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Abstract

If G = (VG, EG) is an input graph, and H = (VH , EH) a fixed con-
straint graph, we study the set Ω of homomorphisms (or colorings)
from VG to VH , i.e. functions which preserve adjacency. Brightwell
and Winkler introduced the notion of dismantleable constraint graph
to characterize those H whose set Ω is connected under single vertex
recolorings for every G. Given fugacities λ(c) > 0 (c ∈ VH) our fo-
cus is on sampling an ω ∈ Ω according to the Gibbs distribution, i.e.,
with probability proportional to

∏
v∈VG λ(ω(v)). We prove, for each

dismantleable H, that there exist positive constant fugacities on VH
such that the Glauber dynamics, a Markov chain which recolors a sin-
gle vertex at each step, has mixing time O(n2) for all bounded degree
graphs G.
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1 Introduction

Graph homomorphisms provide a natural generalization of many well-studied
combinatorial problems, including independent sets and colorings. Our focus
is the computational complexity of randomly generating a homomorphism
and computing the number of homomorphisms.

We consider an input graph G = (VG, EG) with maximum degree ∆ and
a constraint graph H = (VH , EH). Let n = |VG|, h = |VH |, and let x ∼ y
denote adjacency of a pair of vertices in G or H. Our setting is the set Ω
of colorings (or homomorphisms) σ : VG → VH where σ(v) ∼ σ(w) for all
v ∼ w.

Each color c ∈ VH is assigned a fugacity λ(c). For convenience, we extend
λ to colorings σ ∈ Ω by defining λ(σ) =

∏
v∈VG λ(σ(v)). We are interested

in the Gibbs (or “hard-core”) probability distribution π over Ω given by
π(σ) = λ(σ)/Z for all σ ∈ Ω, where the normalising factor Z =

∑
σ∈Ω λ(σ)

is the partition function for H-colorings of G. The complexity of exactly
computing Z has been investigated by Dyer and Greenhill [5] and is well-
understood; in fact the problem is #P-complete for every non-trivial H even
when we restrict attention to low-degree graphs G and uniform fugacity 1.

The picture appears (at the moment) more vague when we consider ap-
proximate computation of Z, though Dyer, Goldberg, Greenhill and Jer-
rum [6] discuss the case where all fugacities are equal, and uncover a part of
the picture. In this paper, we examine the closely related problem of sam-
pling colorings from the Gibbs distribution, or at least a close approximation
to that distribution. We identify a class of constraint graphs H for which
sampling can be done in polynomial time, for appropriately chosen non-zero
fugacities. Since approximate counting is efficiently reducible to sampling for
this class of constraint graphs, we obtain a polynomial-time approximation
algorithm (technically an FPRAS) for this class of constraint graphs with
their associated fugacities.

The typical approach to efficient sampling is to set up an ergodic Markov
chain (Xt) on Ω whose stationary distribution is the desired distribution π.
By simulating this Markov chain for sufficiently many steps, samples from a
distribution arbitrarily close to π may be obtained. There are a number of
ways of specifying appropriate transition probabilities for this Markov chain;
a basic one is provided by the Glauber dynamics, which changes one vertex
color at a time, according to the following experiment:
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G1. Choose a vertex v ∈ VG uniformly at random.

G2. Let Xt+1(w) := Xt(w) for all w 6= v.

G3. Let S = {c ∈ VH : c ∼ Xt(w) for all w ∼ v} denote the set of valid
colors for v.

G4. Choose the color Xt+1(v) randomly from S with probability proportional
to its fugacity.

In what circumstances might the Glauber dynamics provide an effective
solution to the the problem of sampling H-colorings? Certainly we require
the state space Ω to be connected in some sense. A Markov chain with finite
state space Ω and transition matrix P : Ω×Ω→ [0, 1] is called ergodic if the
following conditions hold:

• Irreducibility : for all states (colorings) σ, τ ∈ Ω, there exists a time
t = t(σ, τ) such that P t(σ, τ) > 0;

• Aperiodicity : for all states σ, gcd{t : P t(σ, σ) > 0} = 1.

It is a classical theorem from stochastic processes that a finite, ergodic
Markov chain has a unique stationary distribution. In many situations the
stationary distribution is easy to find. Specifically, a distribution π′ on Ω
which satisfies the so-called detailed balance conditions,

π′(σ)P (σ, τ) = π′(τ)P (τ, σ) for all σ, τ ∈ Ω, (1)

is the unique stationary distribution. It is straightforward to verify that π
satisfies the detailed balance conditions for the Glauber dynamics.

Since the Glauber dynamics satisfies P (σ, σ) > 0 for all colorings σ (it is
always valid to recolor a vertex with the same color as before) it is immedi-
ate that the Markov chain specified by the Glauber dynamics is aperiodic.
The question of irreducibility is more subtle. Brightwell and Winkler [1]
characterized the constraint graphs H for which the Glauber dynamics on
H-colorings is irreducible for every input graph G. They call such constraint
graphs “dismantleable” and prove a host of equivalent conditions for disman-
tleability.

For efficient sampling, however, it is not sufficient that the Glauber dy-
namics converges eventually to the stationary (Gibbs) distribution; we need

2



to know that the rate of convergence is rapid. Our main result is that for
every dismantleable H and degree bound ∆ there exists a set of non-zero
fugacities such that the Glauber dynamics has polynomial mixing time1 uni-
formly over graphs G of maximum degree at most ∆. The term rapidly
mixing is often applied to a Markov chain, such as this one, whose mixing
time is polynomial in some natural measure of input size, in this case the
order of G.

2 Definitions and results

In graph-theoretic terms, a constraint graph H is said to be dismantleable if
there exists an ordering < of VH for which the following holds:

For all c ∈ VH there exists p(c) < c such that if c′ < c, c′ ∼ c then c′ ∼ p(c).

It is quite easy to show that the above condition is sufficient to ensure ir-
reducibility. Fix an ordering on colors (i.e., vertices of H) for which the
dismantleability condition holds, and let c∗ denote the least color in the or-
dering. Starting from an arbitrary coloring σ ∈ Ω, repeating the following
procedure reaches the monochromatic coloring (c∗)VG : let c denote the great-
est color appearing in σ; recolor all occurrences of c by p(c). Note that the
steps can be reversed to get from (c∗)VG back to the original coloring. That
dismantleability is a necessary condition is a little trickier, and we refer the
reader to [1].

We are interested in the asymptotic distance of the Glauber dynamics
from stationarity. The traditional measure of distance in this context is
(total) variation distance, defined as:

dTV(P t(σ, ·), π) =
1

2

∑
τ∈Ω

|P t(σ, τ)− π(τ)|,

where σ is the initial state (coloring). Our focus is the time to get close
to stationarity, known as the mixing time. For an initial state σ ∈ Ω and
0 ≤ ε < 1, let

Tσ(ε) = min{t : dTV(P t(σ, ·), π) ≤ ε}.
1A precise definition of mixing time is given in §2, but roughly it is the time t at

which the t-step distribution of a Markov chain comes sufficiently close of the stationary
distribution π in l1 distance.
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The mixing time is defined as

T (ε) = max
σ∈Ω

Tσ(ε).

If H is a complete graph with loops on all vertices then the Glauber dy-
namics is trivially rapidly mixing for any input graph G. Cooper, Dyer and
Frieze [3] proved that, for any other H, there exists a set of fugacities (actu-
ally, one may set all fugacities equal to 1) and a sufficiently large degree ∆
such that the Glauber dynamics on H-colorings has exponential mixing time,
for some infinite family of ∆-regular input graphs G. In contrast, we prove
here that, provided H is dismantleable, there is another set of fugacities such
that the Glauber dynamics on H-colorings has polynomial mixing time, on
every bounded degree input graph G.

For the purposes of the analysis we do not consider the Glauber dynamics
directly, but consider instead a variant dynamics with a more restricted set
of possible transitions. (It is perhaps counterintuitive that the proof of rapid
mixing might be simplified by limiting the available transitions!) In brief, we
allow only transitions in which a color c is replaced by its “parent” p(c) or
vice versa. Suppose each color c ∈ VH is assigned a weight µ(c). The weight
function µ influences transition probabilities just as λ does, but we avoid
calling µ(c) a “fugacity”, since it is not related in the same way to the prob-
abilities assigned to H-colorings in the Gibbs distribution. Specifically, our
chain (Xt) has transitions Xt → Xt+1 defined by the following experiment:

V1. Choose a vertex v ∈ VG uniformly at random. Let c denote the current
color of v.

V2. Let Xt+1(w) := Xt(w) for all w 6= v.

V3. Let R = R(c) = {c′ ∈ VH : c′ = p(c), c′ = c, or c = p(c′)} denote the set
of “relatives” of color c.

V4. Choose the color c′ randomly from R with probability proportional to
its weight. Provided it leads to a valid H-coloring, set Xt+1(v) := c′;
otherwise set Xt+1(v) := c.

As before, the variant dynamics is an ergodic Markov chain provided
H is dismantleable. The stationary distribution under the variant dynam-
ics has probabilities π(σ) proportional to

∏
v∈VG µ(σ(v))µ(R(σ(v))), where
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µ(R(c)) =
∑

c′∈R(c) µ(c′). This may be verified from the detailed balance con-

ditions (1). Suppose σ and τ agree at all vertices except v, at which c = σ(v)
and c′ = τ(v). (Note that σ and τ must be of this form if P (σ, τ) is to be non-
zero.) Then we have P (σ, τ) = µ(c′)/µ(R(c)) and P (τ, σ) = µ(c)/µ(R(c′)).
Hence

P (σ, τ)

P (τ, σ)
=
µ(c′)µ(R(c′))

µ(c)µ(R(c))
=
π(τ)

π(σ)
,

as required. Thus the stationary distribution is the Gibbs distribution with
fugacities λ(c) = µ(c)µ(R(c)). We can now state our main theorem.

Theorem 1 For every input graph G = (VG, EG) with maximum degree ∆
and dismantleable constraint graph H = (VH , EH), there exists a set of
weights (depending only on ∆ and h) such that the variant dynamics (as
defined in V1–V4 above) has mixing time O(n log n). Specifically, T (ε) =
O
(
n(log n+ log ε−1)

)
.

Corollary 2 Under the conditions of Theorem 1, there exists a set of fugaci-
ties (depending only on ∆ and h) such that the Glauber dynamics (as defined
in G1–G4 above) has mixing time O(n2). Specifically, T (ε) = O

(
n(n +

log ε−1)
)
.

The corollary follows easily from the Diaconis and Saloff-Coste tech-
nique [4] for comparing the associated Dirichlet forms of the Markov chains.
Indeed a slightly weaker bound on mixing time, with n log n+ log ε−1 replac-
ing n+log ε−1, can be obtained simply by substituting the mixing time bound
from Theorem 1 into a general comparison theorem of Randall and Tetali [8,
Prop. 4]. However, by applying exactly the same method, but working from
first principles, we can avoid the factor log n. The argument is this. Apply-
ing Sinclair’s [9, Prop. 1(ii)] to the mixing time bound of Theorem 1 with
ε = n−1, we discover that the spectral gap of the variant dynamics is Ω(n−1).
Now the spectral gaps of the Glauber and variant dynamics are the same
to within a constant factor: this can be seen by inspecting the variational
characterisation of the second largest eigenvalue. Corollary 2 then follows by
plugging the Ω(n−1) bound on spectral gap into [9, Prop. 1(i)].

Since the above comparison argument relies only on each possible transi-
tion in the variant dynamics being matched (in general with different prob-
ability) in the Markov chain under comparison, Corollary 2 holds for other
single-site update rules, e.g., Metropolis. We conjecture that the true mixing
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time here is also O
(
n(log n+ log ε−1)

)
but the proof of this (if true) appears

rather more complex than our proofs of Theorem 1 and Corollary 2.
As mentioned in the introduction, the existence of an efficient sampling

procedure for certain structures usually entails the existence of an efficient
approximation algorithm for the partition (or generating) function for those
structures. The current situation is no exception.

Corollary 3 Under the same conditions as Theorem 1, there is a fully poly-
nomial randomized approximation scheme (FPRAS) for the partition func-
tion Z of H-colorings of G.

For the definition of FPRAS, and also the reduction from counting to sam-
pling required to establish Corollary 3, see for example Jerrum’s survey ar-
ticle [7], specifically §2. The reduction is given there in the context of usual
(proper) colorings, but it works almost without change for H-colorings, when
H is dismantleable. To verify the reduction in the current context it is neces-
sary to check that the ratios ρi appearing in that reduction are bounded away
from 0. This can be done using a straightforward extension of the argument
used to prove ergodicity of the Glauber dynamics.

Finally, note that many constraint graphs H are covered both by The-
orem 1 and by the result of Cooper et al. [3]. In other words, there are
graphs H — the simplest being K2 with a single loop, which corresponds
to independent sets in the input graph G — for which the mixing time of
the Glauber dynamics is either polynomial or exponential, depending on the
fugacities.

3 Coupling

We prove the main theorem via coupling. A coupling of a Markov chain is a
joint evolution of two copies of the chain, designed to minimize the time till
the copies coalesce. In order to be a valid coupling we need that individually
each copy behaves faithfully, and once the pair coalesce they evolve together.
To be precise, a (Markovian) coupling is a Markov chain P ′ on Ω×Ω which
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satisfies the following conditions:∑
τ ′∈Ω

P ′((σ, τ), (σ′, τ ′)) = P (σ, σ′) for all σ, σ′, τ ∈ Ω;∑
σ′∈Ω

P ′((σ, τ), (σ′, τ ′)) = P (τ, τ ′) for all σ, τ, τ ′ ∈ Ω;

and
P ′((σ, σ), (σ′, σ′)) = P (σ, σ′) for all σ, σ′ ∈ Ω.

Our goal is to define a coupling which, in expectation, makes progress
with respect to an appropriately defined distance metric after every coupled
transition. Defining and analyzing a coupling for an arbitrary pair of states
is typically a complicated task; however, the path coupling lemma of Bubley
and Dyer simplifies matters. In particular, it suffices to focus on colorings
which differ by a single transition of the dynamics, referred to as adjacent
colorings. We write σ ∼v τ to indicate that the pair of colorings σ, τ differ
only at vertex v, and σ ∼ τ if σ ∼v τ for some vertex v.

We analyze this set of adjacent colorings with respect to the following
distance metric. Each color c ∈ VH will be assigned a distance weight d(c).
For colorings σ ∼v τ , where without loss of generality τ(v) = p(σ(v)), we
will assign distance d(σ, τ) = d(σ(v)). For any σ, τ ∈ Ω, let ρ(σ, τ) denote
the collection of paths η such that σ = η0 ∼ η1 ∼ · · · ∼ η` = τ , where `(η) is
the length of η. We define the distance between an arbitrary pair of states
as the total distance of a shortest path:

d(σ, τ) = min
η∈ρ(σ,τ)

∑
0≤i<`(η)

d(ηi, ηi+1).

For a pair of colorings σ, τ and a coupling (σ, τ), let σ′, τ ′ denote the
resulting pair of colorings after the coupled transition. The specialization of
the path coupling lemma to our setting is as follows.

Lemma 4 (Bubley and Dyer [2]) If there exists a β < 1 and a coupling
for all σ ∼ τ such that

E[d(σ′, τ ′)] < β d(σ, τ),

then the mixing time is bounded by

T (ε) ≤ log(D/ε)

1− β
,

where D = maxσ,η∈Ω d(σ, η).
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In our application, we shall discover that β = 1−Θ(1/n) and D = Θ(n),
leading easily to Theorem 1.

4 Proof of Theorem 1

Fix an ordering on the colors c1 < c2 < · · · < ch for which the dismantleability
condition holds. Set d(ci) = 2(∆ + 2)i+1 and let dmax = d(ch). Now set
µi = (dmax + 1)−i (i = 1, . . . , h). Observe that the inequality∑

k>i µk

µi
<

1

dmax

holds for all i.
Fix a pair of colorings σ ∼v τ and once again let σ′, τ ′ denote the resulting

colorings after our coupled transition. To prove the theorem we need to
demonstrate a coupling for which E[d(σ′, τ ′)]−d(σ, τ) is negative and bounded
away from zero.

We couple the two chains so that both chains attempt to modify the same
vertex at every step. Therefore, for a vertex x, it is well defined to let

Ex[d(σ′, τ ′)] = E
[
d(σ′, τ ′)

∣∣ vertex x is selected by the coupled process
]
.

Observe that the distance metric does not change when we recolor a vertex
sufficiently far from v. Specifically, we only need to consider recolorings of v
or a neighbor w of v. In summary, we have

n
(
E[d(σ′, τ ′)]− d(σ, τ)

)
=
(
Ev[d(σ′, τ ′)]− d(σ, τ)

)
+
∑
w:w∼v

(
Ew[d(σ′, τ ′)]− d(σ, τ)

)
. (2)

Of all the colors that are valid for σ′(x), let c∗σ(x) denote the one of
greatest weight. Note that either c∗σ(x) = σ(x) or c∗σ(x) = p(σ(x)), and that,
in the latter case, c∗σ(x) has the greatest weight among the various colors that
may be proposed. Either way, if vertex x is selected, then x will acquire color
c∗σ(x) unless a color of lower weight than c∗σ(x) is proposed. Thus, conditioned
on vertex x being selected, we have

Pr[σ′(x) 6= c∗σ(x)] ≤
∑

c>c∗σ(x) µ(c)

µ(c∗σ(x))
≤ 1

dmax

. (3)
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Defining c∗τ (x) similarly, the analogous inequality holds with respect to τ as
well.

In the light of inequality (3) and its analogue for τ we may complete the
definition of the coupled process as follows. With probability 1− 1/dmax we
couple σ′(x) = c∗σ(x) with τ ′(x) = c∗τ (x). We call such a coupled move a
type A transition. With the remaining probability of 1/dmax the two chains
independently recolor x (using the residual distributions), a type B transition.
In the latter case, it is clear that d(σ′, σ) ≤ dmax and d(τ ′, τ) ≤ dmax which
implies

Ex[d(σ′, τ ′)| type B transition] ≤ 2dmax + d(σ, τ). (4)

We now proceed to bound the expected change in distance from a type A
transition. It is clear that the distance after the type A transition on x is
maximized when c∗σ(x) 6= c∗τ (x).

Consider the recoloring of a neighbor w of v. We begin by proving that
c∗σ(w) 6= c∗τ (w) implies σ(w) < σ(v). Suppose σ(w) ≥ σ(v). Vertex w has
the same color in both chains, therefore colors c∗σ(w) and c∗τ (w) are either
σ(w) or p(σ(w)). Since σ(w) ∼ σ(v) and σ(w) ∼ τ(v), from the definition
of dismantleability and our ordering on VH we know p(σ(w)) ∼ σ(v) and
∼ τ(v). Similarly if u 6= v is any other neighbor of w, then dismantleability
implies p(σ(w)) ∼ σ(u) = τ(u). Therefore, recoloring vertex w to color
p(σ(w)) is valid in both chains or neither and hence c∗σ(w) = c∗τ (w).

Now suppose c∗σ(w) 6= c∗τ (w). In addition to the fact σ(w) < σ(v), it
is clear that c∗σ(w) = σ(w) and c∗τ (w) = p(σ(w)). Following the type A
transition for w we have σ′ = σ and d(τ ′, τ) = d(σ(w)) ≤ d(σ(v))/(∆ + 2).

In summary, we have proven

Ew[d(σ′, τ ′)| type A transition] ≤ d(σ, τ)(1 + 1/(∆ + 2)). (5)

Combining (4) and (5) implies

Ew[d(σ′, τ ′)]− d(σ, τ) ≤ 2 + d(σ, τ)/(∆ + 2). (6)

We complete the proof by considering the effect of recoloring v by a type A
transition. Since p(σ(v)) = τ(v), it is clear that p(σ(v)) is a valid color for
both σ′(v) and τ ′(v). Moreover, c∗σ(v) = p(σ(v)) and c∗τ (v) is either p(σ(v))
or p(p(σ(v))). In other words, d(σ′, τ ′) > 0 implies c∗τ (v) = p(p(σ(v))). In
which case we have d(σ′, τ ′) ≤ d(p(σ(v))) ≤ d(σ, τ)/(∆ + 2). Restating our
bound:

Ev[d(σ′, τ ′)| type A transition] ≤ d(σ, τ)/(∆ + 2).
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The above inequality together with (4) implies

Ev[d(σ′, τ ′]− d(σ, τ) ≤ 2 + d(σ, τ)(1/dmax + 1/(∆ + 2)− 1)

≤ 3 + d(σ, τ)(1/(∆ + 2)− 1). (7)

Let ∆(v) denote the degree of vertex v. Putting inequalities (6) and (7)
into (2) we obtain

n (E[d(σ, τ)]− d(σ, τ)) ≤ 1 + (∆(v) + 1)

[
2 +

d(σ(v))

∆ + 2

]
− d(σ(v))

≤ (2∆ + 3)− d(σ(v))

∆ + 2

≤ (2∆ + 3)− 2(∆ + 2)

= −1.

Since σ ∼ τ implies, d(σ, τ) ≤ dmax, we conclude

E[d(σ, τ)] ≤ (1− 1/ndmax) d(σ, τ),

and hence we may take β = 1−1/ndmax in Lemma 4. If η = (c1)VG , we know
d(σ, η) ≤ nhdmax for all σ ∈ Ω, by the path of transitions described in the
Introduction. Therefore, we may take D = 2nhdmax in Lemma 4. Theorem 1
now follows.

References

[1] G. R. Brightwell and P. Winkler. Gibbs measures and dismantleable
graphs. J. Combin. Theory Ser. B, 78(1):141–166, 2000.

[2] R. Bubley and M. Dyer. Path coupling, Dobrushin uniqueness, and ap-
proximate counting. In 38th Annual Symposium on Foundations of Com-
puter Science, pages 223–231, Miami Beach, FL, October 1997. IEEE.

[3] C. Cooper, M. Dyer, and A. Frieze. On Markov chains for randomly
H-coloring a graph. J. Algorithms, 39(1):117–134, 2001.

[4] P. Diaconis and L. Saloff-Coste. Comparison theorems for reversible
Markov chains. The Annals of Applied Probability, 3(3):696–730, 1993.

10



[5] M. Dyer and C. Greenhill. The complexity of counting graph homomor-
phisms. Random Structures Algorithms, 17(3-4):260–289, 2000.

[6] M. E. Dyer, L. A. Goldberg, C. S. Greenhill, and M. R. Jerrum. On the
relative complexity of approximate counting problems. In Proceedings of
APPROX 2000, Lecture Notes in Computer Science vol. 1913, pages 108–
119, Springer Verlag, 2000.

[7] M. Jerrum. Mathematical foundations of the Markov chain Monte Carlo
method. In Probabilistic Methods for Algorithmic Discrete Mathematics
(M. Habib, C. McDiarmid, J. Ramirez-Alfonsin & B. Reed, eds), Algo-
rithms and Combinatorics vol. 16, Springer-Verlag, 1998, 116–165.

[8] D. Randall and P. Tetali. Analyzing Glauber dynamics by comparison of
Markov chains. J. Math. Phys., 41(3):1598–1615, 2000.

[9] A. Sinclair. Improved bounds for mixing rates of Markov chains and mul-
ticommodity flow. Combinatorics, Probability and Computing, 1(4):351–
370, 1992.

11


