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Abstrat

If a Berge graph ontains ertain wheels, then it ontains a "good"

skew partition.

1 Introdution

A graph G is perfet if, for all indued subgraphs of G, the size of a largest

lique is equal to the hromati number [1℄. Lov�asz [8℄ showed that a graph

G is perfet if and only if its omplement

�

G is perfet. A graph is minimally
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imperfet if it is not perfet but all its proper indued subgraphs are. The

only known minimally imperfet graphs are the odd holes and their omple-

ments. Berge [1℄ onjetured that there are no other (Strong Perfet Graph

Conjeture). A graph is alled Berge if it ontains no odd hole or its omple-

ment. Every perfet graph is Berge. The Strong Perfet Graph Conjeture

states that every Berge graph is perfet.

A graph G has a skew partition if the nodes V (G) an be partitioned into

nonempty sets A;B;C;D suh that every node of A is adjaent to every node

of B and there is no edge between C and D. Chv�atal [4℄ onjetured that a

minimally imperfet graph annot have a skew partition. Chv�atal [4℄ proved

this when A or B has ardinality one (the star utset lemma).

Ho�ang [7℄ proved the onjeture for speial types of skew partitions. A

T -utset is a skew partition with u 2 C and v 2 D suh that every node of

A is adjaent to both u and v.

Theorem 1 (Ho�ang [7℄) No minimally imperfet graph has a T -utset.

This work was generalized by Robertson, Seymour, Thomas [10℄. A skew

partition (A;B;C;D) is good if C [D ontains a node u that is adjaent to

every node of A or B.

Theorem 2 (Robertson, Seymour, Thomas [10℄) No minimally imperfet

graph has a good skew partition.

Chv�atal's skew partition onjeture was solved reently in its generality:

Theorem 3 (Chudnovsky, Robertson, Seymour, Thomas [3℄) No minimally

imperfet graph has a skew partition.

In these notes, we show that, if a Berge graph ontains ertain types of

indued subgraphs alled wheels, then it has a good skew partition. This

shows that no minimally imperfet graph an ontain these types of wheels.

2 The Wonderful Lemma

Given a set X � V (G) and a node x =2 X, we say that x is universal for X

if x is adjaent to every node of X. We say that an edge e = yz suh that

y; z =2 X, sees X if both y and z are universal for X.
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Given a hordless path (or a hole) P in G n S, we denote by E

S

(P ) the

set of edges in P that see S. jP j denotes the length (number of edges) of P .

int(P ) denotes the set of internal nodes of P .

The following lemma, due to Roussel and Rubio [11℄, plays a fundamental

role in this paper. This lemma was proved independently by Robertson,

Seymour and Thomas [10℄, who named it The Wonderful Lemma.

Lemma 4 (Roussel and Rubio [11℄) Let G be a Berge graph where V (G)

an be partitioned into a o-onneted set S and an odd hordless path P =

u; u

0

; : : : ; v

0

; v of length at least 3 suh that u, v are both universal for S.

Then one of the following holds:

(i) An odd number of edges of P see S.

(ii) jP j = 3 and S [ fu

0

; v

0

g ontains an odd hordless anti-path between u

0

and v

0

.

(iii) jP j � 5 and there exist two nonadjaent nodes x, x

0

in S suh that

(V (P ) n fu; vg) [ fx; x

0

g indues a hordless path.

Proof: The proof is by indution on jSj+ jP j.

Note that, for every x 2 S, there is an odd number of edges in E(P ) that

see x, otherwise V (P )[ fxg ontains an odd hole. We an therefore assume

that jSj � 2.

Claim 1: Lemma 4 holds if jP j = 3.

If jP j = 3 and (i) does not hold, then S an be partitioned into 3 sets S

1

,

S

2

and S

3

suh that every node in S

1

(resp. S

2

) is adjaent to u

0

(resp.

v

0

) but not to v

0

(resp. u

0

), every node in S

3

is adjaent to u

0

and v

0

, and

both S

1

and S

2

are nonempty. Given two nodes x

1

2 S

1

and x

2

2 S

2

with

minimum distane in

�

G[S℄, let P

0

be a shortest x

1

; x

2

-anti-path in S, then

(x

1

; P

0

; x

2

; u

0

; v; u; v

0

; x

1

) is an anti-hole that is even if and only if P

0

has odd

length. But then v

0

; x

1

; P

0

; x

2

; u

0

is a hordless odd anti-path in S [ fu

0

; v

0

g

and (ii) holds.

We may assume, then, that jP j � 5 and jSj � 2.

Claim 2: Lemma 4 holds if S ontains two nonadjaent nodes x, x

0

suh

that V (P )nfu; vg[fx; x

0

g ontains an odd hordless path P

0

between x and

x

0

.
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Assume, by ontradition, that suh nodes a path P

0

between two nodes

x and x

0

in S exists. If (iii) holds then we are done. Therefore x or x

0

must

have a neighbor in the interior of P distint from u

0

and v

0

, so u or v has no

neighbors in the interior of P

0

, say, w.l.o.g., u. But then (u; x; P

0

; x

0

; u) is an

odd hole, a ontradition.

Claim 3: The interior of P does not ontain two adjaent nodes y, y

0

suh

that S [ fy; y

0

g ontains a hordless odd anti-path P

0

between y and y

0

.

Assume not. Then, sine jP j � 5, either u or v is adjaent to neither y nor y

0

,

say, w.l.o.g., u. But then (u; y; P

0

; y

0

; u) is an odd anti-hole, a ontradition.

Claim 4: For every o-onneted nonempty subset S

0

of S, and for every

odd subpath P

0

= z; :::; z

0

of P suh that z, z

0

are universal for S

0

and

G[S

0

[ V (P

0

)℄ is a proper subgraph of G, we may assume that E

S

0

(P

zz

0

) has

odd ardinality.

Assume not. Then, by indution, either S

0

ontains two nonadjaent nodes

x, x

0

suh that V (P

zz

0

)nfz; z

0

g[fx; x

0

g ontains an odd path between x and

x

0

, and we are done by Claim 2, or the interior of P

zz

0

ontains two adjaent

nodes y,y

0

suh that S

0

[ fy; y

0

g ontains a hordless odd anti-path between

y and y

0

, ontraditing Claim 3.

Claim 5: No node in int(P ) is universal for S.

Assume not. Then P an be partitioned into proper subpaths P

1

,...,P

k

suh

that, for every 1 � i � k, P

i

= u

i

; :::; u

i+1

, u

i

is universal for S for every

1 � i � k+1, u

1

= u, u

k+1

= v and no intermediate node of P

i

is universal for

S. Sine P is an odd path, there is an odd number of paths P

i

, 1 � i � k of

odd length and, sine (i) does not hold, E

S

(P ) has even ardinality. Therefore

there exists j, 1 � j � k, suh that P

j

is an odd path of length at least 3,

but E

S

(P

j

) = 0, ontraditing Claim 4.

Let s

1

, s

2

be two nodes with maximum distane in

�

G[S℄, and let P

0

be

a shortest anti-path between s

1

and s

2

ontained in S. Let S

1

= S n s

1

,

S

2

= S n s

2

and S

0

= S

1

\ S

2

. By our hoie of s

1

and s

2

, S

1

, S

2

and S

0

are

all o-onneted.

Claim 6: P

0

has odd length.

By Claim 4, E

S

i

(P ) has odd ardinality, i = 1; 2, and, by Claim 5, no node

universal for S

1

is also universal for S

2

. Therefore, sine jP j � 5, there exist

two nonadjaent nodes z

1

and z

2

in the interior of P suh that z

1

(resp. z

2

)
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is universal for S

1

(resp. S

2

) but not for S

2

(resp. S

1

). Sine both z

1

and

z

2

are universal for S

0

, then, if P

0

has even length, (z

1

; s

1

; P

0

; s

2

; z

2

; z

1

) is an

odd anti-hole, a ontradition.

Sine E

S

i

(P ) 6= ;, i = 1; 2, then P an be partitioned into proper subpaths

P

1

,...,P

k

where, for every 1 � i � k, P

i

= u

i

; :::; u

i+1

, u

i

is universal for S

1

or S

2

for every 1 � i � k + 1, u

1

= u, u

k+1

= v and no node in int(P

i

) is

universal for S

1

or S

2

.

Claim 7: There exists j, 1 � j � k, suh that P

j

is an odd path of length

at least 3, u

j

is universal for S

1

and u

j+1

is universal for S

2

.

We �rst show that for any i, 1 � i � k, if P

i

has length 1 then u

i

u

i+1

2

E

S

1

(P ) [ E

S

2

(P ). Suppose otherwise. W.l.o.g. s

1

is adjaent to u

i

but not

u

i+1

and s

2

is adjaent to u

i+1

but not u

i

. Sine jP j � 5, then either u or

v is adjaent to neither u

i

nor u

i+1

, say, w.l.o.g., u. But then, by Claim

6, (u; u

i+1

; s

1

; P

0

; s

2

; u

i

; u) is an odd anti-hole, a ontradition. Sine P is

an odd path, then there is an odd number of paths P

i

, 1 � i � k of odd

length. By Claim 4, E

S

i

(P ) has odd ardinality for i = 1; 2. By Claim 5,

E

S

1

(P ) \ E

S

2

(P ) = ;, so E

S

1

(P ) [ E

S

2

(P ) has even ardinality. Therefore

there exists j, 1 � j � k, suh that P

j

is an odd path of length at least 3. If

both u

j

and u

j+1

are universal for S

1

(resp. S

2

), then by Claim 4, E

S

1

(P

j

)

(resp. E

S

1

(P

j

)) has odd ardinality so, sine jP

j

j � 3, there is a node in the

interior of P

j

that is universal for S

1

(resp. S

2

), a ontradition. Hene P

j

satis�es Claim 8.

Claim 8: Lemma 4 holds if jSj = 2.

If jSj = 2 then, in the odd path P

j

of Claim 7, u

j

is adjaent to s

2

, and u

j+1

is adjaent to s

1

, and no node in int(P

j

) is adjaent to s

1

or s

2

. Sine G has

no odd hole, s

1

is not adjaent to u

j

and s

2

is not adjaent to u

j+1

. But then

s

2

; u

j

; P

j

; u

j+1

; s

1

is an odd path and we are done by Claim 2.

Claim 9: S is a stable set.

Consider the odd path P

j

of Claim 7. Sine S

0

6= ;, then by Claim 4, there is

an odd number of edges in P

j

that see S

0

. Hene, sine jP

j

j � 3, there exists

a node z in the interior of P

j

that is universal for S

0

. If S is not a stable set,

P

0

is an odd anti-path of length at least 3, therefore (z; s

1

; P

0

; s

2

; z) is an odd

anti-hole, a ontradition.

Let s

1

; s

2

; s

3

2 S and let S

i

= S n s

i

, i = 1; 2; 3.

By Claim 4, E

S

i

(P ) is odd, for i = 1; 2; 3, and, by Claim 5, given e 2

E

S

i

(P ), e

0

2 E

S

j

(P ), for 1 � i < j � 3, e and e

0

have no endnode in ommon,
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hene there must be some k 2 f1; 2; 3g and an edge in yy

0

2 E

S

k

(P )suh that

fy; y

0

g \ fu

0

; v

0

g = ;.

Assume y is loser to u in P than y

0

. Let z be the neighbor of s

k

in P

uy

losest to y and z

0

be the neighbor of s

k

in P

y

0

v

losest to y

0

. By Claim 5,

y 6= z and y

0

6= z

0

. P

zz

0

is even, otherwise (s

k

; z; P

zz

0

; z

0

; s

k

) would be an

odd hole, therefore either P

zy

and P

yz

0

are both odd paths, or P

zy

0

and P

y

0

z

0

are both odd paths. Let w 2 fy; y

0

g be suh that P

zw

and P

wz

0

are both

odd paths. Sine P is an odd path, then either P

uw

or P

wv

has even length.

Assume, w.l.o.g., that P

uw

is an even path. Let G

0

be the graph indued by

S, together with v and the nodes of P

uw

, plus a new edge wv.

Claim 10: G

0

is a Berge graph.

Assume not. Then G

0

ontains either an odd hole or an odd anti-hole. If G

0

ontains an odd hole H, then H must ontain wv (otherwise H would be an

odd hole in G). Sine v is universal for S, H must ontain exatly one node

in S, and suh node must be s

k

, sine any other node in S is adjaent to both

w and v. The only hole in G

0

ontaining s

k

, w and v is (z; P

zw

; w; v; s

k

; z),

whih, by onstrution, is even. If G

0

ontains an odd anti-hole H, then H

ontains, at most, two nodes in S, sine S is a stable set, and at most four

nodes in P , sine every set of nodes of P with at least �ve elements ontains

a stable set of size 3. But then H is a 5-anti-hole, therefore H is also a 5-hole.

By onstrution, sine P

uw

and P

wv

have both length at least 2, G

0

has

a number of nodes stritly smaller than G, while P

0

= u; P

uw

; w; v is an odd

hordless path of length at least 3. Then, by indution, Lemma 4 holds for

G

0

. Sine, by Claim 5, there is no node in int(P

0

) universal for S, then either

there exist two nodes x and x

0

in S suh that x; u

0

; P

u

0

w

; w; x

0

is a path, and

we are done by Claim 2, or there exist two adjaent nodes t and t

0

in int(P

0

)

suh that S [ ft; t

0

g ontains an odd anti-path, ontraditing Claim 3. 2

The following is an easy onsequene of Lemma 4.

Lemma 5 Assume G is a Berge graph ontaining a o-onneted set S and

an odd hordless path P = u; u

0

; : : : ; v

0

; v disjoint from S of length at least

3 suh that u, v are both universal for the set S. Furthermore, assume that

G n (S [ V (P )) ontains a node w universal for S suh that no intermediate

node of P is adjaent to w. Then an odd number of edges of P see S.

Proof: Assume not. Then, by Lemma 4, either jP j = 3 and S [ fu

0

; v

0

g

ontains an odd anti-path Q between u

0

and v

0

, or jP j � 5 and there exist

6



two nonadjaent nodes x, x

0

in S suh that x; u

0

; P

u

0

v

0

; v

0

; x

0

; w is a hordless

path. In the �rst ase, w; u

0

; Q; v

0

; w is an odd anti-hole, and in the other

ase w; x; u

0

; P

u

0

v

0

; v

0

; x

0

; w is an odd hole, a ontradition. 2

3 De�nitions

A wheel, denoted by (H; v), is a graph indued by a hole H and a node

v =2 V (H) having at least three neighbors in H. A wheel is odd if it ontains

an odd number of triangles. A wheel (H; v) is a twin wheel if v has exatly

three neighbors in H and (H; v) ontains exatly two triangles; the neighbor

of v in H that is adjaent to all the other neighbors of v in H is said the

twin of v in H. A wheel (H; v) is a line wheel if v has exatly four neighbors

in H and (H; v) ontains exatly two triangles and these two triangles have

only the enter v in ommon. A universal wheel is a wheel (H; v) where the

enter v is adjaent to all the nodes of H. A triangle-free wheel is a wheel

ontaining no triangle. These four types of wheels are depited in Figure 1,

where solid lines represent edges and dotted lines represent paths. A proper

wheel is a wheel that is not any of the above four types.

A 3PC(x

1

x

2

x

3

; y) is a graph indued by three hordless paths P

1

=

x

1

; : : : ; y, P

2

= x

2

; : : : ; y and P

3

= x

3

; : : : ; y, having no ommon nodes

other than y and suh that the only adjaenies between nodes of P

i

n y and

P

j

n y, for i; j 2 f1; 2; 3g distint, are the edges of the lique of size three

indued by fx

1

; x

2

; x

3

g. Also, at most one of the paths P

1

; P

2

; P

3

is an edge.

We say that a graph G ontains a 3PC(�; :) if it ontains a 3PC(x

1

x

2

x

3

; y)

for some x

1

; x

2

; x

3

; y 2 V (G).

Remark 6 Sine both odd wheels and 3PC(�; �)'s ontain an odd hole, they

are never ontained in a Berge graph as an indued subgraph.

The following graphs will play an important role in this paper.

De�nition 7 A 3PC(x

1

x

2

x

3

; y

1

y

2

y

3

) is a graph indued by three hordless

paths P

1

= x

1

; : : : ; y

1

, P

2

= x

2

; : : : ; y

2

and P

3

= x

3

; : : : ; y

3

, having no om-

mon nodes and suh that, for i; j 2 f1; 2; 3g distint, x

i

is not adjaent to y

j

and the only adjaenies between nodes of V (P

i

) n fy

i

g and V (P

j

) n fy

j

g are

the edges of the lique of size three indued by fx

1

; x

2

; x

3

g and the only ad-

jaenies between nodes of V (P

i

) n fx

i

g and V (P

j

) n fx

j

g, for i; j 2 f1; 2; 3g

distint, are the edges of the lique of size three indued by fy

1

; y

2

; y

3

g. We

7



triangle-free wheel

line wheel twin wheel

universal wheel

Figure 1: Wheels

Figure 2: Conneted diamonds
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say that a graph G ontains a 3PC(�;�) if it ontains a 3PC(x

1

x

2

x

3

; y

1

y

2

y

3

)

for some x

1

; x

2

; x

3

; y

1

; y

2

; y

3

2 V (G). We say that a 3PC(x

1

x

2

x

3

; y

1

y

2

y

3

) is

long if P

1

, P

2

and P

3

are not all of length 1.

De�nition 8 Conneted diamonds onsist of two node disjoint sets fa

1

; : : : ; a

4

g

and fb

1

; : : : ; b

4

g eah of whih indues a diamond (the graph on four nodes

with �ve edges) suh that a

1

a

4

and b

1

b

4

are not edges, together with four

hordless paths P

1

; : : : ; P

4

suh that for i = 1; : : : ; 4, P

i

is a path between a

i

and b

i

. Paths P

1

; : : : ; P

4

are node disjoint and the only adjaenies between

them are the edges of the two diamonds.

Let H be a hole and let x

1

; x

2

; x

3

; y

1

; y

2

; y

3

be distint nodes of H suh

that x

2

is adjaent to x

1

and x

3

, and y

2

is adjaent to y

1

and y

3

. We say

that (H; x; y) is a double beetle if x and y are not adjaent, x is adjaent to

x

1

; x

2

; x

3

and y

2

, and y is adjaent to y

1

; y

2

; y

3

and x

2

. Note that a double

beetle is a speial ase of onneted diamonds.

De�nition 9 Given a graph G and e = uv 2 E(G), the graph G

0

obtained

by subdividing e is the graph obtained from G by deleting the edge e and

adding one node w adjaent only to u and v. Given two graphs G and G

0

, G

0

is a subdivision of G if G

0

an be obtained from G by iteratively subdividing

edges of G. We say that G

0

is a bipartite subdivision of G if G

0

is a bipartite

graph that is a subdivision of G.

A lass of graphs that will play an important role in this paper is the

lass of line graphs of bipartite subdivisions of K

4

(the lique on four nodes).

An example is depited in Figure 3.

4 Hubs

Let H be a hole and N � V (H). We say that two nodes of N are onseutive

if at least one of the two subpaths of H joining them ontains no node of N

in its interior.

Theorem 10 Let G be a Berge graph, H a hole of length at least 6, and S

a o-onneted set of nodes in G n V (H). One of the following holds:

(1) an even number of edges of H see S, or

9



H L(H)

Figure 3: Bipartite subdivision of a K

4

and its line graph.

(2) S ontains nonadjaent nodes x; y suh that (H; x) and (H; y) are twin

wheels and exatly one edge of H sees both x and y or

(3) S ontains a node x with exatly 2 neighbors u and v in H, where u

and v are adjaent.

Proof: The proof is by indution on jSj+ jHj. When jSj = 1, the theorem is

immediate, sine we already observed that G annot ontain an odd wheel.

We an therefore assume that S has at least 2 nodes. Also, by indutive

hypothesis, for every o-onneted set S

0

� S, E

S

0

(H) is even, else (2) or (3)

holds.

If jE

S

(H)j is even, then we are done. Hene, assume that jE

S

(H)j is odd

and let uv 2 E

S

(H).

Claim 1 E

S

(H) = fuvg and no other node in H is universal for S.

Assume not, then there exists an odd hordless subpath P = x

1

; : : : ; x

n

of H

suh that jP j � 3, x

1

and x

n

are both universal for S and no intermediate

node of P is universal for S. Sine P does not ontain both u and v, let

w 2 fu; vg n V (P ). Then the hoie of S, P and w ontradits Lemma 5.

Let s

1

and s

2

be two nodes at maximum distane in

�

G[S℄, and let P

0

be

a shortest anti-path between s

1

and s

2

in S. Let S

1

= S n s

1

, S

2

= S n s

2

and

S

0

= S

1

\S

2

. By our hoie of s

1

and s

2

, S

1

, S

2

and S

0

are all o-onneted.

Claim 2 P

0

has odd length.

Sine E

S

i

(H) n fuvg 6= ;, for i = 1; 2, and no node universal for S

1

in

V (H) n fu; vg is also universal for S

2

, then, sine jHj � 6, there exist two

10



nonadjaent nodes z

1

and z

2

in V (H) n fu; vg suh that z

1

(resp. z

2

) is

universal for S

1

(resp. S

2

) but not for S

2

(resp. S

1

). Therefore, if P

0

has

even length, then (z

1

; s

1

; P

0

; s

2

; z

2

; z

1

) is an odd anti-hole, a ontradition.

Let u

1

; : : : ; u

k+1

be all the nodes of H that are universal for S

1

or S

2

in

the order they appear going from u to v in H n uv. By de�nition, u

1

= u,

u

k+1

= v. For every i, 1 � i � k, let P

i

be the path from u

i

to u

i+1

in H nuv.

Obviously, for every i, 1 � i � k, no node in the interior of P

i

is universal

for S

1

or S

2

. Sine E

S

i

(H) n fuvg 6= ;, i = 1; 2, then k � 2.

Claim 3 There exists j, 1 � j � k, suh that P

j

is an odd path of length at

least 3, u

j

is universal for S

1

but not for S

2

and u

j+1

is universal for S

2

but

not for S

1

.

For any i, 1 � i � k, if P

i

has length 1 then u

i

u

i+1

2 (E

S

1

(H) [ E

S

2

(H)) n

fuvg, otherwise we may assume, w.l.o.g., that s

1

is adjaent to u

i

but not

u

i+1

and s

2

is adjaent to u

i+1

but not u

i

. Sine jHj � 6, then either u

or v is not adjaent to u

i

and u

i+1

, say, w.l.o.g., u. But then, by Claim 2,

(u; u

i+1

; s

1

; P

0

; s

2

; u

i

; u) is an odd anti-hole, a ontradition.

Sine H n uv is an odd hordless path, then there is an odd number of paths

P

i

, 1 � i � k of odd length. By Claim 1, E

S

1

(H) \ E

S

2

(H) = fuvg,

so E

S

1

(H) [ E

S

2

(H) n fuvg has even ardinality, therefore there exists j,

1 � j � k, suh that P

j

is an odd path of length at least 3. If both u

j

and

u

j+1

are universal for S

1

(resp. S

2

), then by Lemma 5 applied to S

1

(resp.

S

2

), P

j

and either node u or node v (sine one of the two has no neighbor

in the interior of P

j

), P

j

has an odd number of edges that see S

1

(resp. S

2

),

so there is a node in the interior of P

j

that is universal for S

1

(resp. S

2

), a

ontradition. Hene P

j

satis�es Claim 3.

Let u

0

, v

0

be, respetively, the neighbors of u and v in H n uv.

Claim 4 Theorem 10 holds if jSj = 2.

Assume jSj = 2. Let P

j

be the path de�ned in Claim 3. If u

j

= u

0

and

u

j+1

= v

0

, then Theorem 10 (2) holds. Hene we may assume, w.l.o.g.,

u

0

6= u

j

, but then (u; s

2

; u

j

; P

j

; u

j+1

; s

1

; u) is an odd hole, a ontradition.

By Claim 4, we may assume jSj � 3

Claim 5 S is a stable set.

Sine S

0

6= ;, then by Lemma 5 applied to S

0

, P

j

and u, there is an odd

number of edges in P

j

that see S

0

. Hene there exists a node z in the interior

of P

j

that is universal for S

0

. If S is not a stable set, P

0

is an odd anti-path of

length at least 3, therefore (z; s

1

; P

0

; s

2

; z) is an odd anti-hole, a ontradition.
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Let s

1

; s

2

; s

3

2 S and let S

i

= S n s

i

, i = 1; 2; 3.

Sine E

S

i

(H) n fuvg has odd ardinality, i = 1; 2; 3, then, given e 2

E

S

i

(H) n fuvg, e

0

2 E

S

j

(H) n fuvg, for 1 � i < j � 3, by Claim 1 e and

e

0

have no endnode in ommon, hene there exists k 2 f1; 2; 3g and an edge

yy

0

2 E

S

k

(P ) suh that fy; y

0

g \ fu

0

; v

0

g = ;. For every pair s; t of nodes

of H, let us denote by H

st

the path between s and t in H n uv. Assume y

is loser to u in H n uv than y

0

. Let z be the neighbor of s

k

losest to y in

H

uy

and z

0

be the neighbor of s

k

losest to y

0

in H

y

0

v

. By Claim 1, y 6= z

and y

0

6= z

0

. H

zz

0

is even, otherwise (s

k

; z; H

zz

0

; z

0

; s

k

) would be an odd hole,

therefore either H

zy

and H

yz

0

are both odd paths, or H

zy

0

and H

y

0

z

0

are both

odd paths. Let w 2 fy; y

0

g be suh that H

zw

and H

wz

0

are both odd paths.

Sine H is an even hole, then either H

uw

or H

wv

has even length. Assume,

w.l.o.g., that H

uw

is an even path. Let G

0

be the graph indued by S together

with v and H

uw

, plus a new edge wv. Let H

0

= (u;H

uw

; w; v; u); H

0

is an

even hole in G

0

. In partiular, H

0

must have length at least 6, otherwise z

is adjaent to u, w is adjaent to z and, given any node s in S

k

that is not

adjaent to z, (s; w; z; s

k

; v; s) is a 5-hole in G.

Claim 6 G

0

is a Berge graph.

Assume not. Then G

0

ontains either an odd hole or an odd anti-hole. If G

0

ontains an odd hole Q, then Q must ontain wv, otherwise Q would be an

odd hole in G. Also, Q must ontain a node in S, otherwise Q = H

0

that is

an even hole. Sine every node in S

k

is adjaent to both w and v, Q must

ontain exatly one node in S, namely s

k

. The only hole in G

0

ontaining s

k

,

w and v is (z; P

zy

; w; v; s

k

; z), whih, by onstrution, is even. If G

0

ontains

an odd anti-hole Q, then Q ontains, at most, two nodes in S, sine S is a

stable set, and at most four nodes in H

0

, sine every subset of nodes of H

0

with at least �ve elements ontains a stable set of size 3. But then Q is a

5-anti-hole, therefore Q is also a 5-hole, a ontradition.

Sine, by onstrution, H

uw

and H

wv

have both length at least 2, H

0

has

length stritly smaller than H. Therefore, by indution, Theorem 10 holds

in G

0

for H

0

and S. Sine E

S

(H

0

) = fuvg and every node of S has at least

three neighbors in H

0

, then the only possibility is that z is adjaent to u and

there exists a node s in S

k

whose only neighbors in H

0

are u, v and w. But

then, in G, (z;H

zw

; w; s; v; s

k

; z) is an odd hole, a ontradition 2

Note that an edge set C of H of even ardinality indues a bioloring of

the nodes of H: two nodes of H are olored with distint olors if and only

if the subpaths of H onneting them ontain an odd number of edges in C.
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De�nition 11 Given a Berge graph G, a hub of G is a pair (H;S) where

H is a hole of G of length at least 6 and S is a o-onneted set in G nV (H)

that sees a positive even number of edges of H. A setor of a hub (H;S) is

a maximal subpath of H ontaining no edge of E

S

(H).

Remark 12 Let G be a Berge graph and (H;S) a hub of G. Then the

endnodes of a setor are endnodes of edges of E

S

(H) and every setor of

(H;S) has even length.

Proof: By maximality in the de�nition of setor, every endnode of a setor

must be an endnode of an edge in E

S

(H). Assume there exists a setor

P = x

1

; : : : ; x

n

of (H;S) of odd length. Let w be the endnode of some edge

in E

S

(H) distint from x

1

and x

n

. Sine both x

1

and x

n

are universal for S

and P has length at least 3, then by Lemma 5 applied to S, P and w, there

is an odd number of edges of P that sees S, a ontradition. 2

Corollary 13 Let G be a Berge graph and (H;S) be a hub of G. Let y 2

V (G) n (V (H)[ S) be a node that sees an odd number of edges in a setor of

(H;S). Assume S [ y is o-onneted. Then

(i) y has exatly two neighbors in H and they are adjaent or

(ii) There exists x 2 S not adjaent to y suh that (H; x) and (H; y) are

twin wheels and exatly one edge of H sees both x and y or

(iii) S ontains a node x not adjaent to y suh that (H; y) and (H; x) are

both line wheels and no edge of H sees both x and y or

(iv) jHj = 6, (H; y) is a line wheel and S [ y ontains an odd hordless

anti-path Q of length at least 3 between y and a node x suh that (H; x)

is a line wheel, no edge of H sees both x and y and every intermediate

node of Q is adjaent to every node in H.

Proof: If y has exatly two neighbors in H then onlusion (i) holds. Assume

then that y has at least 3 neighbors in H. If E

S[y

(H) has odd ardinality,

then, by Theorem 10, onlusion (ii) holds. So E

S[y

(H) has even ardinality.

Sine there is an even number of edges of H that sees y and y sees an odd

number of edges in some setor of (H;S), then there are at least 2 setors P =

x

1

; : : : ; x

h

and P

0

= x

0

1

; : : : ; x

0

k

of (H;S) suh that an odd number of edges

13



of P and P

0

, respetively, sees y. Let y

1

; y

2

, (resp. y

0

1

; y

0

2

) be the neighbors

of y in P (resp. P

0

) losest to x

1

and x

h

(resp. x

0

1

and x

0

k

) respetively.

Sine an odd number of edges of P sees y, then P

x

1

y

1

and P

y

2

x

h

have

length of distint parity. We an therefore assume that P

x

1

y

1

has odd length

and P

y

2

x

h

has even length. Analogously, assume that P

0

x

0

1

y

0

1

has odd length

and P

y

0

2

x

0

k

has even length.

If y

1

and y

2

are nonadjaent, then F = x

1

; P

x

1

y

1

; y

1

; y; y

2

; P

y

2

x

h

; x

h

is an odd

path so, by Lemma 5 applied to S, F and x

0

1

, F has an odd number of edges

that see S, ontraditing either the de�nition of setor or the assumption

that S[y is o-onneted. Hene y

1

y

2

is an edge and, analogously, y

0

1

y

0

2

is an

edge. Let now F = x

1

; P

x

1

y

1

; y

1

; y; y

0

2

; P

y

0

2

x

0

k

. If F is a hordless path then F is

odd and by Lemma 5 applied to S, F and x

0

1

, F has an odd number of edges

that see S, a ontradition. Therefore F is not a hordless path, but then

x

1

must be adjaent to x

0

k

. Analogously, by repeating the previous argument

for F

0

= x

0

1

; P

x

0

1

y

0

1

; y

0

1

; y; y

2

; P

y

2

x

h

, x

h

must be adjaent to x

0

1

. Therefore (H; y)

is an L-wheel.

Case 1: jHj > 6

Then, w.l.o.g., H

0

= (x

0

1

; P

x

0

1

y

0

1

; y

0

1

; y; y

2

; P

y

2

x

h

; x

h

; x

0

1

) is a hole of length at

least 6. Sine E

S

(H

0

) = fx

0

1

x

h

g, Theorem 10 applies.

Case 1.1: Conlusion (3) of Theorem 10 holds.

Then there exists a node x in S suh that the only neighbors of x in H

0

are x

h

and x

0

1

. Sine x sees an odd number of edges in a setor of (H; y),

then, by the previous argument, (H; x) is an L-wheel and (iii) holds.

Case 1.2: Conlusion (2) of Theorem 10 holds.

Then there exists two nodes x and x

0

in S suh that (H

0

; x) and (H

0

; x

0

)

are both twin wheels. Let w, w

0

be, respetively, the neighbors of x and

x

0

in V (H

0

) n fx

h

x

0

1

g and let F be the path between w and w

0

indued by

V (H

0

) n fx

h

; x

0

1

g. Sine F has odd length, (x

1

; x; w; F; w

0

; x

0

; x

1

) is an odd

hole, a ontradition.

Case 2: jHj = 6

Then y

2

= x

h

and y

0

2

= x

0

k

. Sine y

1

and y

0

1

are not universal for S and

S [ y is o-onneted, let Q be a shortest anti-path in S [ y from y to a

node x that is not adjaent to both y

1

and y

0

1

. Assume, w.l.o.g., that x is not

adjaent to y

1

, then (y;Q; x; y

1

; x

0

1

; y) is an anti-hole, therefore Q must be

an odd anti-path. If x is adjaent to y

0

1

, then (y;Q; x; y

1

; y

0

1

; x

1

; y) is an odd

anti-hole, a ontradition. Therefore (H; x) is a line wheel. If Q has length

1 then (iii) holds, else (iv) holds. 2
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5 Connetions from blue to red setors of a

hub

Let P be a onneted subgraph of G n (H [ S). The attahments of P to H

are the nodes of H adjaent to at least one node of P .

Theorem 14 Let (H;S) be a hub of a Berge graph G. Let P = x

1

; : : : ; x

n

be a minimal hordless path in G n (V (H) [ S) ontaining no node that is

universal for S, suh that x

1

has a blue neighbor in H and x

n

has a red

neighbor w.r.t. the bioloring indued by E

S

(H) (n = 1 is allowed). If there

exist onseutive attahments of P with distint olors that are not adjaent,

then one of the following holds.

(a) There exists y 2 S suh that V (H)[V (P )[fyg indues the line graph

of a bipartite subdivision of K

4

.

(b) n = 1, jHj = 6, (H; x

1

) is a line wheel and S [ x

1

ontains a hordless

odd anti-path Q of length at least 3 between x

1

and a node y 2 S suh

that (H; y) is a line wheel, no edge of H sees both x

1

and y and every

intermediate node of Q is adjaent to every node in H.

() There exists y 2 S suh that V (H) [ V (P ) [ fyg indues onneted

diamonds.

(d) n = 1 and there exists y 2 S nonadjaent to x

1

suh that (H; x

1

) and

(H; y) are twin wheels and exatly one edge of H sees both x

1

and y.

(e) There exists y 2 S suh that (H; y) is a twin wheel, no node of P is a

neighbor of y, x

1

is adjaent to the twin of y in H and no other node

in H while x

n

is not adjaent to both the other neighbors of y in H.

(f) n = 1, H ontains a subpath u; z; w; z

0

; u

0

suh that E

S

(H) = fwz; wz

0

g,

x

1

is adjaent to u, w and u

0

but not z and z

0

, S[x

1

ontains a hordless

odd anti-path Q of length at least 3 between x

1

and a node y 2 S suh

that y is nonadjaent to u and u

0

and every intermediate node of Q is

adjaent to both u and u

0

.

(g) n = 1, H ontains a subpath w; z; u; z

0

; w

0

suh that wz and w

0

z

0

are

edges of E

S

(H), x

1

is adjaent to u, w and w

0

but not z and z

0

, S [ x

1

ontains an even anti-path Q between x

1

and a node y 2 S suh that
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y is nonadjaent to u and every intermediate node of Q is adjaent to

u. Furthermore, every node in V (H) n fz; z

0

g that is universal for S is

adjaent to x

1

.

(h) n > 1, H ontains a subpath w; z; u; z

0

; w

0

suh that wz and w

0

z

0

are

edges of E

S

(H), x

1

is adjaent w and w

0

but not u, z and z

0

, while

x

n

is adjaent to u but not w, z, w

0

and z

0

. Furthermore S ontains

two nonadjaent nodes y and y

0

suh that the only neighbors of y in

V (P ) [ fw; z; u; z

0

; w

0

g are u, z, z

0

, w, w

0

while the only neighbors of

y

0

in V (P ) [ fw; z; u; z

0

; w

0

g are x

1

, z, z

0

, w, w

0

.

(k) n > 1, H = (v; w; z; u; z

0

; w

0

; v), E

S

(H) = fwz; w

0

z

0

g, x

1

is adjaent

only to v in H and x

n

is adjaent only to u in H. Furthermore, S

ontains two nonadjaent nodes y and y

0

suh that y and y

0

are adjaent

to every node in H exept v and u, respetively, and no node in P is

adjaent to y or y

0

.

Proof: Note that, by the minimality assumption on P , no intermediate node

of P has a neighbor in H.

Case 1: x

1

or x

n

sees an odd number of edges in some setor of (H;S).

Assume, w.l.o.g., that x

1

sees an odd number of edges in some setor

of (H;S): then onlusion (i), (ii), (iii) or (iv) of Corollary 13 holds. If

onlusion (ii) of Corollary 13 holds, then (d) holds. If onlusion (iii) of

Corollary 13 holds, n = 1 and there exists y in S non adjaent to x

1

suh

that (H; x

1

) and (H; y) are line wheels and no edge in H sees both x

1

and y,

but then one an verify that V (H) [ fx

1

; yg is the line graph of a bipartite

subdivision of K

4

, so (a) holds. If onlusion (iv) of Corollary 13 holds,

then (b) holds. Therefore we an assume that onlusion (i) of Corollary 13

holds and x

1

has exatly two neighbors u; u

0

in H, u and u

0

are adjaent

and they are both blue. If x

n

has exatly one neighbor t in H, then there is

a 3PC(x

1

uu

0

; t). If x

n

has two neighbors in H that are not adjaent, then

there is a 3PC(x

1

uu

0

; x

n

). Hene x

n

has exatly two neighbors v and v

0

in

H and they are adjaent and both red. Assume that u and v are onseutive

attahments of P and u

0

, v

0

are onseutive attahments of P . W.l.o.g.,

u and v are non adjaent. Let H

uv

and H

u

0

v

0

be, respetively, the paths

between u and v and between u

0

and v

0

in H suh that no intermediate node

of H

uv

or H

u

0

v

0

is an attahment of P . Sine u and v are nonadjaent, then

H

0

= (u;H

uv

; v; x

n

; P; x

1

) is a hole of length at least 6 and, sine u and v
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have distint olors and no node in P is universal for S, an odd number of

edges of H

0

see S. Also H

00

= (u

0

; H

u

0

v

0

; v

0

; x

n

; P; x

1

) is a hole (possibly of

length 4) and an odd number of edges of H

00

sees S. By Theorem 10, exatly

one edge wz of H

0

and one edge of w

0

z

0

of H

00

sees S and one of the following

ases holds.

Case 1.1: There exists a node y 2 S suh that y has only two neighbors

in H

0

.

But then y sees an odd number of edges inH

u

0

v

0

, so y must see exatly one

edge in H

u

0

v

0

, otherwise V (H

u

0

v

0

) [ V (P ) [ fyg would indue an odd wheel.

But then (H; y) is a line wheel and one an verify that V (H) [ V (P ) [ fyg

indues the line graph of a bipartite subdivision of K

4

, hene (a) holds.

Case 1.2: There exist non adjaent nodes y; y

0

2 S suh that (H

0

; y) and

(H

0

; y

0

) are twin wheels.

Let t and t

0

be the neighbors of y and y

0

, respetively, in V (H

0

) n fw; zg.

If u

0

and v

0

are nonadjaent, then at least one node among w

0

and z

0

has

no neighbor in P , say w

0

, but then (V (H

0

) [ fw

0

; y; y

0

g) n fw; zg indues an

odd hole, a ontradition. In partiular, w.l.o.g. t = u and t

0

= v, else

(H; y) or (H; y

0

) is an odd wheel. Sine H

0

is even, P must be odd, therefore

(y; u; x

1

; P; x

n

; v

0

; y) is an odd hole, a ontradition.

Case 2: Both x

1

and x

n

see an even number of edges in every setor of

(H;S).

Let u and v be two onseutive, nonadjaent attahments of P with dis-

tint olors in the bioloring of H indued by E

S

(H). Assume, w.l.o.g., v

is adjaent to x

1

and u to x

n

. Let H

uv

be a subpath of H between u and

v ontaining no attahments of P exept u and v. Sine u and v have dis-

tint olors, H

uv

ontains an odd number of edges of E

S

(H), therefore the

hole H

0

= (x

1

; P; x

n

; u;H

uv

; v; x

1

) has an odd number of edges that see S,

otherwise P would ontain some node universal for S. By Theorem 10, H

0

must ontain a unique edge of E

S

(H), say edge zw, and no node universal

for S exept z and w. Assume, w.l.o.g., that z is one endnode of the setor

Z ontaining u, and let z

0

be the other endnode of Z. Let w

0

be the neighbor

of z

0

in V (H) n V (Z); hene z

0

w

0

2 E

S

(H). Sine H

0

is an even hole, H

uv

has length of the same parity as P . Sine u and v are nonadjaent, we may

assume, w.l.o.g, that u and z are distint. Let H

uz

be the path between u

and z in H

uv

and H

wv

be the path between w and v in H

uv

.

Case 2.1: w = w

0

.
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Then w = w

0

= v and E

S

(H) = fwz; wz

0

g.

Case 2.1.1: There exists a node y 2 S whose only neighbors in H

0

are

w and z.

If (H; y) is a twin wheel, then ase (e) applies. If (H; y) is not a twin

wheel, y has at least a neighbor in V (H)nfw; z; z

0

g. If u is the only neighbor

of x

n

in Z, then G ontains a 3PC(zwy; u), hene x

n

has a neighbor in Z

distint from u. Furthermore, sine x

n

sees an even number of edges in Z,

x

n

has a neighbor in Z that is not adjaent to u. If y has a neighbor in Z

that is not adjaent to u, then there is a 3PC(zwy; x

n

), hene y has a unique

neighbor t in Z and t is adjaent to u. Furthermore, t is adjaent to x

n

,

else there is a 3PC(zwy; u). Let u

0

be the neighbor of x

n

in Z losest to z

0

,

then u

0

6= t. If u

0

is not adjaent to t, then there is a 3PC(x

n

tu; y). So u

0

is

adjaent to t and hene V (H)[ V (P )[ fyg indues onneted diamonds, so

onlusion () holds.

Case 2.1.2: Every node in S has at least 3 neighbors in H

0

.

If jH

0

j � 6 then, by Theorem 10, S ontains two nonadjaent nodes y

and y

0

suh that (H

0

; y) and (H

0

; y

0

) are twin wheels and wz is the only edge

of H

0

that sees both y and y

0

. But then (V (H

0

)[fy; y

0

g) n fw; zg indues an

odd path R between y and y

0

and (z

0

; y; R; y

0

; z

0

) is an odd hole unless z

0

is

adjaent to x

n

. But then, sine x

n

sees an even number of edges in Z, H

zu

must have even length. W.l.o.g. assume that y is not adjaent to x

1

, then

(V (H

uz

) [ fy; z

0

; x

n

g) n fzg indues an odd hole, a ontradition.

Hene jH

0

j = 4, so u is adjaent to z and n = 1. Let u

0

be the neighbor

of x

1

in Z losest to z

0

. Then, sine x

1

sees an even number of edges in Z

and u is adjaent to z, u

0

and z

0

have odd distane in H. By repeating the

previous argument on the hole H

00

ontaining w, u

0

and x

1

in V (Z)[fx

1

; wg

instead of H

0

, we argue that u

0

and z

0

must be adjaent. Sine u and u

0

are

not universal for S, let Q be a shortest possible anti-path in S [ x

1

between

x

1

and a node y not adjaent to both u and u

0

. Assume, w.l.o.g, that y is not

adjaent to u. Q must have odd length, or else (x

1

; Q; y; u; z

0

; x

1

) is an odd

anti-hole. Moreover, sine every node in S has at least 3 neighbors in H

0

, Q

has length at least 3. Finally, if u

0

is adjaent to y, then (x

1

; Q; y; u; u

0

; z; x

1

)

is an odd anti-hole, a ontradition. Hene onlusion (f) holds.

Case 2.2: w 6= w

0

.

Note that, sine w

0

is universal for S and distint from w and z, then w

0

is

not in H

uv

. Let s be the neighbor of x

n

in Z losest to z

0

and let H

sz

0

be the

path between s and z

0

in Z. Sine x

n

sees an even number of edges in Z and
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H

zu

has length of the same parity as H

sz

0

. Let F = w;H

wv

; v; x

1

; P; s;H

sz

0

; z

0

.

Sine H

0

is an even hole and H

zu

has the same length as H

sz

0

, F is an odd

path between w and z

0

. If z is not adjaent to s then, by Lemma 5 applied

to S, F and z, an odd number of edges of F see S, a ontradition. Hene

u is the unique neighbor of x

n

in Z and it is adjaent to z. Also, given any

node t in V (H) n fz; z

0

; wg universal for S, if t is not an attahment of P

then, by Lemma 5 applied to S, F and t, an odd number of edges of F see

S, a ontradition. In partiular, w

0

must be adjaent to x

1

or to v.

If w

0

is adjaent to v then F

0

= w

0

; v; x

1

; P; x

n

; u; z is an odd path, there-

fore, by a similar argument, z

0

is adjaent to u and w is also adjaent to v

(sine x

1

sees an even number of edges in every setor, hene w annot be

adjaent to x

1

). Therefore jHj = 6 and, sine F

0

must have length at least

5, by Lemma 4 there exists two nonadjaent nodes nodes y and and y

0

in S

suh that y is adjaent to every node in H exept v, y

0

is adjaent to every

node in H exept u and neither y nor y

0

has a neighbor in P , hene (k) holds.

If w

0

is adjaent to x

1

then F

0

= w

0

; x

1

; P; x

n

; u; z is an odd path, therefore,

by the usual argument, z

0

is adjaent to u and w is adjaent to x

1

. If jF

0

j = 3,

then n = 1 and, by Lemma 4, there exists an odd anti-path x

1

; Q; y; u between

x

1

and u in S [ fu; x

1

g, hene ase (g) holds. If jF

0

j � 5, then by Lemma 4

S ontains two nonadjaent nodes y and y

0

suh that y is adjaent to x

1

, z,

z

0

, w, w

0

an no other node in V (P )[fw; z; u; z

0

; w

0

g while y

0

is adjaent to u,

z, z

0

, w, w

0

an no other node in V (P )[fw; z; u; z

0

; w

0

g, hene ase (h) holds.

2

Given a hub (H;S) and an edge ab 2 E

S

(H), an ear on ab (with respet

to (H;S)) is a hordless path P = x

1

; : : : ; x

n

in G n (V (H)[ S) suh that x

1

is adjaent to a, x

n

is adjaent to b, no node in V (H) n fa; bg has a neighbor

in P , no node of P is universal for S, and P is minimal with these properties.

Theorem 15 Let (H;S) be a hub of a Berge graph G where S is maximal

with the property that (H;S) is a hub. Let P = x

1

; : : : ; x

n

be a minimal

hordless path in G n (H [ S) ontaining no node universal for S suh that

x

1

has a blue neighbor in H and x

n

has a red neighbor (n = 1 is allowed). If

every pair of onseutive attahments of P with distint olors are adjaent,

then one of the following holds.

(a) P is an ear on some edge of E

S

(H).

(b) n > 1, there exist two adjaent edges ab, b of E

S

(H) suh that b is

the only neighbor of x

1

in H and x

n

is adjaent to a;  and not to b.
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Moreover, if E

S

(H) % fab; bg, then no node of P has a neighbor in

V (H) n fa; b; g.

() n > 1, E

S

(H) ontains at least two nonadjaent edges, x

1

is adjaent

to all the blue endnodes of the edges of H that see S (and possibly to

other blue nodes of H), x

n

is adjaent to all the red endnodes of the

edges of H that see S (and possibly to other red nodes of H). If n > 2,

then there exist nonadjaent y; z 2 S suh that y is adjaent to x

1

and

to no other node of P , and z is adjaent to x

n

and to no other node

of P . If n = 2, then S [ fx

1

; x

2

g ontains an odd anti-path between x

1

and x

2

.

Proof: Note that, by the minimality assumption on P , no intermediate node

of P has a neighbor in H. Let a and b be two onseutive attahments

of P with distint olors. Then, by assumption, a and b are adjaent and

ab 2 E

S

(H). Assume, w.l.o.g., that a is adjaent to x

n

and b is adjaent to x

1

.

Let  be the neighbor of b in V (H)nfag. If P has no neighbor in V (H)nfa; bg,

then P is an ear of ab and (a) ours. Therefore we may assume, w.l.o.g., that

x

n

has a neighbor in V (H) n fa; bg. Note that n > 1, otherwise either S [ x

1

sees a positive even number of edges of H, ontraditing the maximality of S,

or ab is the only edge of H that sees S [ x

1

, and by Theorem 10 there exists

y 2 S nonadjaent to x

1

suh that (H; x

1

) and (H; y) are twin wheels and

exatly one edge of H sees both x

1

and y, thus ontraditing the assumption

that every two onseutive attahments of P with distint olors are adjaent.

Therefore x

1

has only blue neighbors and x

n

has only red neighbors. If x

n

sees an odd number of edges in some setor of (H;S) then, by Corollary 13,

the only neighbors of x

n

in H are a and the neighbor d of a in V (H) n fbg.

If x

1

has no neighbor in V (H) n fbg, then G ontains a 3PC(x

n

ad; b). If

x

1

has two nonadjaent neighbors in H, then G ontains a 3PC(x

n

ad; x

1

).

Therefore x

1

is adjaent to b,  and no other node in H. But then  and d

are onseutive, non adjaent attahments of P with distint olors in the

bioloring of H indued by E

S

(H), a ontradition. Therefore x

n

sees an

even number of edges in every setor of (H;S) and, by the same argument,

also x

1

sees an even number of edges in every setor of (H;S).

We may assume that x

n

has at least as many neighbors in H as x

1

does.

If E

S

(H) = fab; bg then (b) holds. Next we show that if x

n

has no neighbor

in H n fa; g, then (b) holds. Suppose that x

n

has no neighbor in H n fa; g.

Then x

n

is adjaent to . If x

1

has no neighbors in H n b then (b) holds.
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Otherwise , x

1

has exatly two neighbors in H, b and say d. Sine all pairs

of onseutive attahments of P having distint olors are adjaent, then

a; d and ; d are adjaent, hene jHj = 4, ontraditing the assumption that

(H;S) is a hub. Now we may assume that (b) does not hold, hene there

exists a red setor Z = z

1

; : : : ; z

k

of (H;S) suh that fa; g 6= fz

1

; z

k

g and

suh that x

n

has a neighbor in V (Z)nfa; g. Assume, w.l.o.g, that z

1

=2 fa; g

and x

n

has a neighbor in V (Z) n fz

k

g. Let z

i

be the neighbor of x

n

of lowest

index in Z, and let H

z

1

z

i

be the subpath between z

1

and z

i

in Z. Note that

i < k. Sine x

n

sees an even number of edges in every setor of (H;S) and x

n

has only red neighbors in H, then H

z

1

z

i

has even length (sine x

n

is adjaent

to a) and also z

k

and z

i

have even distane in Z, hene they are not adjaent.

Moreover, H

0

= (a; b; x

1

; P; x

n

; a) is an even hole, therefore P is an odd path.

But then F = b; x

1

; P; x

n

; z

i

; H

z

1

z

i

; z

1

is an odd hordless path. If there exists

a node w universal for S in V (H) n fa; b; z

1

g that has no neighbor in the

interior of F , then Lemma 5 applied to S, F and w implies that there exists

an odd number of edges in F that see S, a ontradition. Therefore every

node universal for S in V (H) n fa; b; z

1

g is adjaent either to x

1

or to x

n

.

Let t be the unique blue neighbor of z

1

in H. Note that t is adjaent to x

1

.

Sine t and z

i

are onseutive attahments of P , they must be adjaent. So

x

n

is adjaent to z

1

. Hene every node of H that is universal for S must be

adjaent to x

1

or x

n

. In partiular, x

1

is adjaent to all the blue endnodes of

the edges of H that see S, x

n

is adjaent to all the red endnodes of the edges

of H that see S. If n > 2, then F has length at least 5 and by Lemma 4

there exist nonadjaent y; z 2 S suh that y is adjaent to x

1

and to no other

node of P , and z is adjaent to x

n

and to no other node of P . If n = 1, then

jF j = 3 and, by Lemma 4, S [ fx

1

; x

2

g ontains an odd anti-path between

x

1

and x

2

. So onlusion () holds. 2

In the bioloring of H indued by E

S

(H), we say that a node u of H is

an inner blue (resp. red) node if both neighbors of u in H are blue (resp.

red).

Theorem 16 Let (H;S) be the hub of a Berge graph G. Assume that S is a

maximal set suh that (H;S) is a hub with the further property that S does

not ontain any enter of a twin wheel w.r.t. H. Let P = x

1

; : : : ; x

n

be a

minimal hordless path in G n (V (H) [ S) ontaining no node universal for

S suh that x

1

has a red neighbor, no other node of P has a red neighbor and
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x

n

has a blue neighbor b in H so that neither of the neighbors of b in H is a

red neighbor of x

1

. Then one of the following holds:

(a) P has two onseutive attahments of di�erent olors that are nonad-

jaent, and P is of one of the types in Theorem 14 (a)-() or (f)-(k).

(b) There exist two adjaent edges ab

1

, ab

2

of E

S

(H) suh that a is the

only red neighbor of x

1

in H and at least one node of P is adjaent to

both b

1

and b

2

. If E

S

(H) % fab

1

; ab

2

g or if S ontains a node s with no

neighbors in P , then the path Q = a; x

1

; : : : ; x

n

ontains an odd number

of edges that see both b

1

and b

2

.

() n > 1, E

S

(H) ontains at least two nonadjaent edges, x

1

is adjaent

to all the red endnodes of the edges of H that see S and the node x

j

of lowest index adjaent to some blue node is adjaent to all the blue

endnodes of the edges of H that see S. If j > 2, then S ontains two

nonadjaent nodes y and z suh that y is adjaent to x

1

and to no other

node of P

x

1

x

j

, and z is adjaent to x

j

and to no other node of P

x

1

x

j

.

If j = 2, then S [ fx

1

; x

2

g ontains an odd hordless anti-path between

x

1

and x

2

.

Note that every path P = x

1

; : : : ; x

n

suh that x

1

has a red neighbor and

x

n

has an inner blue neighbor ontains a subpath as in the hypothesis of

Theorem 16.

Proof: Let x

j

be the node of P of lowest index having a blue neighbor. If

the path P

x

1

x

j

has onseutive attahments of distint olors that are not

adjaent, then P

x

1

x

j

satis�es the hypothesis of Theorem 14, hene one the

ases (a)-() or (f)-(k) of Theorem 14 apply (ases (d) and (e) annot our

sine S does not ontain any enter of a twin wheel w.r.t. H). Sine in any

of these ases x

j

has a blue neighbor that is not adjaent to any red neighbor

of x

1

in H, then j = n and ase (a) holds .

Hene we may assume that every pair of onseutive attahments with

distint olors of P

x

1

x

j

are adjaent, so ase (a)-() of Theorem 15 our. If

ase () ours, then ase () of Theorem 16 holds and we are done. Hene

we may assume that ase (a) or (b) of Theorem 15 holds. In partiular, x

1

has a unique red neighbor, say a and, given b

1

and b

2

the two neighbors of a

in H, ab

1

sees S and x

j

is adjaent to b

1

. Sine x

n

has a blue neighbor in H

neither of whose neighbors in H is a red neighbor of x

1

, n > 1.
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Claim 1 ab

2

sees S and b

2

has a neighbor in P .

Let t be the attahment of P in V (H) n fa; b

1

g that is losest to a in the

path indued by V (H) n fb

1

g. Sine a is the unique red attahment of P ,

then t is blue. If t = b

2

then ab

2

sees S and we are done. Assume then that

t 6= b

2

, hene no neighbor of t in H is a red neighbor of x

1

so t is adjaent

to x

n

and no other node in P . Let H

b

2

t

be the path between b

2

and t in the

graph indued by V (H) n fb

1

g, and let H

0

= (a; x

1

; P; x

n

; t; H

b

2

t

; b

2

; a). Then

H

0

is an hole of length at least 6 and, sine a and t have distint olors in

the bioloring of H indued by E

S

(H) and no node in P is universal for S,

an odd number of edges of H

0

sees S, therefore, by Theorem 10, exatly one

edge of H

0

sees S and no node of H

0

is universal for S exept the endnodes

of suh edge. Sine a is universal for S, then the unique edge in H

0

that sees

S must be ab

2

. Also, by Theorem 10, we have two possibilities.

Case 1: There exists a node y 2 S suh that the only neighbors of y in

H

0

are a and b

2

.

Then t is not adjaent to b

1

, otherwise (H; y) would be a twin wheel. Let

Z = z

1

; : : : ; z

k

be the path indued by V (H) n (V (H

b

2

t

) [ fa; b

1

g), where z

1

is adjaent to t and z

k

is adjaent to b

1

. Sine (H; y) is not a twin wheel,

then y has a neighbor in Z. If x

n

does not have a neighbor in Z, then there

is a 3PC(yab

2

; t). If both y and x

n

have a neighbor in Z distint from z

1

,

then there is a 3PC(yab

2

; x

n

). Note that b

1

has a neighbor in V (P ) n fx

1

g,

otherwise (y; b

1

; x

1

; P; x

n

; t; H

b

2

t

; b

2

; y) is an odd hole.

If x

n

has no neighbor in Z exept z

1

, then t and z

1

are the only neighbors

of x

n

in H, otherwise (H; x

n

) is an odd wheel. Sine b

1

has a neighbor in

V (P ) n fx

1

g, then there is a 3PC(x

n

tz

1

; b

1

).

Hene x

n

has a neighbor in V (Z)nfz

1

g, therefore the only neighbor of y in

Z is z

1

. Also x

n

is adjaent to z

1

otherwise there is a 3PC(yab

2

; t). Consider

now the hole H

00

= (z

1

; y; a; x

1

; P; x

n

; z

1

). Sine b

1

sees at least one edge in

H

00

and b

1

has at least one neighbor in V (P ) n fx

1

g, then either (H

0

; b

1

) or

(H

00

; b

1

) is an odd wheel sine b

1

sees in H

00

exatly one edge more than in

H

0

.

Case 2: S ontains two nonadjaent nodes y and z suh that the only

neighbors of y in H

0

are a, b

2

and x

1

and the only neighbors of z in H

0

are

a, b

2

and the node  6= a adjaent to b

2

in H

0

.

Then t is not adjaent to b

1

, otherwise (H; y) would be a twin wheel. Let

Z = z

1

; : : : ; z

k

be the path indued by V (H)n (V (H

b

2

t

)[fa; b

1

g), where z

1

is

adjaent to t and z

k

is adjaent to b

1

. Sine (H; y) is not a twin wheel, then
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y has a neighbor in Z. Also, sine (H; z) is not an odd wheel, also z has a

neighbor in Z. Let p and q be two neighbors in Z of y and z respetively

with minimum distane in Z. Let Z

pq

be the path between p and q in Z. Z

pq

is an even path, otherwise (a; y; p; Z

pq

; q; z; a) would be an odd hole. If b

1

has

a neighbor in P nx

1

, then (P nx

1

)[H

b

2

t

[fy; z; b

1

g ontains a 3PC(b

2

z; b

1

).

So x

1

is the unique neighbor of b

1

in P . If x

n

has no neighbors in Z, then

H [ P indues a 3PC(x

1

ab

1

; t). If z

1

is not the unique neighbor of x

n

in Z,

then H [P ontains a 3PC(x

1

ab

1

; x

n

). So z

1

is the unique neighbor of x

n

in

Z. If Z

pq

ontains z

1

, then V (Z

pq

)[V (P )[fy; z; ag indues a 3PC(x

1

ay; z

1

).

Otherwise, V (P )[ (V (H

b

2

t

) n b

2

)[V (Z

pq

)[fy; zg indues an odd hole. This

onludes the proof of Claim 1.

Claim 2 There exists a node in P that is adjaent to both b

1

and b

2

.

Assume not. Let x

k

be the node of P of lowest index that is adjaent to

b

2

. Sine we assumed that the node x

j

of lowest index in P adjaent to some

blue node is adjaent to b

1

, then k > j.

Case 1: x

1

is the unique neighbor of b

1

in P

x

1

x

k

.

Then x

k

must be adjaent to the neighbor  of b

2

in V (H) n fag and to

no other node in V (H) n fb

2

; g, or else there is either a 3PC(ab

1

x

1

; b

2

) or a

3PC(ab

1

x

1

; x

k

). Let F = b

1

; x

1

; P

x

1

x

k

; x

k

; b

2

. F is an odd path and b

1

and b

2

are universal for S. Sine P does not ontain any node universal for S, then

onlusion (ii) or (iii) of Lemma 4 holds.

If onlusion (ii) holds, then F has length 3 and S [ fx

1

; x

2

g ontains an

odd anti-path Q between x

1

and x

2

. Sine no node of V (H) n fa; b

1

; b

2

; g is

adjaent to x

1

or x

2

and a is universal for all intermediate nodes of Q, then

we an apply Lemma 5 in G to the set V (H) n fa; b

1

; b

2

; g, the path Q and

the node a. Therefore there must exists an intermediate node y of Q with

no neighbors in V (H) n fa; b

1

; b

2

; g. But then the only neighbors of y in H

are a, b

1

and b

2

and (H; y) is a twin wheel, a ontradition.

If onlusion (iii) holds, then S ontains two nonadjaent nodes y and z

suh that y is adjaent to x

1

and no other node of P

x

1

x

k

while z is adjaent

to x

k

and no other node of P

x

1

x

k

. Sine S does not ontain any enter of twin

wheels w.r.t. H, then y and z must have neighbors in V (H) n fa; b

1

; b

2

; g.

Let p and q be two neighbors of y and z, respetively, that are losest pos-

sible in V (H) n fa; b

1

; b

2

; g and let Z be the path between p and q in the

graph indued by V (H) n fa; b

1

; b

2

; g. Z must have even length otherwise

(a; y; p; Z; q; z; a) is an odd hole, but then (y; x

1

; P

x

1

x

k

; x

k

; z; q; Z; p; y) is an

odd hole, a ontradition.
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Case 2: b

1

has a neighbor in P

x

2

x

k

.

Then k > 2 and H

0

= (a; x

1

; P

x

1

x

k

; x

k

; b

2

; a) is a hole of length at least

6. The only edge of H

0

that sees S is ab

2

hene onlusion (2) or (3) of

Theorem 10 holds.

If onlusion (2) holds, then S ontains two nonadjaent nodes y and z

suh that y is adjaent to x

1

and no other node of P

x

1

x

k

while z is adjaent

to x

k

and no other node of P

x

1

x

k

, but then there exists a 3PC(zb

2

x

k

; b

1

).

If onlusion (3) holds, then S ontains a node y whose only neighbors in

H

0

are a and b

2

. Let P

0

be the shortest path between x

1

and y in the graph

indued by (V (P )[V (H)[ fyg) n fa; b

1

; b

2

g. Then H

00

= (a; x

1

; P

0

; y; a) is a

hole. Both b

1

and b

2

see the edge ay of H

00

, both b

1

and b

2

have a neighbor

in P

x

1

x

j

and y is not adjaent to x

k

, therefore by Theorem 10 b

1

and b

2

see

an even number of edges in H

00

, but then there exists a node of P that is

adjaent to both b

1

and b

2

.

This onludes the proof of Claim 2.

Claim 3 If E

S

(H) % fab

1

; ab

2

g then the path Q = a; x

1

; : : : ; x

n

ontains an

odd number of edges that see both b

1

and b

2

.

Assume that E

S

(H) % fab

1

; ab

2

g. Suppose it is not the ase that an odd

number of edges of Q see both b

1

and b

2

. Let x

l

be the node of highest

index that is adjaent to both b

1

and b

2

. Then l > 1. Suppose l is odd. Then

F = a; x

1

; P

x

1

x

l

; x

l

is an odd path and hene by Lemma 4 applied to F and set

fb

1

; b

2

g, b

1

is adjaent to x

1

, x

l

and no other node in P

x

1

x

l

while b

2

is adjaent

to x

l�1

, x

l

and no other node in P

x

1

x

l

. But then (V (H) [ V (P

x

1

x

l�1

)) n fag

indues an odd hole, a ontradition. Therefore l is even. Let x

h

and x

k

be the nodes of highest index adjaent to, respetively, b

1

and b

2

. W.l.o.g.,

h � k. We want to show that P

x

l

x

h

has even length. Assume not, then l < h,

therefore, by de�nition of l, h and k, h < k. Sine P

x

l

x

h

has odd length, then

b

1

must see an odd number of edges of P

x

l

x

h

. Let l = k

1

� : : : � k

m

= k be

all the indexes between l and k suh that b

2

is adjaent to x

k

i

. Then there

exists i, 1 � i � m� 1 suh that b

1

sees an odd number of edges in P

x

k

i

x

k

i+1

.

But then P

x

k

i

x

k

i+1

has length at least 2 and C = (b

2

; x

k

i

; P

x

k

i

x

k

i+1

; x

k

i+1

; b

2

) is

an hole, therefore b

1

sees exatly one edge uv in C, and V (C)[fa; b

1

g indues

a 3PC(b

1

uv; b

2

), a ontradition. Hene we have proven that a; x

1

; P

x

1

x

h

; x

h

has even length.

Case 1: x

n

sees an odd number of edges in some setor of (H;S).

Sine x

n

has only blue neighbors inH, by Corollary 13, x

n

has exatly two

neighbors u and v in H and they are adjaent. Suppose x

n

is not adjaent
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to b

2

. If h < k then there is a 3PC(x

n

uv; b

2

). If h = k then there is a

3PC(x

n

uv; x

k

). So x

n

is adjaent to b

2

. P

x

h

x

n

has odd length, else (V (H) [

V (P

x

h

x

n

)) n fa; b

2

g indues an odd hole. Let  be the neighbor of b

2

in H n a.

Then  is adjaent to x

n

. Let z be the endnode distint from b

2

of the

setor Z of (H;S) ontaining , and let F be the path between  and z in

Z. Sine E

S

(H) % fab

1

; ab

2

g, then z 6= b

1

. Moreover F has odd length,

therefore R = a; x

1

; P; x

n

; ; F; z has odd length. Let w be the neighbor of z

in V (H) nV (Z), then zw 2 E

S

(H) and, by Lemma 5 applied to S, R and w,

there is an odd number of edges of R that sees S, a ontradition.

Case 2: x

n

sees an even number of edges in every setor of (H;S).

Let u be the neighbor of x

n

losest to b

1

in the graph indued by V (H) n

fa; b

2

g and H

ub

1

be the path between u and b

1

in the graph indued by

V (H) n fa; b

2

g. We want to show that P

x

h

x

n

has length of the same par-

ity as the length of H

ub

1

. If not then u 6= b

1

and x

h

6= x

n

, but then

(b

1

; x

h

; P

x

h

x

n

; x

n

; u;H

ub

1

; b

1

) is an odd hole. Let z be the endnode distint

from b

1

and b

2

of the setor Z of (H;S) ontaining u (the existene of suh

a node is guaranteed by the hypothesis E

S

(H) % fab

1

; ab

2

g). Let u

0

be the

neighbor of x

n

losest to z in Z and let F be the path between u

0

and z in Z.

Sine x

n

sees an even number of edges in Z, then H

ub

1

and F have lengths

of the same parity, therefore R = a; x

1

; P; x

n

; u

0

; F; z has odd length. Let w

be the neighbor of z in V (H) n V (Z), then zw 2 E

S

(H) and, by Lemma 5

applied to S, R and w, there is an odd number of edges of R that sees S, a

ontradition.

This onludes the proof of Claim 3.

Claim 4 If S ontains a node s with no neighbors in P , then the path

Q = a; x

1

; : : : ; x

n

ontains an odd number of edges that see both b

1

and b

2

.

Let F be the shortest path between x

1

and s in the graph indued by

(V (H) [ V (P ) [ fsg) n fa; b

1

; b

2

g. Then H

0

= (s; a; x

1

; F; s) is a hole. Sine

as sees both b

1

and b

2

and there exists a further node in P that is adjaent

to both b

1

and b

2

then, by Theorem 10, H

0

ontains an even number of edges

that see both b

1

and b

2

, but then Q = a; x

1

; P; x

n

has an odd number of edges

that see both b

1

and b

2

. This onludes the proof of Claim 4. 2

6 Ears on isolated edges of a hub

Given an hub (H;S) in a Berge graph G, an edge uv in E

S

(H) is isolated if

no other edge in E

S

(H) is adjaent to uv.
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Lemma 17 Let (H;S) be a hub of a Berge graph G suh that H ontains

an edge uv in E

S

(H) that is isolated. Assume that S is maximal with suh a

property. Let P = x

1

; :::; x

n

be an ear on uv. Let Q = y

1

; :::; y

m

be a minimal

path in G n (V (H)[ V (P )[ S) suh that y

1

has a neighbor in P and y

m

has

a neighbor in the interior of some setor of (H;S). Then Q ontains a node

that is universal for S.

Proof: By ontradition, let Q = y

1

; :::; y

m

be a minimal path in Gn (V (H)[

V (P )[S) suh that y

1

has a neighbor in P , y

m

has a neighbor in the interior

of some setor of (H;S) and no node in Q is universal for S. Note that we

only need to prove the statement in the ase in whih Q does not ontain

any node whose only neighbors in H are u and v. In fat, if Q ontains suh

a node and y

i

is the node of highest index whose only neighbors are u and v,

then P

0

= y

i

is an ear on uv and Q

0

= y

i+1

; Q

y

i+1

y

m

; y

m

is a path suh that

y

i+1

has a neighbor in P

0

and y

m

has a neighbor in the interior of some setor

of (H;S) but no node of Q

0

is adjaent to u, v and no other node of H. Let

us assume, then, that Q does not ontain any node whose only neighbors in

H are u and v.

Claim 1: No node in Q is adjaent to both u and v.

Assume there exists i, 1 � i � m, suh that y

i

is adjaent to u and v.

Sine y

i

is not universal for S, then S[y

i

is o-onneted. By the maximality

of S, (H;S [ y

i

) is not a hub, hene uv is the only edge of H that sees S [ y

i

.

Sine uv is isolated, S does not ontain any enter of a twin wheel w.r.t. H,

hene, by Theorem 10, y

i

is adjaent only to u and v in H, a ontradition.

Claim 2: Let y

i

be a node with a neighbor in H distint from v (resp.

u). Let s be the neighbor of y

i

losest to u (resp. v) in V (H) n fvg (resp.

V (H) n fug) and assume that no node in Q

y

1

y

i�1

has a neighbor loser to u

(resp. v) in V (H) n fvg (resp. V (H) n fug) than s. Then s and u (resp. v)

have the same olor.

Assume, w.l.o.g., that y

i

has a neighbor in H distint from v. By ontra-

dition, assume s and u have distint olors, then s 6= u. Let w and w

0

be the

endnodes of the setor Z of (H;S) ontaining s and assume w is loser to u

in V (H) n fvg than w

0

. Sine uv is isolated, then w is not adjaent to u. Let

F be the shortest path between w and u in V (Z)[V (Q

y

1

y

i

)[V (P )[fug and

F

0

be the path between u and w in V (H) n fvg. Sine H

0

= (u; F

0

; w; F; u)

is a hole, then F and F

0

have length of the same parity. Sine w and u
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have distint olors in the bioloring of H indued by E

S

(H), then F

0

has

odd length, therefore F is an odd hordless path. Sine F

0

is odd and uv is

isolated, F

0

ontains a node t, distint from u and v, that is universal for S.

Lemma 5 applied to S, F and t implies that F ontain an odd number of

edges that see S, a ontradition.

Let y

j

be the node of Q of lowest index suh that y

j

has a neighbor in H

distint from u and v. Let s be the neighbor of y

j

losest to v in V (H) n fug

and t be the neighbor of y

j

losest to u in V (H) n fvg.

Claim 3: st is an edge of H that sees S and st 6= uv. Furthermore, P = x

1

and no node in Q

y

1

y

j�1

has a neighbor in H.

By Claim 2 applied to y

j

, s has the same olor of v and t has the same

olor of u in the bioloring indued on H by E

S

(H). By Claim 1, either s 6= v

or t 6= u. Assume, w.l.o.g., that u 6= t. Assume s and t are nonadjaent.

Then s and t are onseutive neighbors of y

j

with distint olors in H that

are nonadjaent, therefore we an apply Theorem 14 to the path onsisting

of y

j

. Sine E

S

(H) ontains an isolated edge, then onlusion (a), (b) or (g)

of Theorem 14 holds.

Case 1: Case (a) or (b) of Theorem 14 holds.

Then E

S

(H) onsists of two nonadjaent edges uv and u

0

v

0

while (H; y

j

)

is a line wheel. Assume v and v

0

have the same olor. By symmetry, we may

assume that u 6= t and v

0

is not adjaent to y

j

. Let F be the shortest path

between u and y

j

in V (P )[V (Q

y

1

y

j

)[fug and let F

0

be the path between u

and t in V (H) n fvg. Sine u 6= t, H

0

= (u; F

0

; t; y

j

; F; u) is a hole, hene F

0

has distint parity from F . But then, sine y

j

sees an odd number of edges in

the setor of (H;S) with endnodes u and u

0

, the shortest path F

00

from u to

u

0

in (V (H)[V (P )[V (F )) n fv; v

0

; tg has odd length. By Lemma 5 applied

to S, F

00

and v

0

, an odd number of edges of F

00

see S, a ontradition.

Case 2: Case (g) of Theorem 14 holds.

Then s = v, u and t are adjaent and H ontains a path v; u; t; u

0

; v

0

where u

0

v

0

sees S and y

j

is adjaent to v; t; v

0

but not to u or u

0

. Let F

be the shortest path between u and y

j

in V (P ) [ V (Q

y

1

y

j

) [ fug. Sine

H

0

= (u; t; y

j

; F; u) is a hole, F has even parity, but then u; F; y

j

; v

0

is an odd

hordless path and Lemma 5 applied to S, u; F; y

j

; v

0

and u

0

, implies that an

odd number of edges of F see S, a ontradition.

Therefore s and t must be adjaent and, sine they have distint olors, st

sees S. To onlude the proof of Claim 3, let F = v

1

; :::; v

k

be a shortest path
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in V (Q

y

1

y

j

) [ V (P ) suh that v

k

= y

j

and v

1

is adjaent to u or v . If v

1

is

not adjaent to both u and v, say v

1

is not adjaent to v, then V (H)[ V (F )

indues a a 3PC(sty

j

; u), a ontradition. Therefore P = x

1

, v

1

= x

1

and no

node in Q

y

1

y

j�1

has a neighbor in H. This onludes the proof of Claim 3.

Let H

ut

be the path in V (H) n fvg between u and t and H

vs

be the path

in V (H) n fug between v and s. Note that H

ut

and H

vs

have both even

length. Let y

k

be the node of lowest index in Q suh that k > j and y

k

has

a neighbor in V (H) n fs; tg.

Claim 4: y

k

has a neighbor both in V (H

ut

) n ftg and in V (H

vs

) n fsg.

Assume, w.l.o.g, that y

k

has a neighbor in H

ut

distint from t and let p

be the neighbor of y

k

losest to u in H

ut

(possibly u = p). By Claim 2, p and

u must have the same olor. Let F be the shortest path between p and s in

V (Q

y

j

y

k

)[fp; sg and let F

0

be the path between u and p in H

ut

. If y

k

has no

neighbors in V (H

vs

) n fsg, then H

0

= (u; F

0

; p; F; s;H

vs

; v; u) is a hole, then

R = u; F

0

; p; F; s is an odd path so, by Lemma 5 applied to S, R and v, R

ontains an odd number of edges that see S. Sine u and p have the same

olor, then S sees an even number of edges of F

0

, therefore S must see an

odd number of edges of F , a ontradition.

Let p be the neighbor of y

k

losest to u in H

ut

and let q be the neighbor

of y

k

losest to v in H

vs

. By Claim 1 and Claim 4, p and q are nonadjaent

and, by Claim 2, p has the same olor of u and q has the same olor of v.

We an also assume, w.l.o.g., that u 6= p.

Then p and q are onseutive neighbors of y

k

with distint olors inH that

are nonadjaent, therefore we an apply Theorem 14 to the path onsisting

of y

k

. Sine E

S

(H) ontains an isolated edge, then onlusion (a), (b) or (g)

of Theorem 14 holds.

Case 1: Case (a) or (b) of Theorem 14 holds.

Then E

S

(H) onsists only of uv and st. Note that st is an isolated edge

of E

S

(H), P

0

= y

j

is an ear of st and S is maximal with this property.

Moreover Q

0

= Q

y

j+1

y

k

is a path in Gn (V (H)[V (P

0

)[S) suh that y

i+1

has

a neighbor in P

0

and y

k

has a neighbor in the interior of a setor of (H;S).

But now P

0

and Q

0

ontradit Claim 3.

Case 2: Case (g) of Theorem 14 holds.

Then q = v, u and p are adjaent and H ontains a path v; u; p; u

0

; v

0

where u

0

v

0

sees S and y

j

is adjaent to v; p; v

0

but not to u or u

0

.

We have two ases:
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Case 2.1: u

0

v

0

6= st.

Then u

0

v

0

is not adjaent to st, sine v

0

is in H

ut

and v

0

and t have distint

olors. Let F be the shortest path between u and y

k

in V (P )[V (Q

y

1

y

k

)[fug.

Sine H

0

= (u; p; y

k

; F; u) is a hole, then F is even, but then u; F; y

k

; v

0

is an

odd hordless path and Lemma 5 applied to S, u; F; y

k

; v

0

and u

0

, implies

that an odd number of edges of F see S, a ontradition.

Case 2.2: u

0

v

0

= st.

Then u

0

= t and v

0

= s. Let F be the shortest path between t and y

k

in

V (Q

y

j

y

k

) [ ftg. Sine H

0

= (t; p; y

k

; F; t) is a hole, then F is even, but then

t; F; y

k

; v is an odd hordless path and Lemma 5 applied to S, t; F; y

k

; v and

u, implies that an odd number of edges of F see S, a ontradition.

2

Theorem 18 Let (H;S) be a hub of a Berge graph. If G ontains an ear P

on an isolated edge uv of E

S

(H), then G has a skew partition.

Proof: Let A be a maximal set ontaining S suh that (H;A) is a hub and

uv sees A. Assume that u is olored red in the bioloring of (H;A) indued

by E

A

(H). Let B be the set ontaining all the endnodes of the edges of

E

A

(H) and all the nodes in G n (V (H) [ A) that are universal for A. If

Gn (A[B) is not onneted, then G ontains a skew-partition. Assume that

G n (A [B) is onneted, then there exists a minimal path Q = y

1

; :::; y

m

in

G n (V (H) [ V (P ) [ A [ B) suh that y

1

has a neighbor in P and y

m

has

a neighbor in the interior of some setor of (H;A), but suh a path would

ontradit Lemma 17. 2

7 Hubs in graphs ontaining no \large" line

graphs

ASSUMPTION: Throughout this setion, we will assume that G is a Berge

graph suh that G and G ontain no long 3PC(�;�) and no line graph of a

bipartite subdivision of K

4

.

Lemma 19 Let (H;S) be a hub of a Berge graph G suh that G and G

ontain no long 3PC(�;�) and no line graph of a bipartite subdivision of

K

4

. Let P = x

1

; : : : ; x

n

be a minimal hordless path in G n (V (H) [ S)

ontaining no node that is universal for S, suh that x

1

has a blue neighbor
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in H and x

n

has a red neighbor (n = 1 is allowed). If there exist onseutive

attahments of P with distint olors that are not adjaent, then one of the

following holds.

(a) jHj = 6, n = 1 and there exists y 2 S suh that V (H)[fx

1

; yg indues

a double beetle.

(b) n = 1 and there exists y 2 S nonadjaent to x

1

suh that (H; x

1

) and

(H; y) are twin wheels and exatly one edge of H sees both x

1

and y.

() There exists y 2 S suh that (H; y) is a twin wheel, no node of P is a

neighbor of y, x

1

is adjaent to the twin of y in H and no other node

in H while x

n

is not adjaent to both the other neighbors of y in H.

Proof: Assume not, then P is of one of the types (a)-() or (f)-(k) of Theo-

rem 14. If P is of type (), then V (H)[V (P )[fyg ontains a long 3PC(�;�)

unless n = 1 and jHj = 6, so ase (a) of Lemma 19 holds. P annot be of

type (a) by assumption. If P is of type (b), then n = 1, jHj = 6, (H; x

1

)

is a line wheel and S [ x

1

ontains an odd hordless anti-path Q of length

at least 3 between x

1

and a node y 2 S suh that (H; y) is a line wheel, no

edge of H sees both x

1

and y and every intermediate node of Q is adjaent

to every node in H. One an verify that G[V (H) [ V (Q)℄ is the line graph

of a bipartite subdivision of K

4

. If P is of type (f), then n = 1, H ontains

a subpath u; z; w; z

0

; u

0

suh that E

S

(H) = fwz; wz

0

g, x

1

is adjaent to u,

w and u

0

but not z and z

0

, S [ x

1

ontains an odd hordless anti-path Q of

length at least 3 between x

1

and a node y 2 S suh that y is nonadjaent

to u and u

0

and every intermediate node of Q is adjaent to both u and u

0

.

One an verify that G[V (Q) [ fu; z; z

0

; u

0

g℄ is a 3PC(uu

0

y; z

0

zx

1

), and suh

3PC(�;�) is long sine Q has length at least 3. If P is of type (g), then

n = 1, H ontains a subpath w; z; u; z

0

; w

0

suh that wz and w

0

z

0

are edges

of E

S

(H), x

1

is adjaent to u, w and w

0

but not z and z

0

, S [ x

1

ontains

an even hordless anti-path Q between x

1

and a node y 2 S suh that y is

nonadjaent to u and every intermediate node of Q is adjaent to u. One

an verify that G[V (Q) [ fw; z; u; z

0

; w

0

g℄ is a 3PC(ww

0

u; z

0

zx

1

), whih is

long sine Q has positive even length. If P is of type (h), then n > 1, H

ontains a subpath w; z; u; z

0

; w

0

suh that wz and w

0

z

0

are edges of E

S

(H),

x

1

is adjaent w and w

0

but not u, z and z

0

, while x

n

is adjaent to u but

not w, z, w

0

and z

0

. Furthermore S ontains two nodes y and y

0

suh that

the only neighbors of y in V (P )[fw; z; u; z

0

; w

0

g are u, z, z

0

, w, w

0

while the
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only neighbors of y

0

in V (P ) [ fw; z; u; z

0

; w

0

g are x

1

, z, z

0

, w, w

0

. One an

verify that G[V (P ) [ fy; y

0

; u; z; w

0

g℄ is a long 3PC(uyz; x

1

w

0

y

0

). If P is of

type (k), then H = (v; w; z; u; z

0

; w

0

; v), E

S

(H) = fwz; w

0

z

0

g, x

1

is adjaent

only to v in H and x

n

is adjaent only to u in H. Furthermore, S ontains

two nonadjaent nodes y and y

0

suh that y and y

0

are adjaent to every node

in H exept v and u, respetively, and no node in P is adjaent to y or y

0

.

One an verify that G[V (P ) [ fy; y

0

; u; v; z; w

0

g℄ is a long 3PC(uyz; vw

0

y

0

).

2

Lemma 20 Let (H;S) be the hub of a Berge graph G suh that G and G

ontain no long 3PC(�;�) and no line graph of a bipartite subdivision of

K

4

. Assume that S is a maximal set suh that (H;S) is a hub with the further

property that S does not ontain any enter of a twin wheel w.r.t. H. Let

P = x

1

; : : : ; x

n

be a minimal hordless path in G n (V (H)[S) ontaining no

node universal for S suh that x

1

has a red neighbor, no other node of P has

a red neighbor and x

n

has a blue neighbor whose neighbors in H are not red

neighbors of x

1

. Then one of the following holds:

(1) There exist two adjaent edges ab

1

, ab

2

of E

S

(H) suh that a is the

only red neighbor of x

1

in H and at least one node of P is adjaent to

both b

1

and b

2

. If E

S

(H) % fab

1

; ab

2

g or if S ontains a node s with no

neighbors in P , then the path Q = a; x

1

; : : : ; x

n

ontains an odd number

of edges that see both b

1

and b

2

.

(2) jHj = 6, n = 1 and there exists y 2 S suh that V (H)[fx

1

; yg indues

a double beetle.

Proof: Obviously, one of the onlusions of Theorem 16 must our. If

onlusion (a) of Theorem 16 holds, then by Lemma 19 onlusion (2) holds

(sine S does not ontain any enter of a twin wheel) and we are done. If

onlusion (b) holds, then onlusion (1) holds and we are done.

So we may assume that onlusion () of Theorem 16 holds. Then n > 1,

E

S

(H) ontains at least two nonadjaent edges, x

1

is adjaent to all the

red endnodes of the edges of H that see S and the node x

j

of lowest index

adjaent to some blue node is adjaent to all the blue endnodes of the edges

of H that see S. If j > 2, then S ontains two nonadjaent nodes y and z

suh that y is adjaent to x

1

and to no other node of P

x

1

x

j

, and z is adjaent

to x

j

and to no other node of P

x

1

x

j

. If j = 2, then S [ fx

1

; x

2

g ontains an

odd hordless anti-path between x

1

and x

2

.
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Let uv and u

0

v

0

be two nonadjaent edges of E

S

(H) and assume, w.l.o.g.,

that x

1

is adjaent to u and u

0

and x

j

is adjaent to v and v

0

. If j > 2

then G[V (P

x

1

x

j

) [ fy; z; u; v

0

g℄ is a long 3PC(x

1

yu; x

j

v

0

z). If j = 2 then

G[V (Q) [ fu; u

0

; v; v

0

g℄ is a long 3PC(x

1

vv

0

; x

2

u

0

u). 2

7.1 Good hubs

We say that a hub (H;S) is good if H has an inner blue node and an inner red

node w.r.t. the bioloring indued on H by E

S

(H). Equivalently, given the

maximal paths P

1

; : : : ; P

k

indued by the endnodes of the edges of E

S

(H),

(H;S) is a good hub if and only if there exists i, 1 � i � k, suh that P

i

has

odd length.

Lemma 21 Let (H;S) be a good hub of a Berge graph G suh that G and

G ontain no long 3PC(�;�) and no line graph of a bipartite subdivision of

K

4

. Let y 2 G n (V (H) [ S) be a node suh that (H;S [ y) is a hub. Then

either (H;S [ y) is a good hub or V (H) [ y ontains a hole H

0

suh that

(H

0

; S) is a good hub with E

S

(H

0

) $ E

S

(H).

Proof: Sine (H;S) is a good hub, by Lemma 19 every pair of onseutive

neighbors of y in H with distint olors are adjaent. Assume (H;S [ y)

is not a good hub. Let P

1

; : : : ; P

k

be the maximal paths indued by the

endnodes of the edges of E

S

(H) and assume, w.l.o.g, that P

1

= y

1

; :::; y

m

has odd length. If y has no neighbor in P

1

, then P

1

is ontained in a setor

Q = s; :::; t of (H; y), therefore, given H

0

= (y; s; Q; t; y), (H

0

; S) is a good

hub and E

S

(H

0

) $ E

S

(H). Therefore we may assume that y has a neighbor

in P

1

. Let r be the neighbor of y losest to y

1

in P

1

and s be the neighbor

of y losest to y

m

in P

1

(possibly r = s). Sine (H;S [ y) is not a good

hub, then y sees an even number of edges of P

1

, therefore P

1

rs

has even

length. Sine P

1

has odd length, we an assume, w.l.o.g., that P

1

sy

m

has

odd length. Let Q = s; :::; t be the setor of (H; y) ontaining P

1

sy

m

, then,

given H

0

= (y; s; Q; t; y), (H

0

; S) is a good hub and E

S

(H

0

) $ E

S

(H) (sine

(H;S [ y) is a hub). 2

Theorem 22 Let G be a Berge graph suh that G and G ontain no long

3PC(�;�) and no line graph of a bipartite subdivision of K

4

. If G ontains

a good hub (H;S), then G has a good skew partition.
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Proof: Assume that, among all the good hubs ontained in G, (H;S) is

hosen so that E

S

(H) is minimal (i.e. there is no good hub (H

0

; S

0

) suh

that E

S

0

(H

0

) $ E

S

(H)). Let A be a maximal set ontaining S suh that

(H;A) is a hub. Then, by Lemma 21 and by the minimality assumption

on E

S

(H), (H;A) is a good hub and E

A

(H) = E

S

(H). Let B be the set

ontaining all the nodes that are universal for A in G n (V (H) [ A) and

all the blue endnodes of the edges in E

S

(H). If in G n (A [ B) the red

nodes of H are in distint onneted omponents than the blue nodes of

H, then G has a skew partition. Otherwise there exists a hordless path

P = x

1

; :::; x

n

in G n (V (H) [ A) ontaining no node universal for S suh

that x

1

is adjaent to a red node of H, no other node of P has a red node

of H and x

n

is adjaent to an inner blue node of H. Let j be the node of

P with lowest index that is adjaent to a blue node b in H so that neither

of the neighbors of b in H is a red neighbor of x

1

. Then either onlusion

(1) or (2) of Lemma 20 holds for P

x

1

x

j

. Conlusion (2) annot hold sine

(H;A) is a good hub. Hene onlusion (1) holds, so there exist two adjaent

edges ab

1

, ab

2

of E

A

(H) suh that a is the only red neighbor of x

1

in H and

at least one node of P

x

1

x

j

is adjaent to both b

1

and b

2

. Sine (H;A) is a

good hub, E

A

(H) % fab

1

; ab

2

g so by Lemma 20 the path Q = a; x

1

; : : : ; x

j

ontains an odd number of edges that see both b

1

and b

2

. If j = 1, then

(H;A[x

1

) is a hub, ontraditing the maximality of A. Therefore j > 1 and

there exists a node x

i

, i < j, adjaent to b

1

and b

2

and to no other node in

V (H)nfa; b

1

; b

2

g. Thus (V (H)[fx

i

g)nfag indues a hole H

0

and (H

0

; A) is

a good hub with E

A

(H

0

) $ E

S

(H), ontraditing the minimality of E

S

(H).

Hene G ontains a skew partition (A;B;C;D) where C ontains all the

red nodes of H and D ontains all the inner blue nodes of H (w.r.t. the

bioloring indued on H by E

A

(H)). Let u be any red endpoint of some edge

in E

A

(H), then u 2 C and u is universal for A, hene (A;B;C;D) is a good

skew partition. 2

Reently, Chudnovsky, Robertson, Seymour and Thomas [3℄ showed that

a minimally imperfet graph annot ontain a long 3PC(�;�) or the line

graph of a bipartite subdivision of K

4

. This result, together with Theorems 2

and 22, implies the following.

Theorem 23 No minimally imperfet graph ontains a good hub.
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