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Abstract: It is an old problem in graph theory to test whether a graph contains
a chordless cycle of length greater than three (hole) with a specific parity (even,
odd). Studying the structure of graphs without odd holes has obvious implications
for Berge's strong perfect graph conjecture that states that a graph G is perfect
if and only if neither G nor its complement contain an odd hole. Markossian,
Gasparian, and Reed have proven that if neither GG nor its complement contain an
even hole, then G is B-perfect. In this article, we extend the problem of testing
whether G(V, E') contains a hole of a given parity to the case where each edge
of G has a label oddor even A subset of E is odd (resp. even) if it contains an
odd (resp. even) number of odd edges. Graphs for which there exists a signing
(i.e., a partition of E into odd and even edges) that makes every triangle odd and
every hole even are called even-signableGraphs that can be signed so that every
triangle is odd and every hole is odd are called odd-signable We derive from
a theorem due to Truemper co-NP characterizations of even-signable and odd-
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signable graphs. A graph is strongly even-signabliéit can be signed so that every
cycle of length > 4 with at most one chord is even and every triangle is odd. Clearly
a strongly even-signable graph is even-signable as well. Graphs that can be signed
so that cycles of length four with one chord are even and all other cycles with
at most one chord are odd are called strongly odd-signableEvery strongly odd-
signable graph is odd-signable. We give co-NP characterizations for both strongly
even-signable and strongly odd-signable graphs. A capis a hole together with a
node, which is adjacent to exactly two adjacent nodes on the hole. We derive a
decomposition theorem for graphs that contain no cap as induced subgraph (cap-
free graphs). Our theorem is analogous to the decomposition theorem of Burlet
and Fonlupt for Meyniel graphs, a well-studied subclass of cap-free graphs. If a
graph is strongly even-signable or strongly odd-signable, then it is cap-free. In fact,
strongly even-signable graphs are those cap-free graphs that are even-signable.
From our decomposition theorem, we derive decomposition results for strongly
odd-signable and strongly even-signable graphs. These results lead to polynomial
recognition algorithms for testing whether a graph belongs to one of these classes.
© 1999 John Wiley & Sons, Inc. J Graph Theory 30: 2808, 1999
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1. INTRODUCTION

Inthis article, we study the structure of a class of graphs that do not contain chordless
cycles of length greater than three (holes) of a specific parity (even, odd).

A graph( is perfectif, for all induced subgraphs df, the size of the largest
clique is equal to the chromatic number. A long-standing conjecture of Berge [1]
states that: is perfect if and only if neithe€ nor its complement contain an odd
hole. (Thecomplement of G(V, E) has node sét and two nodes are adjacent in
G if and only if they are not adjacent i@). Understanding the structure of graphs
with no odd holes may give an important contribution to this conjecture. Also, the
existence of a polynomial algorithm to test whettiezontains an odd hole implies
a polynomial algorithm to test whethéf is perfect, modulo the verification of
the above conjecture, and it is possible that such an algorithm may itself prove the
conjecture.

Markossian, Gasparian, and Reed [12] defifgerfect graphs as follows? is 8-
perfectif, for every induced subgraphof G, we havey(H) = max{d(F)+1: F
is a node induced subgraph&f}, wherey (H ) is the chromatic number df, and
d(F) is the smallest node degreefn g-perfect graphs do not contain even holes
and Markossian, Gasparian, and Reed also show that if néither G contain an
even hole, theid” is 3-perfect. So the study of the structure of graphs that do not
contain even holes will give a better understanding of the clagspafrfect graphs.

Bienstock [3] has shown the NP-completeness of testing the existence of a hole
with a specified parity (even, odd), containing a specified nod€' oéven ifG
is triangle-free. However, it is quite possible that polynomial algorithms to test
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whetherG contains a hole with a specified parity still exist. Note thaGifis
triangle-free, the problem of testing wheth@rcontains an odd hole amounts to
testing the bipartiteness 6f, and the problem of testing wheth@rcontains an

even hole was solved in [12]; see also [5]. Finally, consider the following analogous
problems: Test whether a bipartite graph contains a hole whose length divided by
two has a specified parity. Bipartite graphs containing no hole whose length divided
by two is odd represent balanced 0, 1 matrices and their structure is studied in [8],
where a polynomial algorithm is given to test whether a bipartite graph contains a
hole whose length divided by two is odd. These results are extended to balanced
0, =1 matrices in [4]. The structure of bipartite graphs containing no hole whose
length divided by two is even is much simpler, and a polynomial algorithm is shown
in [9].

2. EVEN-SIGNABLE AND ODD-SIGNABLE GRAPHS

A convenient setting for the study of even or odd holes in graphs is the cigneid
graphs.G(V, E) is a signed graph if the edges @Gfare givenodd or evenlabels.

A subset ofE is odd (resp. even) if it contains an odd (resp. even) number of odd
edges. Graphs for which there existsigning(i.e., a partition of£’ into odd and

even edges) that makes every triangle odd and every hole eveneresignable
Graphs that can be signed so that every triangle is odd and every hole is odd are
odd-signable Even-signable graphs were introduced in [7].

Note thatGG contains no odd hole if and onlyd¥ is even-signable with all edges
odd, and contains no even hole if and onlyGfis odd-signable with all edges odd.

Since cuts and cycles @f have even intersections, by switching the labels on
all edges of a cut the parity of a cycle does not change. Since, in a connected graph
G, any edge of a spanning tr@ebelongs to a cut ofs not containing any other
edge ofT, if G is signed, we can switch signs on the edges of cuts so that, in the
newly signed graph, the spanning tfEdas a specified (arbitrary) signing.

Thisimpliesthat, ifa (connected) gragtiV, E) is even-signable (odd-signable),
one can produce such a signing as follows. Order the edgés«f .. .,e,, so
that the edges df are the first in the sequence and all other edgdwmve the prop-
erty thate; closes a chordless cyclé; of G together with edges having smaller
indices. Sign the edges @f arbitrarily, and label the remaining edgesso that
Hj is even-signed (odd-signed).

So G contains no odd hole if and only @ is even-signable and the above
algorithm, after labeling the edges Bfodd, labels odd all the remaining edges.
Also, G contains no even hole if and only @& is odd-signable and the above
algorithm, after labeling the edges Bfodd, labels odd all the remaining edges.
Hence, a polynomial algorithm that tests whetfigs even-signable (odd-signable)
can be used to test wheth@rcontains an odd hole (even hole).

The following theorem of Truemper [15] is fundamental in obtaining co-NP
characterizations for the existence of holes with specified parities.
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Theorem 2.1. Let be a0, 1vector whose entries are in one-to-one correspon-
dence with the chordless cycles of a graphThen there exists a subgetof edges

of G such that F N C| = ¢ (mod 2)for all chordless cycle€’ of G, if and only

if for every induced subgrap&’ of G of type Hy, H, Hy, or Hs, there exists a
subsetr” of edges o€+’ such that ' N C| = B¢ (mod 2),for all chordless cycles
CofG".

The graphddy, Hy, H>, andHs are shown in Fig. 1. Graphs of typ#,, Hy, or
H, are referred to as Bath configurationg3PCs). A graph of typeH, is called
a3PC(z,y), where noder and nodey are connected by three patRs, P, and
P;. A subgraph of typd; is called a3PC(zyz,u), wherexyz is a triangle and
Py, P, andP; are three paths with endnodes;, andz, respectively, and acommon
endnode:. A graph of typeH, is called a3PC(zyz, uvw), consists of two node
disjoint trianglesryz anduvw, and pathg?,, P», andP; with endnodes: andu, y
andv, andz andw, respectively. In all three cases, the nodes’pl P;,¢ # j,
induce a hole. This implies that all paths &f have length greater than one, and
at most one path aoff; has length one.

Graphs of typeH; arewheels These consist of a chordless cydfetogether
with a node called theenterthat has at least three neighbors Bn When the
center together with the nodes Bfinduce an odd number of triangles, the wheel
is called anodd wheel When the center has an even number of neighborH pn
the wheel is called amven wheel Note that a wheel may be both odd and even.
Also note thatk; is a wheel that is neither odd nor even and, therefore, when the
wheel(H,v) is odd or evenH is a hole.

In this article, we write grapld: containsgraph R to mean that? occurs as a
node induced subgraph 6f. To obtain a co-NP characterization of even-signable
graphs, let3c = 0 for all holesC in G, andfc = 1 for all triangles, and apply
the above theorem. Similarly, for odd-signable graphsjdet 1 for all chordless
cyclesC.
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FIGURE 1. 3-path configurations and wheel.
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Theorem 2.2. Agraphis even-signable if and only if it contains3¥eC (zyz, u)
and no odd wheel

Theorem 2.3. A graph is odd-signable if and only if it contains 8&C(z, y),
no3PC(xyz, uvw), and no even wheel

Proof. (Theorem 2.2) In 8PC(zyz,u) we can label even all edges except
xy,yz, andzz, since they form a tre® in the3PC. Now zy, yz, andzz must all
be labeled even, since each one closes a hole with the ed@ged/¥¢ now have an
even triangle.

Assume that an odd whegl, z) is even-signable. We arbitrarily label odd alll
edges having as endnode. All subpaths of the héfewith the endnodes adjacent
toz and no intermediate node adjacenttmust have an even number of odd edges,
if their length is greater than one, and must be labeled odd, if they contain a unique
edge, since this edge belongs to a triangle containinthus,H is signed odd.

Consider graphgi, and H,. By labeling odd all edges in triangles and even
all other edges, we obtain an even signing of these graphs. In w(téelg that
are not odd, to obtain an even signing, label odd all the edges adjaceantball
edges ofH that belong to a triangle dfH, =), and label even all the other edges
of H. [}

Proof. (Theorem 2.3) In 8 PC(z,y), we can label even all edges except the
two edgescu andzv of P, and P, havingx as endnode, since they form a tfEe
in the3PC'. Now bothzu, yv must be labeled odd, since each one of them closes
a hole with the edges @f. Now P; closes an even hole with;.

In a3PC(zyz,uvw), we can labeky, zz odd and all other edges even except
yz, uv, vw, wu, since they form a tre€ in the3PC. Nowyz must be labeled odd,
since it belongs to the trianglgyz. This implies that edgesv, vw, wu must all be
labeled even. Now we have an even triangle.

In an even whee(H, z), we can arbitrarily label odd all edges havingas
endnode. All subpaths of the holé with the endnodes adjacent toand no
intermediate node adjacent:tamust contain an odd number of odd edges. Thus,
H is made up of an even number of such subpaths and is signed even.

Consider a graph of typH;. By labeling odd all edges of the triangle and even
all other edges, we obtain an odd signing. For a whéglx) that is not even,
label odd all edges havingas endnode. Furthermore, on every subpath @fith
endnodes adjacent toand no intermediate node adjacenttdabel one edge odd
and all others even. This gives an odd signing&f z). 1

3. STRONGLY EVEN-SIGNABLE AND
STRONGLY ODD-SIGNABLE GRAPHS

A diamondis a cycle on four nodes with exactly one chord.

A graph isstrongly even-signabléf it can be signed such that every triangle is
odd and every cycle of length at least four with at most one chord is even. A graph
is strongly odd-signablgf it can be signed such that every cycle with at most one
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chord is odd, except for the diamonds, which are even. A signing sdtisfying
one of the two properties is strong even-signingr a strong odd-signingf G.
From the definition it is clear that every strongly even-signable graph is even-
signable and every strongly odd-signable graph is odd-signable. The following
theorems provide co-NP characterizations of strongly even-signable and strongly
odd-signable graphs.

A cap(H,zyz) is a holeH together with a node with exactly two neighbors
y andz in H, and these neighbors are adjacent. Note that any signing of a cap
(H, zyz) with the trianglezyz odd contains both an odd cycle of lengthd with
at most one chord and an even cycle with at most one chord, which is not a diamond.
Soif G is strongly even-signable or strongly odd-signable, thierontains no cap
as a node-induced subgraph i cap-freg.

Theorem 3.1. G is strongly even-signable if and onlyGfis even-signable and
does not contain a cap

Proof. Necessity follows from the above observation. To prove sufficiency of
the condition, lelG be even-signed. If7 is not strongly even-signed, there exists
an odd cycleC’ with exactly one chord. The chord together with the node§’ of
induces two chordless cyclé§ andCs. Exactly one of these is odd, s@¥. Since
G contains no odd hole or even triangl&, must be a triangle an@> must be a
hole. SoC'is a cap. 1

The proof of the theorem also shows thatdifis strongly even-signable, any
even-signing of~ is a strong even-signing @f.

Theorem 3.2. A graphG is strongly even-signable if and onlydf is cap-free
and does not contain an odd wheéfl, =), wherex is adjacent to all the nodes
of H.

Proof. Theorem 2.2 states thétis even-signable if and only @& contains no
3PC(xyz,u) and no odd wheel. & is strongly even-signable, the# is cap-
free. A3PC(xyz,u) contains a cap and an odd wheél, ) contains a cap if
and only ifz is not adjacent to all the nodes Af. Now the theorem follows from
Theorem 3.1. n

Theorem 3.3. A graphG is strongly odd-signable if and only if every cycle of
G with a unique chord is a diamond; contains n®3PC(z, y) and no even wheel
(H, z) with z adjacent to all the nodes df.

Proof. Theorem 2.3 states thét is odd-signable if and only if7 contains no
3PC(z,y), no3PC(zyz,uvw), and no even wheel. BPC(zyz, uvw) contains
a cap, hence a cycle with a unique chord that is not a diamond. An even wheel
(H,zx) contains a cycle with a unique chord that is not a diamond if and only if
x is not adjacent to all the nodes &f. So the above theorem is equivalent to the
following:

G is strongly odd-signable if and only if every cycla®ivith a unique chord is
a diamond and7 is odd-signable
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To prove necessity, observe that(dfcontains a cycle with a unique chord that
is not a diamond, the@' is not strongly odd-signable.

To prove sufficiency, consider an odd signing of the odd-signable gtaplti
the labeling does not make it strongly odd-signable, it contains a even cycle with a
unique chord that is not a diamond. n

It follows that, if G is strongly odd-signable, any odd-signing@fis a strong
odd-signing ofG.

The following corollary is a consequence of Theorem 2.3 and shows that every
graphthatis strongly odd-signable is a cap-free odd-signable graph, but the converse
does not hold.

Corollary 3.1. A cap-free graph’ is odd-signable if and only iy contains
no 3PC(x,y) and no triangle-free even wheel and no even wiéglx) with x
adjacent to all the nodes df.

A graphG is Meynielif every odd length cycle of7, which is not a triangle,
has at least two chords. These graphs were proven to be perfect by Meyniel [14].
Meyniel graphs are cap-free. Infact, they are exactly the graphs that can be strongly
even-signed with all edges labeled odd. One of the most important decomposition
theorems for perfect graphs is the one of Burlet and Fonlupt [2], who give a de-
composition theorem and a polynomial time recognition algorithm for Meyniel
graphs.

We prove a decomposition theorem for cap-free graphs. The decomposition we
use is the same as the one introduced by Burlet and Fonlupt, only the indecompos-
able graphs will be different. This decomposition theorem can be used to obtain
polynomial time algorithms to test membership in each one of the following classes:

(i) Cap-free,

(i) Strongly even-signable or, equivalently, cap-free even-signable,
(iif) Strongly odd-signable,
(iv) Cap-free odd-signable.

4. AMALGAMS

A nodez notin.S isadjacento a subsef of V, if x is adjacent to some node
Nodez is universalfor S, if it is adjacent to all nodes if. x is partially adjacent
to S, if it is adjacent to but not universal fdf.

We describe the amalgam introduced by Burlet and Fonlupt [2].

Aconnected grapt(V, E) contains ammalgam A, B, K) if V = VUL UK,
whereVi, V,, andK are disjointsetg)V; | > 2, |V»| > 2and the nodesik induce a
clique of G (possiblyK is empty). Furthermore, there exist nonempty gets V;
andB C V5 such that every node id is adjacent to every node i, and these
are the only edges between noded/inand V5. In addition, all nodes ik are
adjacent to all nodes iA U B.

Note that the removal of all the edges with one endpoird iand the other in
B, together with all the nodes I, disconnectss. The nodes of, together with
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the edges betweeA and B, define the amalganA, B, K). Theblocks of the
amalgam decompositicare defined to be the grapliy andG,, whereG; is the
graph induced by; U K together with a nodé adjacent to all nodes id U K,
and similarlyGs is the graph induced by, U K together with a node adjacent
to all nodes inB U K. Note that(z; andG, are proper induced subgraphs(of

A graph istriangulated if it contains no hole. A triangulated gragh is ob-
viously both strongly odd-signable and strongly even-signable. Inad, uni-
versally signable, as defined in [6]. The structure of triangulated graphs is well
studied, see e.g. [13], [11], and there are efficient recognition algorithms to test
membership in this class.

A basic cap-free graply is either a triangulated graph or a biconnected triangle-
free graph together with at most one additional node, which is adjacent to all other
nodes ofG.

In this article, we prove the following.

Theorem 4.1. A cap-free graphwhich is not basiccontains an amalgam
In the last section, we discuss the implication of this theorem for strongly even-
signable and strongly odd-signable graphs.

5. D-STRUCTURES

Let G(S) denote the subgraph 6f induced by the subsét of V.

Definition 5.1.  AD-structure(C, Cs, K) of G consists of disjoint sets of nodes
C4,Cq, and K, where|C4 | > 2,|Cs| > 2, and the nodes ok induce a clique ofr
(possiblyK is empty. Furthermore the subgraphG(C) is connected and every
node inC1 is universal forCy U K, every node irCs is universal forC; U K, and
there exists no node i\ (C, U Cy U K') adjacent to both a node i, and a node
in CQ.

Lemma5.1. If a cap-free graphG; contains a D-structurethenG contains an
amalgam
To prove this lemma, we first need to prove the following result.

Lemma5.2. LetG(V’)beaconnectedsubgraph ofacap-free gréphV’’| > 2.
Let z be a node universal for’, and lety be a node partially adjacent t&” such
that y and z are connected by some chordless p&hin G(V\V'). Then there
exists anode € V(P’), partially adjacent tol’’ such thatin the subpathP of P’
from z to z, all the nodes i/ (P)\{z} are universal for//’.

Proof. In P’ pick x to be the node closest topartially adjacent td’’. Let P
be thexz-subpath ofP’. Letz’ be the node closest toin P universal forV’. If
2’ is not adjacent ta, then the subpath dP connectingr to 2/, together with two
adjacent nodes, v € V', wherev is adjacent ta: andu is not adjacent ta: forms
a cap. Note that sincg’ is connected, such a choice of nodeandwv is always
possible. Now let:” be the node of” not adjacent td’’ closest tar. Pick the
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subpathP” of P containingz” with only the endnodes universal fof'. Letw
be the node ot/ (P)\V (P”) adjacent to the endnode &Y' closest tar. Now P”
together withw and a node of/’ adjacent tav induces a cap. n
Proof. (Lemma 5.1) LetU be the set of nodes i\ (C; U Cy U K) that are
adjacent ta”; and are connected to a node(ia by a path inG(V'\(Cy U K)).

Claim1. Every node ifU is universal forC.

Proof. Assume not and let € U be connected tg € C, by a chordless path
P, in G(V\(C1 UK)). SinceC; andC5 belong to a D-structure, then the length
of P, is greater than one. By Lemma 5.2, we may assume that all the nods of
except foru, are universal fo€’;. Now the node orP, adjacent ta; has neighbors
in both C; and Cs, contradicting the definition of a D-structure. This completes
the proof of Claim 1.

Let K’ contain the nodes ik that are not universal faV and K’ = K\ K'.
DefineA = C1,B = C, U K’ UU. We show that A, B, K”) is an amalgam of
G. Claim 1 shows that every node 18 is universal forA and, by definition of
K", every node ik is universal folU. Since(C1, Cs, K) is a D-structure, every
node inK" is universal forC; U Cy U K.

Claim 2. LetG’ be the graph obtained fro¥ by removing all edges with one
endnode iMd and the other ink”. Then inG’(V'\ (C> U K UU)) no path connects
a node ofK’ and a node of’; = A.

Proof. LetP =k, ..., v,z beachordless path connecting K’ andz € C,
and contradicting the claim. No intermediate nodé’a$ adjacent to a node ifi,
else, by Claim 1y, belongs td/, contradicting the definition aP. If P has length
greater than 2, then the nodesiotogether with any node i induce a cap.

SoP = k, v, x. Sincek is not universal folU, there exists a node € U not
adjacent tck. Let P, = z1,...,x,, be a chordless path connecting= x; and
a nodez,, € Cy in G(V\(C; UK)). Letu = uq,...,u, = x,, be the nodes
of P, that are universal fo€; with «; closer tou thanu; ;. Note that all nodes
uy, - .., u,_1 belong tolU.

We now show that:;; cannot be adjacent @, 1,1 < i < n — 1. Assume not
and let; be the highest index such thatandu,, 1 are adjacent. If =n — 1, u;
contradicts the definition of a D-structure. $&< n — 1. Then the nodes in the
subpath ofP, betweeru; 1 andu; 2, together withu; and any node i’ induce
a cap.

Let z; be the node of smallest index adjacenkto(Sincex,, is adjacent td,
such a node exists). Sinegis not adjacent té, j > 1. If z; is universal forCy,
let z; be the node of/ having largestindex < j. Now the nodes in the subpath of
P, betweenr; andz;, together withk and any node of’; induce a cap. So; is
not universal foiC;. Letz; be the node o¥/ (P,) N U having largest index < j.
Now the nodes in the subpath 6, betweenz; andz;, together withk, v, and
x induce a cap. (Note that nodg is not adjacent to any node iR,, since other-
wisewvy, belongs ta, contradicting the assumption). This completes the proof of
Claim 2.
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The following claim shows thatA, B, K”) is an amalgam of.

Claim 3. LetG” be obtained frontG by removing all edges with one endnode
in A and the other inB. Then inG”(V\ K"), no path connects a node ihand a
node inB.

Proof. Let P = x1,...,z, be a chordless path between in A andzx,, in
B and contradicting the claim. Claim 1 shows thatjf € Cs, thenzs € U, a
contradiction. Claim 2 shows, ¢ K'. Soz,, € U and letP,, be a path connecting
z, and a node iy in G(V\(C1 U K)). Now there is a path i (V'\ (C, U K))
betweenz, and a node irCy only using nodes o/ (P,,,) U V(P). Soxs must
belong tolU, a contradiction. n

6. M-STRUCTURES

M-structures were first introduced by Burlet and Fonlupt [2] in their study of
Meyniel graphs.

Aninduced subgrap& (V1) of G is called arM-structure(multipartite structure)
if G(V1) contains at least two connected components each with at least two nodes.
Let Wq,..., W) be the node sets of these connected components. pidiper
subclassesf G(V;) are the set$V’; of cardinality greater than or equal to 2. The
partition of an M-structure is denoted {1, ..., W,, K), whereK is the union
of all nonproper subclasses. Note ti#ainduces a clique .

Lemma 6.1. An M-structureG(V7) of G is maximal with respect to node inclu-
sion if and only if there exists no nodec V'\V; such thatv is universal for a
proper subclass of7(V1).

Proof. LetG(V, U{u}) be an M-structure. Assume nodes not universal for
any proper subclass @¢#(V1). In G(V; U {u}) nodeu is adjacent to at least one
node in each of the proper subclasses. Thus, there exists only one proper subclass
in G(V1 U{u}), contradicting the assumption.

Conversely, let node be universal for some proper subcl&&sof G(V7). Then
G(V; U {u}) has at least two components with more than one node, the graph
induced byW;, and at least one component with more than one nodé&/irJ
{u})\W. i

The above proof yields the following.

Corollary 6.1.  LetG(V:1) andG(V2) be M-structures wittv; C V. LetW; and
Z; be connected components®@fl;) and G (V>), respectivelyhaving nonempty
intersection ThenW; C Z;.

Lemma6.2. LetG(V;) be a maximal M-structure of a cap-free graph Then
a node inV\ V; cannot be adjacent to two proper subclasse& 0 ).

Proof. Assume node. € V'\V; is adjacent to two proper subclasség; and
Wy of G(V1). SinceG(V7) is maximal, by Lemma 6.1, node is not universal
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for either of the classes. Also, since the complemeii @) is connected, there
must exist a pair of nodes, y; adjacent in the complement, such that nads
adjacent tar; but not toy;. Similarly, there must exist a paifz, iyo in W5 such
thatz,, yo are adjacent in the complement and nade adjacent tars but not to
yo. But nowzy, zo, y1, y2 together with node: induce a cap. n

Theorem 6.1. If G is a cap-free graph containing an M-structure either with at
least three proper subclasse® with at least one proper subclass which is not a
stable setthenG contains an amalgam
Proof. If G contains a D-structur@’;, Co, K) then, by Lemma 5.1 contains
an amalgam. So the theorem follows from the proof of the following statement:
If G is a cap-free graph containing an M-structure either with at least three
proper subclasseasr with at least one proper subclass that is not a stabletben
G contains a D-structuréC, Co, K).
Let G(V1) be an M-structure ofr satisfying the above property aide(15) a
maximal M-structure witd/; C V5.

Claim1. The M-structure>(1%) either contains at least three proper subclasses
or contains exactly two proper subclasses not both of which are stable sets
Proof. If G(V) contains a proper subclass, $&y, which is not a stable set, by
Corollary 6.1, there exists a proper subclass, sapf G (V) such thatl; C Z;.
ThenZ; is not a stable set. If all proper subclasses:0Y)) are stable sets, then
G (V1) has at least three proper subclasses)BayVs, . .., Wy. If G(V4) has only
two proper subclasses, sy, 7, then by Corollary 6.1, we may assume w.l.0.g.
thatiW; UTW, C Z7. ThenZ; is not a stable set, since every nodélin is adjacent
to a node inV,. This completes the proof of Claim 1.

Claim 2. LetG(V3) be a maximal M-structure @ with partition (W5, Wa, K),
wherelV; is not a stable sefThenG contains a D-structuréC', Cs, K).

Proof. LetC; be a connected component@fi¥;) with more than one node.
Let Cy = Wy. Then(Cq, Cs, K) is a D-structure, since by Lemma 6.2 no node of
V\V; is adjacent to a node i, and a node irCs, and|Cs| > 2, sincelVs is a
proper subclass @ (1%). This completes the proof of Claim 2.

Claim 3. LetG(V2) be a maximal M-structure aff with at least three proper
subclassesThenG contains a D-structuréC, Co, K).

Proof. Let Wy, Ws,...,W;, 1 > 3 be the proper subclass 6f(5) and letK
be the collection of all nonproper subclasses. Cete the nodes in two proper
subclasses afi(142), (note thatG(C) is a connected graphy;, be the nodes in
all the other proper subclasses@®fl2). Then(C1, Cs, K) is a D-structure, since
|C1] > 2,|Cs| > 2, and Lemma 6.2 shows that the only nodes having neighbors in
bothC, andC; belong toK. So the proof of Claim 3 is complete. x
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7. EXPANDED HOLES

An expanded holeonsists of nonempty sets of nod§s,...,S,,n > 4, not
all singletons, such that, for all < i < n, the graphs(S;) are connected.
Furthermore, every; € S; is adjacentta; € S;,7 # j,ifandonlyifj =i 41
orj =i — 1 (modulon).

Lemma 7.1. LetG be a cap-free graph and I€f be a hole ofG. If s is a node
having two adjacent neighbors i, then eithers is universal forH, or s together
with H induces an expanded hole

Proof. Let s be a node with two adjacent neighborshh If s has no other
neighbors orf{, thens induces a cap witlh/. Let H = x4, ..., x,, z; with nodes
adjacenttac; andz,,. If sis not universal forf, and does not induce an expanded
hole together with, then letk be the smallest index for whichis not adjacent to
xi. Letl be the smallest index such that- k& ands is adjacent ta;;. Now node
xg—o (zn If & = 2) together with the hole, z;_4, ..., z;, s forms a cap. n

Lemma7.2. LetG be a cap-free graph and le&f = U ,S;,n > 4, be a
maximal expanded hole i@ with respect to node inclusiorkither G contains an
M-structure with a proper subclass that is not a stable sét ajr all nodes that are
adjacent to a node i%; and a node inS;+; (S,+1 = S1) for somei, are universal
for S and induce a clique of:.

Proof. Letw be a node adjacenttq € S; andsy € So. By applying Lemma
7.1 to any hole that containg ands, and a node each from the seis j > 2,
we have that: is adjacent to all nodes i6\ (S U S2), else the maximality of
is contradicted. Now since nodeis adjacent t&1, so and is universal for all sets
S;,j > 2, Lemma 7.1 shows thatis universal forS; andS., hence forsS.

Let v andv be two nonadjacent nodes that are universalSor Thenu,v
together withs; € S1,s9 € So andsy € Sy induces an M-structure with proper
setsW, = {u,v} andWsy = {si,s2,s4}. Furthermore}¥, is not a stable set
of G. [}

Theorem 7.1. A cap-free graph that contains an expanded hole contains an
amalgam

Proof. Let S = U ,S; be a maximal expanded hole @A First assume that
n = 4. Then the node sét induces an M-structure with proper subclasSes Ss
and Sy U Sy. Sy U Sy is not a stable set because, sgis| > 2 andG(.S2) is
connected. Hence, by Theorem 6.1, we are done.

Now assume that > 4. By Lemma 5.1, it is sufficient to show thé&t contains
a D-structure(C1, Co, K). Assume w.l.o.g. thaSs| > 2 and letK be the set
of nodes that are universal fét. Lemma 7.2 shows thdt’ is a clique ofG. Let
C1 = Ss andCsy = S71U S3. Lemma 7.2 shows that every node that is adjacentto a
node ofC and a node of’; is universal forS and, hence, belongs 6. Therefore,
(C1,C4, K) is a D-structure. "
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8. MAIN THEOREM AND ITS CONSEQUENCES

Now we are ready to prove Theorem 4.1, which we restate here for convenience.

Theorem. Every connected cap-free graph that does not contain an amalgam is
basic cap-free

Proof. AssumeG does not contain an amalgam and is not a basic cap-free
graph. Sincé& is not triangulated;’ contains a nonempty biconnected triangle-free
subgraph. Lef' be a maximal node set inducing such a biconnected triangle-free
subgraph.

Claim 1. Every node i\ F' that has at least two neighbors i is universal
for F.

Proof. Let v be a node inV/\F' having at least two neighbors iA. The
graph induced by’ U {u} contains a triangle, z, y, else the maximality of" is
contradicted. Letd be a hole inG(F') containingz andy. (H exists since, by
biconnectedness, andy belong to a cycle, and sin€&(F") contains no triangle,
the smallest cycle containingandy is a hole). Lemma 7.1 shows that either
is universal forH or forms an expanded hole witi. Theorem 7.1 rules out the
latter possibility. LetF” C F' be a maximal set of nodes such ti&tF’) contains
H, is biconnected and such that nadés universal forF’. If F' # F”, then since
G(F) andG(F") are biconnected, somes F'\ F’ belongs to a hole that contains
an edge of7(F”). Let H' be such a hole. By Lemma 7.1 and Theorem 7.1, node
is adjacent to all the nodes &f’. Let " = F' UV (H'). G(F") is biconnected,
u is universal forF”’. Hence,F” contradicts the maximality of”. Hence,u is
universal forF' and the proof of Claim 1 is complete.

Claim 2. LetU be the set of universal nodes fBr Then the nodes i&y induce
a clique ofG.

Proof. Letw,z € U be two nonadjacent nodes Gfand letvy, ..., v,, v, be
a hole of G(F'). Then nodesv, z together withvy, vo, v3, andv, induce an M-
structure, either with two proper subclasses not both of which are stableifd
vy are not adjacent, or with three proper subclasses. By Theorer& @dntains
an amalgam. This completes the proof of Claim 2.

Clam3. V=FUU.

Proof. LetS = V\(F UU). By Claim 1, every node it has at most one
neighbor inF. Let C' be a connected component@fS). By maximality of F,
there is at most one node i, sayy, that has a neighbor i@. If such a node
y exists, letCy, ..., C; be the connected components(@fS) adjacent tay. Let
i=Chu---Ciu{y},A={y}, K =U, Vo, = V\(V1 UK), andB be the set of
neighbors ofy in F'. Then(A, B, K) is an amalgam of7, separating/; from V5.

If no component ofG(S) is adjacent to a node df, letV; = UU S, A =
U,Vo = B=F. Then(A, B, () is an amalgam of7. This completes the proof of
Claim 3.



302 JOURNAL OF GRAPH THEORY

If U contains at least two nodes, thenlgt= A = U,V, = B = F, and
(A, B,0) is an amalgam of;. If U contains at most one node, théhis a basic
cap-free graph. ]

In the remainder of this section, we specialize Theorem 4.1 to:

(i) strongly even-signable graphs or, equivalently, cap-free even-signable graphs,
(i) strongly odd-signable graphs (as observed in Section 3, these graphs are cap-
free),
(iii) cap-free odd-signable graphs.

Definition 8.1. A graphG(V, E) is basic strongly even-signabledf is one of
the following

() atriangulated graph
(i) a biconnected triangle-free graphbr
(i) someu € V is universal forV\{u} andG(V\{u}) is bipartite

Theorem 8.1. A strongly even-signabl@ap-free even-signablgraph that is
not basic strongly even-signable contains an amalgam
Proof. The proof follows from Theorem 4.1 and the following claim.

Claim. A graph is basic cap-free and strongly even-signable if and only if it is
basic strongly even-signable

Proof. Clearly, basic strongly even-signable graphs are basic cap-free and The-
orem 3.2 shows that they are strongly even signable. Conversely,leta basic
cap-free graph that is strongly even-signable and assum@ thaibt basic strongly
even-signable. The@ consists of a biconnected triangle-free gragtthat is not
bipartite, together with a nodethat is universal for this graph. Sin¢g is bicon-
nected, nonbipartite, and triangle-free, th@&hcontains an odd hole. This hole,
together withu induces an odd wheel, contradicting Theorem 3.2. n

Definition 8.2. A graphG(V, E) is basic strongly odd-signable  is one of
the following

() atriangulated graph
(i) ahole or
(i) someu € V is universal forV\{u} andG(V\{«}) is an odd hole

Theorem 8.2. A strongly odd-signable graph that is not basic strongly odd-
signable contains an amalgam
Proof. The proof follows from Theorem 4.1 and the following claim.

Claim. A graph is basic cap-free and strongly odd-signable if and only if it is
basic strongly odd-signable

Proof. Basic strongly odd-signable graphs are basic cap-free and, by Theorem
3.3, they are strongly odd-signable. Conversely, consider a basic cap-freegraph
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that is strongly odd-signable. (f is a triangulated graph, th&ris basic strongly
odd-signable. Otherwise, It consist of the triangle-free graglf and possibly a
universal node: for G’. SinceG’ is biconnected triangle-free, it contains a hale
Suppose that’ # H, andletw € V(G’\ H) be a node with atleast one neighborin
H. If whas exactly two neighbors i, sayx andy, there exists aPC'(x,y). If w
has more than two neighborsih, themw, together with a subset of the nodeddn
induces a cycle with a unique chord that is not a diamond, sifiigtriangle-free.
Sow has exactly one neighbor iff, sayz. SinceG’ is biconnected, there exists
a path inG’\ H from w to v, wherev has a unique neighbor i, sayy. If = and

y are adjacent?’ contains a cycle with a unique chord. Otherwi§é contains a
3PC(xz,y). If nodeu exists and7’ is an even hole, the@ is an even wheel. g

Definition 8.3. A graph G(V, E) is basic odd-signable if7 is one of the
following:

() atriangulated graph
(i) a biconnected triangle-free graph with no even wheed BC'(x, ), or

(i) someu € Visuniversalfo/\{u} andG(V\{u}) is abiconnected triangle-
free graph with no even hale

In [5] we study the structure of basic odd-signable graphs and we give a poly-
nomial algorithm to test membership in this class.

Theorem 8.3. A cap-free odd-signable graph that is not basic odd-signable
contains an amalgam
Proof. The proof follows from Theorem 4.1 and the following claim.

Claim. A graph is basic cap-free and odd-signable if and only if it is basic
odd-signable

Proof. Itis easy to verify that basic odd-signable graphs are basic cap-free and
odd-signable. Conversely, consider a basic cap-free graiptat is odd-signable.
If G is triangulated, therds is basic odd-signable. Otherwise, [@tconsist of
the biconnected triangle-free graph and possibly a universal node f6f. By
Theorem 2.3(7 contains nBPC(z,y) and no even wheel. So, & = G',G is
basic odd-signable. ¥ (G) = V(G’) U {u}, thenG’ contains no even hole, since
G contains no even wheel. So, agaihis basic odd-signable. n

9. RECOGNITION ALGORITHMS

We can use Theorem 4.1 to test whether a gi@dmontains a cap as follows:

Recognition Algorithm for Cap-Free Graphs

Input: A graphG.

Output: Yesif graphG is cap-free andlo otherwise.
Step 0: Set£ = {G} andL' = ).
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Step 1: If £ = (), go to Step 3. Otherwise remove a grafihfrom £ and go to

Step 2.

Step 2: If H contains an amalgam, add the blocks of the amalgam decomposition
to £ and go to Step 1. Otherwise, adfito £’ and go to Step 1.

Step 3: Check whether all the graphs in the li5tare basic cap-free graphs. If so,
outputYes Otherwise outpulo.

End of Algorithm

The correctness of the above algorithm follows from Theorem 4.1 and the fol-
lowing lemma.

Lemma9.1. LetG contain an amalgamThenG is cap-free if and only if the
blocks of the amalgam decompaosition are cap-free

Proof. The “only if” part follows, because the blocks are induced subgraphs
of G.

Now assume that node together with hole”, induces a cap that is separated
in the amalgam decompositiqi, B, K), and letG1, Gy be the blocks of the
decomposition, with node ses U K U {b} andV2 U K U{a}. We assume w.l.0.g.
that if H contains only one node af or B, this node is: orb. If H does not belong
to G1 or Go, thenH = aq, by, as, ba, Whereay, as belong toA andb,, by belong to
B. Since the neighbors efin H are adjacent, them € K. Hencew is universal
for H and cannot induce a cap witft.

So assumé{ belongs toGG; butv does not. Lebq, v, be the neighbors of
in H. First, observe thalf cannot contain node and, thereforey,, v, € K. It
follows that H contains no node ofl and, therefore, nodietogether with holed
is a cap ofGG;. B

The above algorithm is polynomial for the following reasons:

(i) The algorithmsto find amalgam decompositions are polynomial and the num-
ber of blocks is polynomial (Corrdjiols and Cunningham [10]).

(i) We can test in polynomial time whether a graph is triangulated. The same is
true of a biconnected triangle-free gra@lV, E) with at most one additional
universal node fol/. So we can efficiently test whether a graph is basic
cap-free.

Note that checking whether a graphcontains a cap can also be done in poly-
nomial time directly, without decomposirng.

Recognition Algorithm for Strongly Even-Signable Graphs (Cap-Free Even-
Signable Graphs)

Input: A graphG.

Output: Yesif graphG is strongly even-signable amdb otherwise.

Step 0: Set£ = {G} andL' = 0.

Step 1: If £ = (), go to Step 3. Otherwise remove a grafihfrom £ and go to

Step 2.

Step 2: If H contains an amalgam, add the blocks of the amalgam decomposition
to £ and go to Step 1. Else add to £’ and go to Step 1.
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Step 3: Check whether all the graphs in the li8tare basic strongly even-signable
graphs. If so, outputes Otherwise outpulNo.
End of Algorithm

The correctness of the above algorithm follows from Theorem 8.1 and the next
lemma.

Lemma9.2. LetG contain an amalgamThendG is strongly even-signable if
and only if the blocks of the amalgam decomposition are strongly even-signable

Proof. Denote the amalgam b4, B, K) and letG; andG» be the blocks of
the decomposition, with node séts U K U {b} andV, U K U {b}.

The “only if” part holds, because the blocks are induced subgraplds. of

Conversely, assum@; andG» are strongly even-signable. Then they are cap-
free, and by Lemma 9.1, sod& By Theorem 3.2, it suffices to show thatGf and
G2 do not contain an odd wheéH, x), wherex is universal forH, then neither
doesG. Suppose that? contains such a whe¢H, z). If H contains a node of
Vi\A4, thenH is entirely contained iid7;. In this casez is also inG1, because no
node ofV; can be adjacent to a nodei\A. SoH is contained ilA U BU K.
Since H is an odd hole, it is entirely contained i or B, say A. But thenG;
contains nodé, which is universal ford and, hence, foff, a contradiction. g

We now turn to strongly odd-signable graphs.bad cycleis a cycle with a
unigue chord, which is neither a cap nor a diamond. A bad cycle with chgrd
can be separated by an amalgam decompositioB, K') when both nodes:
andy belong toK. So if G1(V1, E1) andGs(Va, Ey) are blocks of the amalgam
decomposition, it is not true in general thiat andG, are strongly odd-signable if
and only ifG is strongly odd-signable.

Note that it is possible to check in polynomial time whether some bad cycle with
chordzy is separated by the amalgam decomposifidnB, K) as follows: Let
U7Y andU;" be the neighbors of bothandy in G; andGa, respectively.

Now G contains a bad cycle that is separated by the amalgam decomposition
(A, B, K) if and only if, after removing edgey,x andy belong to the same
connected component 6f; (V1\U;Y) and of G2 (V2\U3Y).

A wheel (H, z) is ashort4-wheelif H is a 4-hole and: is universal ford. A
short 4-wheel H, x) is separated in an amalgam decomposifidnB, K) if and
only if one of the following two conditions hold:

—K is nonempty and botd and B contain at least two nonadjacent nodes.
—A contains nodeg,, as, a3, Wherea; is adjacent to both; andag butas, az are
nonadjacent and contains two nonadjacent nodes (or vice versa).

A 3PC(z,y) is shortif at least two of thery-paths have length 2. A short
3PC(x,y) is separated by the amalgam decompositiénB, K) if and only if z
andy belong toA and the intermediate nodes of the two paths of length 2 belong
to B (or vice versa). This happens only when:

—A contains three mutually honadjacent nodes Brttvo nonadjacent nodes (or
vice versa), or



306 JOURNAL OF GRAPH THEORY

—Both A and B contain two nonadjacent nodes say a> andb, b, and either
a1, az belong to the same connected componer® (f; \ (A\{a1,a2})) or by, ba
belong to the same connected componer0f>\ (B\{b1,b2})).

Recognition Algorithm for Strongly Odd-Signable Graphs

Input: A graphG.

Output: Yesif graphG is strongly odd-signable arido otherwise.

Step 0: Set£ = {G} andL' = 0.

Step 1: If £ = (), go to Step 3. Otherwise remove a grafihfrom £ and go to
Step 2.

Step 2: If H does not contain an amalgam, aHdto £’ and go to Step 1. Else,
detectan amalgam decompositioh B, K') with blocksG; andG-. If abad cycle,
ashort 4-wheel or a sha3tPC|(z, y) is separated by the decompositioh, B, K),
outputNo. Else, add7; andG, to £ and go to Step 1.

Step 3: Check whether all the graphs in the lidtare basic strongly odd-signable
graphs. If so, outpuYes Otherwise outpulo.

End of Algorithm

The correctness of the above algorithm follows from Theorem 8.2 and the
next lemma.

Lemma 9.3. LetG contain an amalgamif no bad cycleno short4-whee| and
no short3PC(z, y) is separatedthenG is strongly odd-signable if and only if the
blocks of the amalgam decompaosition are strongly odd-signable

Proof. Denote the amalgam b4, B, K) and letG; andG2 be the blocks of
the decomposition, with node sétsU K U {b} andV, U K U {b}.

If G is strongly odd-signable, then the bloeks andG, also are, since they are
induced subgraphs df.

Conversely, assume th@ andG,, are strongly odd-signable and no bad cycle,
short 4-wheel or shoBPC|(x, y) is separated. By Theorem 3.3, it suffices to show
thatG is cap-free, contains no bad cycle,38C(x, y) and no even whe€lH, x),
wherez is universal forH, knowing that these properties hold 165 andGs.

SinceG, and G5, are cap-free(r is cap-free by Lemma 9.1. Sinc¢e, andG,
contain no bad cycles and, by assumption, no bad cycle is separatediains no
bad cycle.

Suppose thati contains 8 PC(x, y) butGy, G2 do not. Ifx € V; andy € V4,

then eitherr € A ory € B, but not both. Assumg < B, then no node of
Vo U K\{y} belongs to th8 PC(x, y) and so thg PC(x, y) is contained irG;. If
x € Vi andy € K, thenz € Vj\ A, elsex andy are adjacent. But again ti3é>C
is contained in71. This implies that: andy are both inV; or both inV5, sayV;.
At least one path of th&PC(z, y) contains a node @B. This shows that, y € A.
If only one of these paths exists, then we can assume this pathi@dhbe which
is also inGG1. So at least two of these paths exist, and we have a 3Rdrt which
is separated in the amalgam decomposition.

Finally, suppose that’ contains an even wheéH, z). If the hole H itself is
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separated in the amalgam decomposition, thes= a1, b1, as, b2, Whereaq, as
belong toA andbq, bo belong toB. Now obviouslyy € K and we have a short
4-wheel, which is separated. K is in G1, thenH contains at most three nodes in
AU B, and no node iV, can be universal fof . 1

Recall that Corollary 3.1 shows that the class of strongly odd-signable graphs is
properly contained in the class of odd-signable cap-free graphs. Our final algorithm
tests membership in this last class.

Recognition Algorithm for Cap-Free Odd-Signable Graphs

Input: A graphG.

Output: Yesif graphG is cap-free odd-signable amb otherwise.

Step 0: Set£ = {G} andL' = 0.

Step 1: If £ = (), go to Step 3. Otherwise remove a graffhfrom £ and go to
Step 2.

Step 2: If H does not contain an amalgam, aHdto £’ and go to Step 1. Else,
detect an amalgam decomposition with blocksandGs. If a short 4-wheel or a
short3PC'(z,y) is separated by the decomposition, outNot Else, add~; and
Gy to £ and go to Step 1.

Step 3: Check whether all the graphs in the I8tare basic odd-signable graphs.
If so, outputYes Otherwise outpulo.

End of Algorithm

The structure of triangle-free graphs that are odd-signable is studied in [5], where
we give an algorithm to test membership in this class. Together with the signing
algorithm of Section 2, we can, therefore, check if a triangle-free graph contains
an even hole. Therefore, we can check whether a graph is basic odd-signable and
accomplish Step 3.

The correctness of the above algorithm follows from Theorem 8.3 and the next
lemma, whose proof is a simplification of the proof of Lemma 9.3 and is omitted.

Lemma9.4. Let G contain an amalgam If no short4-wheel and no short
3PC(x,y) is separated by the decompositidghenG is a cap-free odd-signable
graph if and only if the blocks of the amalgam decomposition are cap-free odd-
signable graphs

Together with the signing algorithm given in Section 2, the above algorithm
recognizes in polynomial time whether a cap-free graph contains an even hole. This
generalizes the result of Markossian, Gasparian and Reed [12], which recognizes
in polynomial time whether a diamond-and-cap-free graph contains an even hole.
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