.

Proof (Sketch). The proof is similar to the proofs of Lemma 1 and Theorem 5,
but uses an algorithm similar to that of the graph partitioning algorithm of [23].
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4 Zero-sum games

In this section, we study pairwise interaction zero-sum games with r ≥ 3 strate-
gies and prove Theorem 3. The main tool of the proof is the following proposition.

Proposition 3. In a zero-sum pairwise-interaction game, the best response to
any neighbourhood configuration yields a nonnegative payoff. Furthermore, in
Nash equilibrium, every player earns zero payoff.

The neighbourhoods in a Nash equilibrium can be characterised using the
proposition above.

Definition 6. In a pairwise-interaction zero-sum game, a neighbourhood will be
called a Nash Equilibrium neighbourhood (NE neighbourhood) if the best response
to the neighbourhood yields zero payoff.

Corollary 1. If n = (n0, . . . , nk−1)
T is a NE neighbourhood, then An ≤ 0.

We now show that a highly nontrivial elimination of strategies is possible
for zero-sum games, which , in a sense, is much stronger than the usual iterated
elimination of dominated strategies. That is, if a strategy earns a negative payoff
in any NE neighbourhood, it can be eliminated, implying that any surviving
strategy is a best response to any NE neighbourhood.

Lemma 3. If a strategy earns a negative payoff when played against a NE neigh-
bourhood, no player will play it in any pure Nash equilibrium.

We now consider the question of the existence of NE neighbourhoods for
rational payoff matrices. But, as we shall see, this does not imply that a pure
Nash equilibrium exists in a d-regular graph.

Lemma 4. If A has rational entries then, for some integer d, there exists a NE
neighbourhood for a vertex of degree d.

The proof, that is deferred to Appendix, reveals a remarkable connection
between a NE neighbourhood in a zero-sum pairwise interaction game and the
optimal mixed strategy of the 2-player game. This suggests a heuristic approach
to pairwise interaction games: from each player’s point of view, their neighbour-
hood can be viewed as a single opponent playing a mixed strategy. For a general
pairwise interaction game, this approach has no real validity. This can simply be
illustrated using the maxcut game with payoff matrix P =

(

0 1
1 0

)

on a d-regular
graph where d is an odd number. The unique symmetric mixed Nash equilibrium
is (1/2, 1/2), but the neighbourhood (d/2, d/2) is impossible since d is an odd num-
ber. Nonetheless, there exists a pure Nash equilibrium for this game by Theorem
6 and 5. Thus, the above mentioned connection is not valid for general games.
Since individual players are not able to play mixed strategies, the above view is
asymmetric. But, surprisingly, for zero-sum games it is actually valid.

In this context, Lemma 4 can be linked to some well-known mixed strategy
results. Consider games with a unique mixed strategy, by which we mean the
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games with a unique NE neighbourhood. These are games for which the surviving
strategies are completely mixed [25]. (A completely mixed strategy is one for
which every pure strategy has a positive probability.) Kaplansky [25] showed
that a symmetric zero-sum game can be completely mixed only if the number of
strategies is odd. Thus, for games with a unique NE neighbourhood, the number
of surviving strategies must be odd. For the remainder of this section we consider
only payoff matrices A which have unique mixed strategies. But we note that
there is always a matrix arbitrarily close to A for which this is true.

Lemma 5. Let A = (aij) be an antisymmetric payoff matrix. Then, there al-
ways exists an antisymmetric payoff matrix B = (bij) that has a unique mixed
strategy and satisfies |aij − bij | ≤ 1/M, for any M > 0.

Next, let us define an interesting computation problem related to improper
vertex colouring that will be used in the proof of Theorem 3.

Definition 7. NASH-COLOURABLE is a decision problem whose instance is
a graph G = (V,E), a set of colours {1, . . . , r} and, for each vertex degree d
in G, a set of r nonnegative integers

{

cd1, . . . , c
d
r

}

such that d =
∑r

i=1 c
d
r. The

question is: is there an improper vertex colouring of G with r colours such that
a vertex with degree d has exactly cdi neighbours with colour i ∈ [r]?

If the answer is positive, the graph G will be said to be Nash colourable and
the particular assignment of colours will be called a Nash colouring of the graph.

Definition 8. (c1, . . . , cr)∆-NASH-COLOURABLE will mean the Nash colour-
ing problem for ∆-regular graphs. In this case we will write (c∆1 , . . . , c

∆
r ) =

(c1, . . . , cr), so ∆ =
∑r

i=1 cr. Since there is only one vertex degree, we will
specify (c1, . . . , cr) in the prefix.

Proof Sketch of Theorem 3: A Nash equilibrium for the zero-sum pairwise
interaction game is equivalent to finding a Nash colouring of the graph. The result
then following from Theorem 7 that NASH-COLOURABLE is NP-complete. �

The following theorem shows that NASH-COLOURABLE is NP-complete.

Theorem 7. If r ≥ 3, and c1, . . . , cr are any positive integers such that
∑r

i=1 ci =
∆, then the problem (c1, . . . , cr)∆-NASH-COLOURABLE is NP-complete.

Proof. The problem is clearly in NP. To prove that it is NP-hard, we reduce
CHROMATIC-INDEX of r-regular graphs to (c1, . . . , cr)∆-NASH-COLOURABLE.
The hardness then follows from the result of [28] that CHROMATIC-INDEX is
NP-complete for ∆-regular graphs with degree ∆ ≥ 3.

Our reduction uses two ∆-cliques joined by a matching with one edge broken,
as the basic gadget. We will call this gadget a heavy edge and denote it by H0.
The heavy edge gadget for ∆ = 6 is shown in Fig. 1(a). In a valid (c1, . . . , cr)∆-
Nash colouring, each∆-clique must contain ci vertices of colour i and each vertex
has one external edge which must be coloured (i, i). The matching means the
two cliques have to be coloured identically. So the two external edges have to be
coloured (x, x) for some x ∈ [r].
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v2 v1v3 v4

(a) The heavy edge gadget (H0) for ∆ = 6.

1

2

32

1

H0

1 H0

H0

H0

(b) H1 for (3, 2, 1)6.

Fig. 1. H0 forces v1, v2, v3, and v4 to be coloured identically in any (c1, . . . , cr)6-Nash
colouring, so in H1 we get subcliques of size 3, 2 and 1 with colours 1, 2 and 3 respec-
tively.

Next we use H0 to construct another gadget H1 which basically is a ∆-
clique in which r subcliques of size c1, . . . , cr are connected by heavy edges (see
Fig. 1(b)). Then, we join two H1 gadgets with an r-edge matching, one for each
subclique (see Fig. 2). Let us call the final gadget H. This gadget then has
2(ci − 1) external edges of each colour i.

1

2

32

1

H0

1 H0 1 H0 1

H0

1

23

2

2

1

1

2

1

1

H0

H0

H0

H0

Fig. 2. Gadget H for (3, 2, 1)6-NASH-COLOURABLE, i.e. c1 = 3, c2 = 2, c3 = 1. The
vertices are labelled with a possible colour assignment.

Now, take an instance of the CHROMATIC INDEX problem on a r-regular
graph G = (V,E). Take two copies of G. Replace each vertex by a ∆-clique. Now
join these ∆-cliques corresponding to v in the two copies with the gadget H to
get a ∆-regular graph. Let us call the resulting graph G∗.

It can now be shown that G∗ has a (c1, . . . , cr)∆-Nash colouring if and only if
the chromatic index ofG is r. Finally, note that the new graph can be constructed
in polynomial time, which completes the proof.
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5 Some further results

We have already noted that the Nash equilibria related problems in pairwise
interaction games have similarity to many other well-known interesting problems.
Along this line, the following two theorems consider some games whose Nash
equilibria correspond to maximal independent sets in the corresponding graphs.
For these games, Theorem 8 shows that exactly counting the Nash equilibria is
hard while Theorem 9 proves that even counting them approximately is hard.

Theorem 8. Suppose a 2-strategy pairwise interaction game with payoff matrix
A =

(

P T
S R

)

is played on a graph of maximum degree 4. Let dk be the degree
of vertex k. Then, if dkγ is not an integer for all k ∈ V and the payoffs are
such that T > R, S > P and 0 < γ ≤ 1/4 or 3/4 < γ ≤ 1, where γ =
(S − P )/(T + S − R − P ), the problem of counting the pure Nash equilibria is
#P-complete.

Theorem 9. For the same game considered in Theorem 8 except that the game
is played on a graph of maximum degree 7 and the payoffs are such that 0 < γ ≤
1/7 or 6/7 < γ ≤ 1, there does not exist a fully polynomial time approximation
scheme (FPTAS) to count the pure Nash equilibria unless RP=NP.

Although we have obtained mainly positive results for the problem of com-
puting a pure Nash equilibrium in 2-strategy pairwise interaction games, the
computation is inherently sequential for some games and the following theorem
holds.

Theorem 10. The problem of computing pure Nash equilibria is P-complete for
some 2-strategy pairwise interaction games.

Thus finding a pure Nash equilibrium almost certainly cannot be done in con-
stant time, in sharp contrast to Theorem 1 for mixed Nash equilibria.

Finally, we provide a proof sketch of Theorem 4.

Proof Sketch of Theorem 4: The comparison is made by identifying symmet-
ric games with their equivalence class (see Definition 5). Let P (r,∆) =

(

∆+r−1
r−1

)

be the number of ordered partitions of ∆ into r parts. For symmetric graphi-
cal games, there are Γ (r,∆) = rP different games, since there are that number
of best-response tables. For pairwise-interaction games, the number of possible
games G(r,∆) can be bounded as follows. Recall from the proof of Theorem 2
that, for any p ∈ [P ], the best response is determined by the signs of (ai−aj)

Tnp

(0 ≤ i < j ≤ r− 1). Now (ai −aj)
Tnp = 0 determines a hyperplane through the

origin in the space of the entries of the payoff matrix aij (i, j ∈ [r]). Each cell in
the arrangement gives an equivalence class of payoffs, such that their ordering is
the same for all neighbourhood configurations. Thus we can bound the number
of games by the number of cells in this arrangement using [13, Theorem 2]. �
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6 Open problems

We have initiated a systematic study of pairwise interaction games and presented
results for the games with symmetric or antisymmetric payoff matrix. A natural
extension of our work is to investigate the remaining case, i.e. the games with
asymmetric payoff matrices that are not antisymmetric. We note that there are
matrices of this kind for which it is easy to compute a pure Nash equilibrium.
Hence, we believe that there are easy as well as hard cases left to study. But,
we conjecture that there is a dichotomy in that the problem of deciding whether
a pure Nash equilibrium exists is in P or NP-complete. Similarly, we believe
that for the problem of counting Nash equilibria there is a dichotomy, thus the
problem is in P or in #P-complete. We leave finding the dichotomy conditions
as open problems. For the approximate counting problem, we showed that there
does not exist an FPTAS even for some 2-strategy games. Here again, we believe
that there is a dichotomy and leave the proof as an open problem.

There are many other ways in which our work could be extended. Recall that
for the zero-sum pairwise interaction games, we proved that it is NP-complete to
determine whether a pure Nash equilibrium exists, only for games with a unique
mixed Nash equilibrium. It might be possible to extend our proof to games with
more than one mixed Nash equilibria, but we have not done this. However, we
conjecture that, even in this case, finding whether a pure Nash equilibrium exists
is NP-complete unless the game can be reduced to a 1-strategy game.

Another interesting open problem is to find whether the Nash dynamics con-
verges to any pure Nash equilibrium of the payoff matrix, i.e. of the 2-player
game. Surprisingly, even for two-strategy games with more than one Nash equi-
libria this is not obvious. Finally, considering our hardness results, another topic
of interest is to explore the approximate Nash equilibria for these games.
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Appendix

The missing proofs to be added here.....


