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Abstract: It is an old problem in graph theory to test whether a graph contains
a chordless cycle of length greater than three (hole) with a specific parity (even,
odd). Studying the structure of graphs without odd holes has obvious implications
for Berge’s strong perfect graph conjecture that states that a graph G is perfect
if and only if neither G nor its complement contain an odd hole. Markossian,
Gasparian, and Reed have proven that if neither G nor its complement contain an
even hole, then G is β-perfect. In this article, we extend the problem of testing
whether G(V, E) contains a hole of a given parity to the case where each edge
of G has a label odd or even. A subset of E is odd (resp. even) if it contains an
odd (resp. even) number of odd edges. Graphs for which there exists a signing
(i.e., a partition of E into odd and even edges) that makes every triangle odd and
every hole even are called even-signable. Graphs that can be signed so that every
triangle is odd and every hole is odd are called odd-signable. We derive from
a theorem due to Truemper co-NP characterizations of even-signable and odd-
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signable graphs. A graph is strongly even-signableif it can be signed so that every
cycle of length ≥ 4 with at most one chord is even and every triangle is odd. Clearly
a strongly even-signable graph is even-signable as well. Graphs that can be signed
so that cycles of length four with one chord are even and all other cycles with
at most one chord are odd are called strongly odd-signable. Every strongly odd-
signable graph is odd-signable. We give co-NP characterizations for both strongly
even-signable and strongly odd-signable graphs. A cap is a hole together with a
node, which is adjacent to exactly two adjacent nodes on the hole. We derive a
decomposition theorem for graphs that contain no cap as induced subgraph (cap-
free graphs). Our theorem is analogous to the decomposition theorem of Burlet
and Fonlupt for Meyniel graphs, a well-studied subclass of cap-free graphs. If a
graph is strongly even-signable or strongly odd-signable, then it is cap-free. In fact,
strongly even-signable graphs are those cap-free graphs that are even-signable.
From our decomposition theorem, we derive decomposition results for strongly
odd-signable and strongly even-signable graphs. These results lead to polynomial
recognition algorithms for testing whether a graph belongs to one of these classes.
c© 1999 John Wiley & Sons, Inc. J Graph Theory 30: 289–308, 1999
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1. INTRODUCTION

In this article, we study the structure of a class of graphs that do not contain chordless
cycles of length greater than three (holes) of a specific parity (even, odd).

A graphG is perfectif, for all induced subgraphs ofG, the size of the largest
clique is equal to the chromatic number. A long-standing conjecture of Berge [1]
states thatG is perfect if and only if neitherG nor its complement contain an odd
hole. (Thecomplement̄G of G(V, E) has node setV and two nodes are adjacent in
Ḡ if and only if they are not adjacent inG). Understanding the structure of graphs
with no odd holes may give an important contribution to this conjecture. Also, the
existence of a polynomial algorithm to test whetherG contains an odd hole implies
a polynomial algorithm to test whetherG is perfect, modulo the verification of
the above conjecture, and it is possible that such an algorithm may itself prove the
conjecture.

Markossian, Gasparian, and Reed [12] defineβ-perfect graphs as follows:G isβ-
perfect if, for every induced subgraphH of G, we haveχ(H) = max{δ(F )+1 : F
is a node induced subgraph ofH}, whereχ(H) is the chromatic number ofH, and
δ(F ) is the smallest node degree inF . β-perfect graphs do not contain even holes
and Markossian, Gasparian, and Reed also show that if neitherG norḠ contain an
even hole, thenG is β-perfect. So the study of the structure of graphs that do not
contain even holes will give a better understanding of the class ofβ-perfect graphs.

Bienstock [3] has shown the NP-completeness of testing the existence of a hole
with a specified parity (even, odd), containing a specified node ofG, even ifG
is triangle-free. However, it is quite possible that polynomial algorithms to test
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whetherG contains a hole with a specified parity still exist. Note that ifG is
triangle-free, the problem of testing whetherG contains an odd hole amounts to
testing the bipartiteness ofG, and the problem of testing whetherG contains an
even hole was solved in [12]; see also [5]. Finally, consider the following analogous
problems: Test whether a bipartite graph contains a hole whose length divided by
two has a specified parity. Bipartite graphs containing no hole whose length divided
by two is odd represent balanced 0, 1 matrices and their structure is studied in [8],
where a polynomial algorithm is given to test whether a bipartite graph contains a
hole whose length divided by two is odd. These results are extended to balanced
0, ±1 matrices in [4]. The structure of bipartite graphs containing no hole whose
length divided by two is even is much simpler, and a polynomial algorithm is shown
in [9].

2. EVEN-SIGNABLE AND ODD-SIGNABLE GRAPHS

A convenient setting for the study of even or odd holes in graphs is the one ofsigned
graphs.G(V, E) is a signed graph if the edges ofG are givenoddor evenlabels.
A subset ofE is odd (resp. even) if it contains an odd (resp. even) number of odd
edges. Graphs for which there exists asigning(i.e., a partition ofE into odd and
even edges) that makes every triangle odd and every hole even areeven-signable.
Graphs that can be signed so that every triangle is odd and every hole is odd are
odd-signable. Even-signable graphs were introduced in [7].

Note thatG contains no odd hole if and only ifG is even-signable with all edges
odd, andG contains no even hole if and only ifG is odd-signable with all edges odd.

Since cuts and cycles ofG have even intersections, by switching the labels on
all edges of a cut the parity of a cycle does not change. Since, in a connected graph
G, any edge of a spanning treeT belongs to a cut ofG not containing any other
edge ofT , if G is signed, we can switch signs on the edges of cuts so that, in the
newly signed graph, the spanning treeT has a specified (arbitrary) signing.

This implies that, if a (connected) graphG(V, E) is even-signable (odd-signable),
one can produce such a signing as follows. Order the edges ofG, e1, . . . , en, so
that the edges ofT are the first in the sequence and all other edgesej have the prop-
erty thatej closes a chordless cycleHj of G together with edges having smaller
indices. Sign the edges ofT arbitrarily, and label the remaining edgesej so that
Hj is even-signed (odd-signed).

So G contains no odd hole if and only ifG is even-signable and the above
algorithm, after labeling the edges ofT odd, labels odd all the remaining edges.
Also, G contains no even hole if and only ifG is odd-signable and the above
algorithm, after labeling the edges ofT odd, labels odd all the remaining edges.
Hence, a polynomial algorithm that tests whetherG is even-signable (odd-signable)
can be used to test whetherG contains an odd hole (even hole).

The following theorem of Truemper [15] is fundamental in obtaining co-NP
characterizations for the existence of holes with specified parities.
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Theorem 2.1. Letβ be a0, 1vector whose entries are in one-to-one correspon-
dence with the chordless cycles of a graphG. Then there exists a subsetF of edges
of G such that|F ∩ C| ≡ βC (mod 2)for all chordless cyclesC of G, if and only
if for every induced subgraphG′ of G of typeH0, H1, H2, or H3, there exists a
subsetF ′ of edges ofG′ such that|F ′ ∩ C| ≡ βC (mod 2),for all chordless cycles
C of G′.

The graphsH0, H1, H2, andH3 are shown in Fig. 1. Graphs of typeH0, H1, or
H2 are referred to as 3-path configurations(3PCs). A graph of typeH0 is called
a 3PC(x, y), where nodex and nodey are connected by three pathsP1, P2, and
P3. A subgraph of typeH1 is called a3PC(xyz, u), wherexyz is a triangle and
P1, P2, andP3 are three paths with endnodesx, y, andz, respectively, and a common
endnodeu. A graph of typeH2 is called a3PC(xyz, uvw), consists of two node
disjoint trianglesxyz anduvw, and pathsP1, P2, andP3 with endnodesx andu, y
andv, andz andw, respectively. In all three cases, the nodes ofPi ∪ Pj , i 6= j,
induce a hole. This implies that all paths ofH0 have length greater than one, and
at most one path ofH1 has length one.

Graphs of typeH3 arewheels. These consist of a chordless cycleH together
with a node called thecenterthat has at least three neighbors onH. When the
center together with the nodes ofH induce an odd number of triangles, the wheel
is called anodd wheel. When the center has an even number of neighbors onH,
the wheel is called aneven wheel. Note that a wheel may be both odd and even.
Also note thatK4 is a wheel that is neither odd nor even and, therefore, when the
wheel(H, v) is odd or even,H is a hole.

In this article, we write graphG containsgraphR to mean thatR occurs as a
node induced subgraph ofG. To obtain a co-NP characterization of even-signable
graphs, letβC = 0 for all holesC in G, andβC = 1 for all triangles, and apply
the above theorem. Similarly, for odd-signable graphs, letβC = 1 for all chordless
cyclesC.

FIGURE 1. 3-path configurations and wheel.
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Theorem 2.2. A graph is even-signable if and only if it contains no3PC(xyz, u)
and no odd wheel.

Theorem 2.3. A graph is odd-signable if and only if it contains no3PC(x, y),
no3PC(xyz, uvw), and no even wheel.

Proof. (Theorem 2.2) In a3PC(xyz, u) we can label even all edges except
xy, yz, andxz, since they form a treeT in the3PC. Now xy, yz, andxz must all
be labeled even, since each one closes a hole with the edges ofT . We now have an
even triangle.

Assume that an odd wheel(H, x) is even-signable. We arbitrarily label odd all
edges havingx as endnode. All subpaths of the holeH with the endnodes adjacent
tox and no intermediate node adjacent tox must have an even number of odd edges,
if their length is greater than one, and must be labeled odd, if they contain a unique
edge, since this edge belongs to a triangle containingx. Thus,H is signed odd.

Consider graphsH0 andH2. By labeling odd all edges in triangles and even
all other edges, we obtain an even signing of these graphs. In wheels(H, x) that
are not odd, to obtain an even signing, label odd all the edges adjacent tox and all
edges ofH that belong to a triangle of(H, x), and label even all the other edges
of H.

Proof. (Theorem 2.3) In a3PC(x, y), we can label even all edges except the
two edgesxu andxv of P1 andP2 havingx as endnode, since they form a treeT
in the3PC. Now bothxu, yv must be labeled odd, since each one of them closes
a hole with the edges ofT . Now P1 closes an even hole withP2.

In a 3PC(xyz, uvw), we can labelxy, xz odd and all other edges even except
yz, uv, vw, wu, since they form a treeT in the3PC. Nowyz must be labeled odd,
since it belongs to the trianglexyz. This implies that edgesuv, vw, wu must all be
labeled even. Now we have an even triangle.

In an even wheel(H, x), we can arbitrarily label odd all edges havingx as
endnode. All subpaths of the holeH with the endnodes adjacent tox and no
intermediate node adjacent tox must contain an odd number of odd edges. Thus,
H is made up of an even number of such subpaths and is signed even.

Consider a graph of typeH1. By labeling odd all edges of the triangle and even
all other edges, we obtain an odd signing. For a wheel(H, x) that is not even,
label odd all edges havingx as endnode. Furthermore, on every subpath ofH with
endnodes adjacent tox and no intermediate node adjacent tox, label one edge odd
and all others even. This gives an odd signing of(H, x).

3. STRONGLY EVEN-SIGNABLE AND

STRONGLY ODD-SIGNABLE GRAPHS

A diamondis a cycle on four nodes with exactly one chord.
A graph isstrongly even-signable, if it can be signed such that every triangle is

odd and every cycle of length at least four with at most one chord is even. A graph
is strongly odd-signable, if it can be signed such that every cycle with at most one
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chord is odd, except for the diamonds, which are even. A signing ofG satisfying
one of the two properties is astrong even-signingor a strong odd-signingof G.
From the definition it is clear that every strongly even-signable graph is even-
signable and every strongly odd-signable graph is odd-signable. The following
theorems provide co-NP characterizations of strongly even-signable and strongly
odd-signable graphs.

A cap(H, xyz) is a holeH together with a nodex with exactly two neighbors
y andz in H, and these neighbors are adjacent. Note that any signing of a cap
(H, xyz) with the trianglexyz odd contains both an odd cycle of length≥ 4 with
at most one chord and an even cycle with at most one chord, which is not a diamond.
So if G is strongly even-signable or strongly odd-signable, thenG contains no cap
as a node-induced subgraph (G is cap-free).

Theorem 3.1. G is strongly even-signable if and only ifG is even-signable and
does not contain a cap.

Proof. Necessity follows from the above observation. To prove sufficiency of
the condition, letG be even-signed. IfG is not strongly even-signed, there exists
an odd cycleC with exactly one chord. The chord together with the nodes ofC
induces two chordless cyclesC1 andC2. Exactly one of these is odd, sayC1. Since
G contains no odd hole or even triangle,C1 must be a triangle andC2 must be a
hole. SoC is a cap.

The proof of the theorem also shows that, ifG is strongly even-signable, any
even-signing ofG is a strong even-signing ofG.

Theorem 3.2. A graphG is strongly even-signable if and only ifG is cap-free
and does not contain an odd wheel(H, x), wherex is adjacent to all the nodes
of H.

Proof. Theorem 2.2 states thatG is even-signable if and only ifG contains no
3PC(xyz, u) and no odd wheel. IfG is strongly even-signable, thenG is cap-
free. A 3PC(xyz, u) contains a cap and an odd wheel(H, x) contains a cap if
and only ifx is not adjacent to all the nodes ofH. Now the theorem follows from
Theorem 3.1.

Theorem 3.3. A graphG is strongly odd-signable if and only if every cycle of
G with a unique chord is a diamond,G contains no3PC(x, y) and no even wheel
(H, x) with x adjacent to all the nodes ofH.

Proof. Theorem 2.3 states thatG is odd-signable if and only ifG contains no
3PC(x, y), no3PC(xyz, uvw), and no even wheel. A3PC(xyz, uvw) contains
a cap, hence a cycle with a unique chord that is not a diamond. An even wheel
(H, x) contains a cycle with a unique chord that is not a diamond if and only if
x is not adjacent to all the nodes ofH. So the above theorem is equivalent to the
following:

G is strongly odd-signable if and only if every cycle ofG with a unique chord is
a diamond andG is odd-signable.
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To prove necessity, observe that, ifG contains a cycle with a unique chord that
is not a diamond, thenG is not strongly odd-signable.

To prove sufficiency, consider an odd signing of the odd-signable graphG. If
the labeling does not make it strongly odd-signable, it contains a even cycle with a
unique chord that is not a diamond.

It follows that, if G is strongly odd-signable, any odd-signing ofG is a strong
odd-signing ofG.

The following corollary is a consequence of Theorem 2.3 and shows that every
graph that is strongly odd-signable is a cap-free odd-signable graph, but the converse
does not hold.

Corollary 3.1. A cap-free graphG is odd-signable if and only ifG contains
no 3PC(x, y) and no triangle-free even wheel and no even wheel(H, x) with x
adjacent to all the nodes ofH.

A graphG is Meyniel if every odd length cycle ofG, which is not a triangle,
has at least two chords. These graphs were proven to be perfect by Meyniel [14].
Meyniel graphs are cap-free. In fact, they are exactly the graphs that can be strongly
even-signed with all edges labeled odd. One of the most important decomposition
theorems for perfect graphs is the one of Burlet and Fonlupt [2], who give a de-
composition theorem and a polynomial time recognition algorithm for Meyniel
graphs.

We prove a decomposition theorem for cap-free graphs. The decomposition we
use is the same as the one introduced by Burlet and Fonlupt, only the indecompos-
able graphs will be different. This decomposition theorem can be used to obtain
polynomial time algorithms to test membership in each one of the following classes:

(i) Cap-free,
(ii) Strongly even-signable or, equivalently, cap-free even-signable,

(iii) Strongly odd-signable,
(iv) Cap-free odd-signable.

4. AMALGAMS

A nodex not inS is adjacentto a subsetS of V , if x is adjacent to some node inS.
Nodex is universalfor S, if it is adjacent to all nodes inS. x is partially adjacent
to S, if it is adjacent to but not universal forS.

We describe the amalgam introduced by Burlet and Fonlupt [2].
A connected graphG(V, E) contains anamalgam(A, B, K) if V = V1∪V2∪K,

whereV1, V2, andK are disjoint sets,|V1| ≥ 2, |V2| ≥ 2 and the nodes inK induce a
clique ofG (possiblyK is empty). Furthermore, there exist nonempty setsA ⊆ V1
andB ⊆ V2 such that every node inA is adjacent to every node inB, and these
are the only edges between nodes inV1 andV2. In addition, all nodes inK are
adjacent to all nodes inA ∪ B.

Note that the removal of all the edges with one endpoint inA and the other in
B, together with all the nodes inK, disconnectsG. The nodes ofK, together with
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the edges betweenA andB, define the amalgam(A, B, K). The blocks of the
amalgam decompositionare defined to be the graphsG1 andG2, whereG1 is the
graph induced byV1 ∪ K together with a nodeb adjacent to all nodes inA ∪ K,
and similarlyG2 is the graph induced byV2 ∪ K together with a nodea adjacent
to all nodes inB ∪ K. Note thatG1 andG2 are proper induced subgraphs ofG.

A graph istriangulated, if it contains no hole. A triangulated graphG is ob-
viously both strongly odd-signable and strongly even-signable. In fact,G is uni-
versally signable, as defined in [6]. The structure of triangulated graphs is well
studied, see e.g. [13], [11], and there are efficient recognition algorithms to test
membership in this class.

A basic cap-free graphG is either a triangulated graph or a biconnected triangle-
free graph together with at most one additional node, which is adjacent to all other
nodes ofG.

In this article, we prove the following.

Theorem 4.1. A cap-free graph, which is not basic, contains an amalgam.
In the last section, we discuss the implication of this theorem for strongly even-

signable and strongly odd-signable graphs.

5. D-STRUCTURES

Let G(S) denote the subgraph ofG induced by the subsetS of V .

Definition 5.1. A D-structure(C1, C2, K) of G consists of disjoint sets of nodes
C1, C2, andK, where|C1| ≥ 2, |C2| ≥ 2, and the nodes ofK induce a clique ofG
(possiblyK is empty). Furthermore, the subgraphG(C1) is connected and every
node inC1 is universal forC2 ∪ K, every node inC2 is universal forC1 ∪ K, and
there exists no node inV \(C1 ∪C2 ∪K) adjacent to both a node inC1 and a node
in C2.

Lemma 5.1. If a cap-free graphG contains a D-structure, thenG contains an
amalgam.

To prove this lemma, we first need to prove the following result.

Lemma 5.2. LetG(V ′)be a connected subgraph of a cap-free graphG, |V ′| ≥ 2.
Letz be a node universal forV ′, and lety be a node partially adjacent toV ′ such
that y and z are connected by some chordless pathP ′ in G(V \V ′). Then there
exists a nodex ∈ V (P ′), partially adjacent toV ′ such that, in the subpathP of P ′
from z to x, all the nodes inV (P )\{x} are universal forV ′.

Proof. In P ′ pick x to be the node closest toz partially adjacent toV ′. Let P
be thexz-subpath ofP ′. Let x′ be the node closest tox in P universal forV ′. If
x′ is not adjacent tox, then the subpath ofP connectingx to x′, together with two
adjacent nodesu, v ∈ V ′, wherev is adjacent tox andu is not adjacent tox forms
a cap. Note that sinceV ′ is connected, such a choice of nodesu andv is always
possible. Now letx′′ be the node ofP not adjacent toV ′ closest tox. Pick the
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subpathP ′′ of P containingx′′ with only the endnodes universal forV ′. Let w
be the node ofV (P )\V (P ′′) adjacent to the endnode ofP ′′ closest tox. Now P ′′
together withw and a node ofV ′ adjacent tow induces a cap.

Proof. (Lemma 5.1) LetU be the set of nodes inV \(C1 ∪ C2 ∪ K) that are
adjacent toC1 and are connected to a node inC2 by a path inG(V \(C1 ∪ K)).

Claim 1. Every node inU is universal forC1.
Proof. Assume not and letu ∈ U be connected toy ∈ C2 by a chordless path

Pu in G(V \(C1 ∪ K)). SinceC1 andC2 belong to a D-structure, then the length
of Pu is greater than one. By Lemma 5.2, we may assume that all the nodes ofPu,
except foru, are universal forC1. Now the node onPu adjacent toy has neighbors
in bothC1 andC2, contradicting the definition of a D-structure. This completes
the proof of Claim 1.

Let K ′ contain the nodes inK that are not universal forU andK ′′ = K\K ′.
DefineA = C1, B = C2 ∪ K ′ ∪ U . We show that(A, B, K ′′) is an amalgam of
G. Claim 1 shows that every node inB is universal forA and, by definition of
K ′′, every node inK ′′ is universal forU . Since(C1, C2, K) is a D-structure, every
node inK ′′ is universal forC1 ∪ C2 ∪ K ′.

Claim 2. Let G′ be the graph obtained fromG by removing all edges with one
endnode inA and the other inK ′. Then inG′(V \(C2 ∪K ′′ ∪U)) no path connects
a node ofK ′ and a node ofC1 = A.

Proof. LetP = k, . . . , vk, x be a chordless path connectingk ∈ K ′ andx ∈ C1
and contradicting the claim. No intermediate node ofP is adjacent to a node inC2
else, by Claim 1,vk belongs toU , contradicting the definition ofP . If P has length
greater than 2, then the nodes ofP together with any node inC2 induce a cap.

SoP = k, vk, x. Sincek is not universal forU , there exists a nodeu ∈ U not
adjacent tok. Let Pu = x1, . . . , xm be a chordless path connectingu = x1 and
a nodexm ∈ C2 in G(V \(C1 ∪ K)). Let u = u1, . . . , un = xm be the nodes
of Pu that are universal forC1 with ui closer tou thanui+1. Note that all nodes
u1, . . . , un−1 belong toU .

We now show thatui cannot be adjacent toui+1, 1 ≤ i ≤ n − 1. Assume not
and leti be the highest index such thatui andui+1 are adjacent. Ifi = n − 1, ui

contradicts the definition of a D-structure. Soi < n − 1. Then the nodes in the
subpath ofPu betweenui+1 andui+2, together withui and any node inC1 induce
a cap.

Let xj be the node of smallest index adjacent tok. (Sincexm is adjacent tok,
such a node exists). Sinceu is not adjacent tok, j > 1. If xj is universal forC1,
let xi be the node ofU having largest indexi < j. Now the nodes in the subpath of
Pu betweenxi andxj , together withk and any node ofC1 induce a cap. Soxj is
not universal forC1. Let xi be the node ofV (Pu) ∩ U having largest indexi < j.
Now the nodes in the subpath ofPu betweenxi andxj , together withk, vk, and
x induce a cap. (Note that nodevk is not adjacent to any node inPu, since other-
wisevk belongs toU , contradicting the assumption). This completes the proof of
Claim 2.
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The following claim shows that(A, B, K ′′) is an amalgam ofG.

Claim 3. Let G′′ be obtained fromG by removing all edges with one endnode
in A and the other inB. Then inG′′(V \K ′′), no path connects a node inA and a
node inB.

Proof. Let P = x1, . . . , xn be a chordless path betweenx1 in A andxn in
B and contradicting the claim. Claim 1 shows that ifxn ∈ C2, thenx2 ∈ U , a
contradiction. Claim 2 showsxn 6∈ K ′. Soxn ∈ U and letPxn be a path connecting
xn and a node inC2 in G(V \(C1 ∪ K)). Now there is a path inG(V \(C1 ∪ K))
betweenx2 and a node inC2 only using nodes ofV (Pxn) ∪ V (P ). Sox2 must
belong toU , a contradiction.

6. M-STRUCTURES

M-structures were first introduced by Burlet and Fonlupt [2] in their study of
Meyniel graphs.

An induced subgraphG(V1) of G is called anM-structure(multipartite structure)
if Ḡ(V1) contains at least two connected components each with at least two nodes.
Let W1, . . . , Wk be the node sets of these connected components. Theproper
subclassesof G(V1) are the setsWi of cardinality greater than or equal to 2. The
partition of an M-structure is denoted by(W1, . . . , Wr, K), whereK is the union
of all nonproper subclasses. Note thatK induces a clique inG.

Lemma 6.1. An M-structureG(V1) of G is maximal with respect to node inclu-
sion if and only if there exists no nodev ∈ V \V1 such thatv is universal for a
proper subclass ofG(V1).

Proof. Let G(V1 ∪ {u}) be an M-structure. Assume nodeu is not universal for
any proper subclass ofG(V1). In Ḡ(V1 ∪ {u}) nodeu is adjacent to at least one
node in each of the proper subclasses. Thus, there exists only one proper subclass
in G(V1 ∪ {u}), contradicting the assumption.

Conversely, let nodeu be universal for some proper subclassWi of G(V1). Then
Ḡ(V1 ∪ {u}) has at least two components with more than one node, the graph
induced byWi, and at least one component with more than one node in(V1 ∪
{u})\Wi.

The above proof yields the following.

Corollary 6.1. LetG(V1) andG(V2) be M-structures withV1 ⊆ V2. LetWi and
Zj be connected components ofḠ(V1) andḠ(V2), respectively, having nonempty
intersection. ThenWi ⊆ Zj .

Lemma 6.2. Let G(V1) be a maximal M-structure of a cap-free graphG. Then
a node inV \V1 cannot be adjacent to two proper subclasses ofG(V1).

Proof. Assume nodeu ∈ V \V1 is adjacent to two proper subclasses:W1 and
W2 of G(V1). SinceG(V1) is maximal, by Lemma 6.1, nodeu is not universal
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for either of the classes. Also, since the complement ofG(W1) is connected, there
must exist a pair of nodesx1, y1 adjacent in the complement, such that nodeu is
adjacent tox1 but not toy1. Similarly, there must exist a pairx2, y2 in W2 such
thatx2, y2 are adjacent in the complement and nodeu is adjacent tox2 but not to
y2. But nowx1, x2, y1, y2 together with nodeu induce a cap.

Theorem 6.1. If G is a cap-free graph containing an M-structure either with at
least three proper subclasses, or with at least one proper subclass which is not a
stable set, thenG contains an amalgam.

Proof. If G contains a D-structure(C1, C2, K) then, by Lemma 5.1,G contains
an amalgam. So the theorem follows from the proof of the following statement:

If G is a cap-free graph containing an M-structure either with at least three
proper subclasses,or with at least one proper subclass that is not a stable set, then
G contains a D-structure(C1, C2, K).

Let G(V1) be an M-structure ofG satisfying the above property andG(V2) a
maximal M-structure withV1 ⊆ V2.

Claim 1. The M-structureG(V2) either contains at least three proper subclasses
or contains exactly two proper subclasses not both of which are stable sets.

Proof. If G(V1) contains a proper subclass, sayWi, which is not a stable set, by
Corollary 6.1, there exists a proper subclass, sayZj of G(V2) such thatWi ⊆ Zj .
ThenZj is not a stable set. If all proper subclasses ofG(V1) are stable sets, then
G(V1) has at least three proper subclasses, sayW1, W2, . . . , Wk. If G(V2) has only
two proper subclasses, sayZ1, Z2, then by Corollary 6.1, we may assume w.l.o.g.
thatW1 ∪W2 ⊆ Z1. ThenZ1 is not a stable set, since every node inW1 is adjacent
to a node inW2. This completes the proof of Claim 1.

Claim 2. LetG(V2) be a maximal M-structure ofG with partition(W1, W2, K),
whereW1 is not a stable set. ThenG contains a D-structure(C1, C2, K).

Proof. Let C1 be a connected component ofG(W1) with more than one node.
Let C2 = W2. Then(C1, C2, K) is a D-structure, since by Lemma 6.2 no node of
V \V2 is adjacent to a node inC1 and a node inC2, and|C2| ≥ 2, sinceW2 is a
proper subclass ofG(V2). This completes the proof of Claim 2.

Claim 3. Let G(V2) be a maximal M-structure ofG with at least three proper
subclasses. ThenG contains a D-structure(C1, C2, K).

Proof. Let W1, W2, . . . , Wl, l ≥ 3 be the proper subclass ofG(V2) and letK
be the collection of all nonproper subclasses. LetC1 be the nodes in two proper
subclasses ofG(V2), (note thatG(C1) is a connected graph),C2 be the nodes in
all the other proper subclasses ofG(V2). Then(C1, C2, K) is a D-structure, since
|C1| ≥ 2, |C2| ≥ 2, and Lemma 6.2 shows that the only nodes having neighbors in
bothC1 andC2 belong toK. So the proof of Claim 3 is complete.
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7. EXPANDED HOLES

An expanded holeconsists of nonempty sets of nodesS1, . . . , Sn, n ≥ 4, not
all singletons, such that, for all1 ≤ i ≤ n, the graphsG(Si) are connected.
Furthermore, everysi ∈ Si is adjacent tosj ∈ Sj , i 6= j, if and only if j = i + 1
or j = i − 1 (modulon).

Lemma 7.1. LetG be a cap-free graph and letH be a hole ofG. If s is a node
having two adjacent neighbors inH, then eithers is universal forH, or s together
with H induces an expanded hole.

Proof. Let s be a node with two adjacent neighbors inH. If s has no other
neighbors onH, thens induces a cap withH. LetH = x1, . . . , xn, x1 with nodes
adjacent tox1 andxn. If s is not universal forH, and does not induce an expanded
hole together withH, then letk be the smallest index for whichs is not adjacent to
xk. Let l be the smallest index such thatl > k ands is adjacent toxl. Now node
xk−2 (xn if k = 2) together with the holes, xk−1, . . . , xl, s forms a cap.

Lemma 7.2. Let G be a cap-free graph and letS = ∪n
i=1Si, n > 4, be a

maximal expanded hole inG with respect to node inclusion. EitherG contains an
M-structure with a proper subclass that is not a stable set ofG, or all nodes that are
adjacent to a node inSi and a node inSi+1 (Sn+1 = S1) for somei, are universal
for S and induce a clique ofG.

Proof. Let u be a node adjacent tos1 ∈ S1 ands2 ∈ S2. By applying Lemma
7.1 to any hole that containss1 ands2 and a node each from the setsSj , j > 2,
we have thatu is adjacent to all nodes inS\(S1 ∪ S2), else the maximality ofS
is contradicted. Now since nodeu is adjacent tos1, s2 and is universal for all sets
Sj , j > 2, Lemma 7.1 shows thatu is universal forS1 andS2, hence forS.

Let u and v be two nonadjacent nodes that are universal forS. Then u, v
together withs1 ∈ S1, s2 ∈ S2 ands4 ∈ S4 induces an M-structure with proper
setsW1 = {u, v} andW2 = {s1, s2, s4}. Furthermore,W2 is not a stable set
of G.

Theorem 7.1. A cap-free graph that contains an expanded hole contains an
amalgam.

Proof. Let S = ∪n
i=1Si be a maximal expanded hole inG. First assume that

n = 4. Then the node setS induces an M-structure with proper subclassesS1 ∪S3
andS2 ∪ S4. S2 ∪ S4 is not a stable set because, say,|S2| ≥ 2 andG(S2) is
connected. Hence, by Theorem 6.1, we are done.

Now assume thatn > 4. By Lemma 5.1, it is sufficient to show thatG contains
a D-structure(C1, C2, K). Assume w.l.o.g. that|S2| ≥ 2 and letK be the set
of nodes that are universal forS. Lemma 7.2 shows thatK is a clique ofG. Let
C1 = S2 andC2 = S1 ∪S3. Lemma 7.2 shows that every node that is adjacent to a
node ofC1 and a node ofC2 is universal forS and, hence, belongs toK. Therefore,
(C1, C2, K) is a D-structure.
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8. MAIN THEOREM AND ITS CONSEQUENCES

Now we are ready to prove Theorem 4.1, which we restate here for convenience.

Theorem. Every connected cap-free graph that does not contain an amalgam is
basic cap-free.

Proof. AssumeG does not contain an amalgam and is not a basic cap-free
graph. SinceG is not triangulated,G contains a nonempty biconnected triangle-free
subgraph. LetF be a maximal node set inducing such a biconnected triangle-free
subgraph.

Claim 1. Every node inV \F that has at least two neighbors inF is universal
for F.

Proof. Let u be a node inV \F having at least two neighbors inF . The
graph induced byF ∪ {u} contains a triangleu, x, y, else the maximality ofF is
contradicted. LetH be a hole inG(F ) containingx andy. (H exists since, by
biconnectedness,x andy belong to a cycle, and sinceG(F ) contains no triangle,
the smallest cycle containingx andy is a hole). Lemma 7.1 shows that eitheru
is universal forH or forms an expanded hole withH. Theorem 7.1 rules out the
latter possibility. LetF ′ ⊆ F be a maximal set of nodes such thatG(F ′) contains
H, is biconnected and such that nodeu is universal forF ′. If F 6= F ′, then since
G(F ) andG(F ′) are biconnected, somez ∈ F\F ′ belongs to a hole that contains
an edge ofG(F ′). LetH ′ be such a hole. By Lemma 7.1 and Theorem 7.1, nodeu
is adjacent to all the nodes ofH ′. Let F ′′ = F ′ ∪ V (H ′). G(F ′′) is biconnected,
u is universal forF ′′. Hence,F ′′ contradicts the maximality ofF ′. Hence,u is
universal forF and the proof of Claim 1 is complete.

Claim 2. LetU be the set of universal nodes forF. Then the nodes inU induce
a clique ofG.

Proof. Let w, z ∈ U be two nonadjacent nodes ofU and letv1, . . . , vn, v1 be
a hole ofG(F ). Then nodesw, z together withv1, v2, v3, andv4 induce an M-
structure, either with two proper subclasses not both of which are stable ifv1 and
v4 are not adjacent, or with three proper subclasses. By Theorem 6.1,G contains
an amalgam. This completes the proof of Claim 2.

Claim 3. V = F ∪ U.

Proof. Let S = V \(F ∪ U). By Claim 1, every node inS has at most one
neighbor inF . Let C be a connected component ofG(S). By maximality ofF ,
there is at most one node inF , sayy, that has a neighbor inC. If such a node
y exists, letC1, . . . , Cl be the connected components ofG(S) adjacent toy. Let
V1 = C1 ∪ · · ·Cl ∪ {y}, A = {y}, K = U, V2 = V \(V1 ∪ K), andB be the set of
neighbors ofy in F . Then(A, B, K) is an amalgam ofG, separatingV1 from V2.

If no component ofG(S) is adjacent to a node ofF , let V1 = U ∪ S, A =
U, V2 = B = F . Then(A, B, ∅) is an amalgam ofG. This completes the proof of
Claim 3.
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If U contains at least two nodes, then letV1 = A = U, V2 = B = F , and
(A, B, ∅) is an amalgam ofG. If U contains at most one node, thenG is a basic
cap-free graph.

In the remainder of this section, we specialize Theorem 4.1 to:

(i) strongly even-signable graphs or, equivalently, cap-free even-signable graphs,
(ii) strongly odd-signable graphs (as observed in Section 3, these graphs are cap-

free),
(iii) cap-free odd-signable graphs.

Definition 8.1. A graphG(V, E) is basic strongly even-signable ifG is one of
the following:

(i) a triangulated graph,
(ii) a biconnected triangle-free graph, or

(iii) someu ∈ V is universal forV \{u} andG(V \{u}) is bipartite.

Theorem 8.1. A strongly even-signable(cap-free even-signable) graph that is
not basic strongly even-signable contains an amalgam.

Proof. The proof follows from Theorem 4.1 and the following claim.

Claim. A graph is basic cap-free and strongly even-signable if and only if it is
basic strongly even-signable.

Proof. Clearly, basic strongly even-signable graphs are basic cap-free and The-
orem 3.2 shows that they are strongly even signable. Conversely, letG be a basic
cap-free graph that is strongly even-signable and assume thatG is not basic strongly
even-signable. ThenG consists of a biconnected triangle-free graphG′ that is not
bipartite, together with a nodeu that is universal for this graph. SinceG′ is bicon-
nected, nonbipartite, and triangle-free, thenG′ contains an odd hole. This hole,
together withu induces an odd wheel, contradicting Theorem 3.2.

Definition 8.2. A graphG(V, E) is basic strongly odd-signable ifG is one of
the following:

(i) a triangulated graph,
(ii) a hole, or

(iii) someu ∈ V is universal forV \{u} andG(V \{u}) is an odd hole.

Theorem 8.2. A strongly odd-signable graph that is not basic strongly odd-
signable contains an amalgam.

Proof. The proof follows from Theorem 4.1 and the following claim.

Claim. A graph is basic cap-free and strongly odd-signable if and only if it is
basic strongly odd-signable.

Proof. Basic strongly odd-signable graphs are basic cap-free and, by Theorem
3.3, they are strongly odd-signable. Conversely, consider a basic cap-free graphG



EVEN AND ODD HOLES IN CAP-FREE GRAPHS 303

that is strongly odd-signable. IfG is a triangulated graph, thenG is basic strongly
odd-signable. Otherwise, letG consist of the triangle-free graphG′ and possibly a
universal nodeu for G′. SinceG′ is biconnected triangle-free, it contains a holeH.
Suppose thatG′ 6= H, and letw ∈ V (G′\H) be a node with at least one neighbor in
H. If w has exactly two neighbors inH, sayx andy, there exists a3PC(x, y). If w
has more than two neighbors inH, thenw, together with a subset of the nodes inH,
induces a cycle with a unique chord that is not a diamond, sinceG′ is triangle-free.
Sow has exactly one neighbor inH, sayx. SinceG′ is biconnected, there exists
a path inG′\H from w to v, wherev has a unique neighbor inH, sayy. If x and
y are adjacent,G′ contains a cycle with a unique chord. Otherwise,G′ contains a
3PC(x, y). If nodeu exists andG′ is an even hole, thenG is an even wheel.

Definition 8.3. A graph G(V, E) is basic odd-signable ifG is one of the
following:

(i) a triangulated graph,
(ii) a biconnected triangle-free graph with no even wheel or3PC(x, y), or

(iii) someu ∈ V is universal forV \{u} andG(V \{u}) is a biconnected triangle-
free graph with no even hole.

In [5] we study the structure of basic odd-signable graphs and we give a poly-
nomial algorithm to test membership in this class.

Theorem 8.3. A cap-free odd-signable graph that is not basic odd-signable
contains an amalgam.

Proof. The proof follows from Theorem 4.1 and the following claim.

Claim. A graph is basic cap-free and odd-signable if and only if it is basic
odd-signable.

Proof. It is easy to verify that basic odd-signable graphs are basic cap-free and
odd-signable. Conversely, consider a basic cap-free graphG that is odd-signable.
If G is triangulated, thenG is basic odd-signable. Otherwise, letG consist of
the biconnected triangle-free graphG′ and possibly a universal node forG′. By
Theorem 2.3,G contains no3PC(x, y) and no even wheel. So, ifG = G′, G is
basic odd-signable. IfV (G) = V (G′) ∪ {u}, thenG′ contains no even hole, since
G contains no even wheel. So, again,G is basic odd-signable.

9. RECOGNITION ALGORITHMS

We can use Theorem 4.1 to test whether a graphG contains a cap as follows:

Recognition Algorithm for Cap-Free Graphs
Input: A graphG.
Output: Yesif graphG is cap-free andNo otherwise.
Step 0: SetL = {G} andL′ = ∅.
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Step 1: If L = ∅, go to Step 3. Otherwise remove a graphH from L and go to
Step 2.
Step 2: If H contains an amalgam, add the blocks of the amalgam decomposition
to L and go to Step 1. Otherwise, addH to L′ and go to Step 1.
Step 3: Check whether all the graphs in the listL′ are basic cap-free graphs. If so,
outputYes. Otherwise outputNo.
End of Algorithm

The correctness of the above algorithm follows from Theorem 4.1 and the fol-
lowing lemma.

Lemma 9.1. Let G contain an amalgam. ThenG is cap-free if and only if the
blocks of the amalgam decomposition are cap-free.

Proof. The ‘‘only if’’ part follows, because the blocks are induced subgraphs
of G.

Now assume that nodev, together with holeH, induces a cap that is separated
in the amalgam decomposition(A, B, K), and letG1, G2 be the blocks of the
decomposition, with node setsV1 ∪K ∪{b} andV2 ∪K ∪{a}. We assume w.l.o.g.
that ifH contains only one node ofA orB, this node isa or b. If H does not belong
to G1 or G2, thenH = a1, b1, a2, b2, wherea1, a2 belong toA andb1, b2 belong to
B. Since the neighbors ofv in H are adjacent, thenv ∈ K. Hence,v is universal
for H and cannot induce a cap withH.

So assumeH belongs toG1 but v does not. Letv1, v2 be the neighbors ofv
in H. First, observe thatH cannot contain nodeb and, therefore,v1, v2 ∈ K. It
follows thatH contains no node ofA and, therefore, nodeb together with holeH
is a cap ofG1.

The above algorithm is polynomial for the following reasons:

(i) The algorithms to find amalgam decompositions are polynomial and the num-
ber of blocks is polynomial (Cornúejols and Cunningham [10]).

(ii) We can test in polynomial time whether a graph is triangulated. The same is
true of a biconnected triangle-free graphG(V, E) with at most one additional
universal node forV . So we can efficiently test whether a graph is basic
cap-free.

Note that checking whether a graphG contains a cap can also be done in poly-
nomial time directly, without decomposingG.

Recognition Algorithm for Strongly Even-Signable Graphs (Cap-Free Even-
Signable Graphs)
Input: A graphG.
Output: Yesif graphG is strongly even-signable andNo otherwise.
Step 0: SetL = {G} andL′ = ∅.
Step 1: If L = ∅, go to Step 3. Otherwise remove a graphH from L and go to
Step 2.
Step 2: If H contains an amalgam, add the blocks of the amalgam decomposition
to L and go to Step 1. Else addH to L′ and go to Step 1.
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Step 3: Check whether all the graphs in the listL′ are basic strongly even-signable
graphs. If so, outputYes. Otherwise outputNo.
End of Algorithm

The correctness of the above algorithm follows from Theorem 8.1 and the next
lemma.

Lemma 9.2. Let G contain an amalgam. ThenG is strongly even-signable if
and only if the blocks of the amalgam decomposition are strongly even-signable.

Proof. Denote the amalgam by(A, B, K) and letG1 andG2 be the blocks of
the decomposition, with node setsV1 ∪ K ∪ {b} andV2 ∪ K ∪ {b}.

The ‘‘only if’’ part holds, because the blocks are induced subgraphs ofG.
Conversely, assumeG1 andG2 are strongly even-signable. Then they are cap-

free, and by Lemma 9.1, so isG. By Theorem 3.2, it suffices to show that, ifG1 and
G2 do not contain an odd wheel(H, x), wherex is universal forH, then neither
doesG. Suppose thatG contains such a wheel(H, x). If H contains a node of
V1\A, thenH is entirely contained inG1. In this case,x is also inG1, because no
node ofV2 can be adjacent to a node inV1\A. SoH is contained inA ∪ B ∪ K.
SinceH is an odd hole, it is entirely contained inA or B, sayA. But thenG1
contains nodeb, which is universal forA and, hence, forH, a contradiction.

We now turn to strongly odd-signable graphs. Abad cycleis a cycle with a
unique chord, which is neither a cap nor a diamond. A bad cycle with chordxy
can be separated by an amalgam decomposition(A, B, K) when both nodesx
andy belong toK. So if G1(V1, E1) andG2(V2, E2) are blocks of the amalgam
decomposition, it is not true in general thatG1 andG2 are strongly odd-signable if
and only ifG is strongly odd-signable.

Note that it is possible to check in polynomial time whether some bad cycle with
chordxy is separated by the amalgam decomposition(A, B, K) as follows: Let
Uxy

1 andUxy
2 be the neighbors of bothx andy in G1 andG2, respectively.

Now G contains a bad cycle that is separated by the amalgam decomposition
(A, B, K) if and only if, after removing edgexy, x and y belong to the same
connected component ofG1(V1\Uxy

1 ) and ofG2(V2\Uxy
2 ).

A wheel(H, x) is ashort4-wheelif H is a 4-hole andx is universal forH. A
short 4-wheel(H, x) is separated in an amalgam decomposition(A, B, K) if and
only if one of the following two conditions hold:
—K is nonempty and bothA andB contain at least two nonadjacent nodes.
—A contains nodesa1, a2, a3, wherea1 is adjacent to botha2 anda3 buta2, a3 are
nonadjacent andB contains two nonadjacent nodes (or vice versa).

A 3PC(x, y) is short if at least two of thexy-paths have length 2. A short
3PC(x, y) is separated by the amalgam decomposition(A, B, K) if and only if x
andy belong toA and the intermediate nodes of the two paths of length 2 belong
to B (or vice versa). This happens only when:
—A contains three mutually nonadjacent nodes andB two nonadjacent nodes (or
vice versa), or
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—Both A andB contain two nonadjacent nodes saya1, a2 andb1, b2 and either
a1, a2 belong to the same connected component ofG(V1\(A\{a1, a2})) or b1, b2
belong to the same connected component ofG(V2\(B\{b1, b2})).

Recognition Algorithm for Strongly Odd-Signable Graphs
Input: A graphG.
Output: Yesif graphG is strongly odd-signable andNo otherwise.
Step 0: SetL = {G} andL′ = ∅.
Step 1: If L = ∅, go to Step 3. Otherwise remove a graphH from L and go to
Step 2.
Step 2: If H does not contain an amalgam, addH to L′ and go to Step 1. Else,
detect an amalgam decomposition(A, B, K) with blocksG1 andG2. If a bad cycle,
a short 4-wheel or a short3PC(x, y) is separated by the decomposition(A, B, K),
outputNo. Else, addG1 andG2 to L and go to Step 1.
Step 3: Check whether all the graphs in the listL′ are basic strongly odd-signable
graphs. If so, outputYes. Otherwise outputNo.
End of Algorithm

The correctness of the above algorithm follows from Theorem 8.2 and the
next lemma.

Lemma 9.3. LetG contain an amalgam. If no bad cycle, no short4-wheel, and
no short3PC(x, y) is separated, thenG is strongly odd-signable if and only if the
blocks of the amalgam decomposition are strongly odd-signable.

Proof. Denote the amalgam by(A, B, K) and letG1 andG2 be the blocks of
the decomposition, with node setsV1 ∪ K ∪ {b} andV2 ∪ K ∪ {b}.

If G is strongly odd-signable, then the blocksG1 andG2 also are, since they are
induced subgraphs ofG.

Conversely, assume thatG1 andG2 are strongly odd-signable and no bad cycle,
short 4-wheel or short3PC(x, y) is separated. By Theorem 3.3, it suffices to show
thatG is cap-free, contains no bad cycle, no3PC(x, y) and no even wheel(H, x),
wherex is universal forH, knowing that these properties hold forG1 andG2.

SinceG1 andG2 are cap-free,G is cap-free by Lemma 9.1. SinceG1 andG2
contain no bad cycles and, by assumption, no bad cycle is separated,G contains no
bad cycle.

Suppose thatG contains a3PC(x, y) butG1, G2 do not. Ifx ∈ V1 andy ∈ V2,
then eitherx ∈ A or y ∈ B, but not both. Assumey ∈ B, then no node of
V2 ∪K\{y} belongs to the3PC(x, y) and so the3PC(x, y) is contained inG1. If
x ∈ V1 andy ∈ K, thenx ∈ V1\A, elsex andy are adjacent. But again the3PC
is contained inG1. This implies thatx andy are both inV1 or both inV2, sayV1.
At least one path of the3PC(x, y) contains a node ofB. This shows thatx, y ∈ A.
If only one of these paths exists, then we can assume this path to bex, b, y, which
is also inG1. So at least two of these paths exist, and we have a short3PC, which
is separated in the amalgam decomposition.

Finally, suppose thatG contains an even wheel(H, x). If the holeH itself is
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separated in the amalgam decomposition, thenH = a1, b1, a2, b2, wherea1, a2
belong toA andb1, b2 belong toB. Now obviouslyv ∈ K and we have a short
4-wheel, which is separated. IfH is in G1, thenH contains at most three nodes in
A ∪ B, and no node inV2 can be universal forH.

Recall that Corollary 3.1 shows that the class of strongly odd-signable graphs is
properly contained in the class of odd-signable cap-free graphs. Our final algorithm
tests membership in this last class.

Recognition Algorithm for Cap-Free Odd-Signable Graphs
Input: A graphG.
Output: Yesif graphG is cap-free odd-signable andNo otherwise.
Step 0: SetL = {G} andL′ = ∅.
Step 1: If L = ∅, go to Step 3. Otherwise remove a graphH from L and go to
Step 2.
Step 2: If H does not contain an amalgam, addH to L′ and go to Step 1. Else,
detect an amalgam decomposition with blocksG1 andG2. If a short 4-wheel or a
short3PC(x, y) is separated by the decomposition, outputNo. Else, addG1 and
G2 to L and go to Step 1.
Step 3: Check whether all the graphs in the listL′ are basic odd-signable graphs.
If so, outputYes. Otherwise outputNo.
End of Algorithm

The structure of triangle-free graphs that are odd-signable is studied in [5], where
we give an algorithm to test membership in this class. Together with the signing
algorithm of Section 2, we can, therefore, check if a triangle-free graph contains
an even hole. Therefore, we can check whether a graph is basic odd-signable and
accomplish Step 3.

The correctness of the above algorithm follows from Theorem 8.3 and the next
lemma, whose proof is a simplification of the proof of Lemma 9.3 and is omitted.

Lemma 9.4. Let G contain an amalgam. If no short 4-wheel and no short
3PC(x, y) is separated by the decomposition, thenG is a cap-free odd-signable
graph if and only if the blocks of the amalgam decomposition are cap-free odd-
signable graphs.

Together with the signing algorithm given in Section 2, the above algorithm
recognizes in polynomial time whether a cap-free graph contains an even hole. This
generalizes the result of Markossian, Gasparian and Reed [12], which recognizes
in polynomial time whether a diamond-and-cap-free graph contains an even hole.
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