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Abstra
t

If a Berge graph 
ontains 
ertain wheels, then it 
ontains a "good"

skew partition.

1 Introdu
tion

A graph G is perfe
t if, for all indu
ed subgraphs of G, the size of a largest


lique is equal to the 
hromati
 number [1℄. Lov�asz [8℄ showed that a graph

G is perfe
t if and only if its 
omplement

�

G is perfe
t. A graph is minimally

�

Dipartimento di Matemati
a Pura ed Appli
ata, Universit�a di Padova, Via Belzoni 7,

35131 Padova, Italy. 
onforti�math.unipd.it

y

GSIA, Carnegie Mellon University, S
henley Park, Pittsburgh, PA 15213, USA.

g
0v�andrew.
mu.edu

z

S
hool of Computing, University of Leeds, Leeds LS2 9JT, UK.

vuskovi�
omp.leeds.a
.uk

x

GSIA, Carnegie Mellon University, S
henley Park, Pittsburgh, PA 15213, USA. gia-


omo�andrew.
mu.edu

This work was supported in part by NSF grant DMI-9802773 and ONR grant N00014-97-

1-0196.



imperfe
t if it is not perfe
t but all its proper indu
ed subgraphs are. The

only known minimally imperfe
t graphs are the odd holes and their 
omple-

ments. Berge [1℄ 
onje
tured that there are no other (Strong Perfe
t Graph

Conje
ture). A graph is 
alled Berge if it 
ontains no odd hole or its 
omple-

ment. Every perfe
t graph is Berge. The Strong Perfe
t Graph Conje
ture

states that every Berge graph is perfe
t.

A graph G has a skew partition if the nodes V (G) 
an be partitioned into

nonempty sets A;B;C;D su
h that every node of A is adja
ent to every node

of B and there is no edge between C and D. Chv�atal [4℄ 
onje
tured that a

minimally imperfe
t graph 
annot have a skew partition. Chv�atal [4℄ proved

this when A or B has 
ardinality one (the star 
utset lemma).

Ho�ang [7℄ proved the 
onje
ture for spe
ial types of skew partitions. A

T -
utset is a skew partition with u 2 C and v 2 D su
h that every node of

A is adja
ent to both u and v.

Theorem 1 (Ho�ang [7℄) No minimally imperfe
t graph has a T -
utset.

This work was generalized by Robertson, Seymour, Thomas [10℄. A skew

partition (A;B;C;D) is good if C [D 
ontains a node u that is adja
ent to

every node of A or B.

Theorem 2 (Robertson, Seymour, Thomas [10℄) No minimally imperfe
t

graph has a good skew partition.

Chv�atal's skew partition 
onje
ture was solved re
ently in its generality:

Theorem 3 (Chudnovsky, Robertson, Seymour, Thomas [3℄) No minimally

imperfe
t graph has a skew partition.

In these notes, we show that, if a Berge graph 
ontains 
ertain types of

indu
ed subgraphs 
alled wheels, then it has a good skew partition. This

shows that no minimally imperfe
t graph 
an 
ontain these types of wheels.

2 The Wonderful Lemma

Given a set X � V (G) and a node x =2 X, we say that x is universal for X

if x is adja
ent to every node of X. We say that an edge e = yz su
h that

y; z =2 X, sees X if both y and z are universal for X.
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Given a 
hordless path (or a hole) P in G n S, we denote by E

S

(P ) the

set of edges in P that see S. jP j denotes the length (number of edges) of P .

int(P ) denotes the set of internal nodes of P .

The following lemma, due to Roussel and Rubio [11℄, plays a fundamental

role in this paper. This lemma was proved independently by Robertson,

Seymour and Thomas [10℄, who named it The Wonderful Lemma.

Lemma 4 (Roussel and Rubio [11℄) Let G be a Berge graph where V (G)


an be partitioned into a 
o-
onne
ted set S and an odd 
hordless path P =

u; u

0

; : : : ; v

0

; v of length at least 3 su
h that u, v are both universal for S.

Then one of the following holds:

(i) An odd number of edges of P see S.

(ii) jP j = 3 and S [ fu

0

; v

0

g 
ontains an odd 
hordless anti-path between u

0

and v

0

.

(iii) jP j � 5 and there exist two nonadja
ent nodes x, x

0

in S su
h that

(V (P ) n fu; vg) [ fx; x

0

g indu
es a 
hordless path.

Proof: The proof is by indu
tion on jSj+ jP j.

Note that, for every x 2 S, there is an odd number of edges in E(P ) that

see x, otherwise V (P )[ fxg 
ontains an odd hole. We 
an therefore assume

that jSj � 2.

Claim 1: Lemma 4 holds if jP j = 3.

If jP j = 3 and (i) does not hold, then S 
an be partitioned into 3 sets S

1

,

S

2

and S

3

su
h that every node in S

1

(resp. S

2

) is adja
ent to u

0

(resp.

v

0

) but not to v

0

(resp. u

0

), every node in S

3

is adja
ent to u

0

and v

0

, and

both S

1

and S

2

are nonempty. Given two nodes x

1

2 S

1

and x

2

2 S

2

with

minimum distan
e in

�

G[S℄, let P

0

be a shortest x

1

; x

2

-anti-path in S, then

(x

1

; P

0

; x

2

; u

0

; v; u; v

0

; x

1

) is an anti-hole that is even if and only if P

0

has odd

length. But then v

0

; x

1

; P

0

; x

2

; u

0

is a 
hordless odd anti-path in S [ fu

0

; v

0

g

and (ii) holds.

We may assume, then, that jP j � 5 and jSj � 2.

Claim 2: Lemma 4 holds if S 
ontains two nonadja
ent nodes x, x

0

su
h

that V (P )nfu; vg[fx; x

0

g 
ontains an odd 
hordless path P

0

between x and

x

0

.
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Assume, by 
ontradi
tion, that su
h nodes a path P

0

between two nodes

x and x

0

in S exists. If (iii) holds then we are done. Therefore x or x

0

must

have a neighbor in the interior of P distin
t from u

0

and v

0

, so u or v has no

neighbors in the interior of P

0

, say, w.l.o.g., u. But then (u; x; P

0

; x

0

; u) is an

odd hole, a 
ontradi
tion.

Claim 3: The interior of P does not 
ontain two adja
ent nodes y, y

0

su
h

that S [ fy; y

0

g 
ontains a 
hordless odd anti-path P

0

between y and y

0

.

Assume not. Then, sin
e jP j � 5, either u or v is adja
ent to neither y nor y

0

,

say, w.l.o.g., u. But then (u; y; P

0

; y

0

; u) is an odd anti-hole, a 
ontradi
tion.

Claim 4: For every 
o-
onne
ted nonempty subset S

0

of S, and for every

odd subpath P

0

= z; :::; z

0

of P su
h that z, z

0

are universal for S

0

and

G[S

0

[ V (P

0

)℄ is a proper subgraph of G, we may assume that E

S

0

(P

zz

0

) has

odd 
ardinality.

Assume not. Then, by indu
tion, either S

0


ontains two nonadja
ent nodes

x, x

0

su
h that V (P

zz

0

)nfz; z

0

g[fx; x

0

g 
ontains an odd path between x and

x

0

, and we are done by Claim 2, or the interior of P

zz

0


ontains two adja
ent

nodes y,y

0

su
h that S

0

[ fy; y

0

g 
ontains a 
hordless odd anti-path between

y and y

0

, 
ontradi
ting Claim 3.

Claim 5: No node in int(P ) is universal for S.

Assume not. Then P 
an be partitioned into proper subpaths P

1

,...,P

k

su
h

that, for every 1 � i � k, P

i

= u

i

; :::; u

i+1

, u

i

is universal for S for every

1 � i � k+1, u

1

= u, u

k+1

= v and no intermediate node of P

i

is universal for

S. Sin
e P is an odd path, there is an odd number of paths P

i

, 1 � i � k of

odd length and, sin
e (i) does not hold, E

S

(P ) has even 
ardinality. Therefore

there exists j, 1 � j � k, su
h that P

j

is an odd path of length at least 3,

but E

S

(P

j

) = 0, 
ontradi
ting Claim 4.

Let s

1

, s

2

be two nodes with maximum distan
e in

�

G[S℄, and let P

0

be

a shortest anti-path between s

1

and s

2


ontained in S. Let S

1

= S n s

1

,

S

2

= S n s

2

and S

0

= S

1

\ S

2

. By our 
hoi
e of s

1

and s

2

, S

1

, S

2

and S

0

are

all 
o-
onne
ted.

Claim 6: P

0

has odd length.

By Claim 4, E

S

i

(P ) has odd 
ardinality, i = 1; 2, and, by Claim 5, no node

universal for S

1

is also universal for S

2

. Therefore, sin
e jP j � 5, there exist

two nonadja
ent nodes z

1

and z

2

in the interior of P su
h that z

1

(resp. z

2

)
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is universal for S

1

(resp. S

2

) but not for S

2

(resp. S

1

). Sin
e both z

1

and

z

2

are universal for S

0

, then, if P

0

has even length, (z

1

; s

1

; P

0

; s

2

; z

2

; z

1

) is an

odd anti-hole, a 
ontradi
tion.

Sin
e E

S

i

(P ) 6= ;, i = 1; 2, then P 
an be partitioned into proper subpaths

P

1

,...,P

k

where, for every 1 � i � k, P

i

= u

i

; :::; u

i+1

, u

i

is universal for S

1

or S

2

for every 1 � i � k + 1, u

1

= u, u

k+1

= v and no node in int(P

i

) is

universal for S

1

or S

2

.

Claim 7: There exists j, 1 � j � k, su
h that P

j

is an odd path of length

at least 3, u

j

is universal for S

1

and u

j+1

is universal for S

2

.

We �rst show that for any i, 1 � i � k, if P

i

has length 1 then u

i

u

i+1

2

E

S

1

(P ) [ E

S

2

(P ). Suppose otherwise. W.l.o.g. s

1

is adja
ent to u

i

but not

u

i+1

and s

2

is adja
ent to u

i+1

but not u

i

. Sin
e jP j � 5, then either u or

v is adja
ent to neither u

i

nor u

i+1

, say, w.l.o.g., u. But then, by Claim

6, (u; u

i+1

; s

1

; P

0

; s

2

; u

i

; u) is an odd anti-hole, a 
ontradi
tion. Sin
e P is

an odd path, then there is an odd number of paths P

i

, 1 � i � k of odd

length. By Claim 4, E

S

i

(P ) has odd 
ardinality for i = 1; 2. By Claim 5,

E

S

1

(P ) \ E

S

2

(P ) = ;, so E

S

1

(P ) [ E

S

2

(P ) has even 
ardinality. Therefore

there exists j, 1 � j � k, su
h that P

j

is an odd path of length at least 3. If

both u

j

and u

j+1

are universal for S

1

(resp. S

2

), then by Claim 4, E

S

1

(P

j

)

(resp. E

S

1

(P

j

)) has odd 
ardinality so, sin
e jP

j

j � 3, there is a node in the

interior of P

j

that is universal for S

1

(resp. S

2

), a 
ontradi
tion. Hen
e P

j

satis�es Claim 8.

Claim 8: Lemma 4 holds if jSj = 2.

If jSj = 2 then, in the odd path P

j

of Claim 7, u

j

is adja
ent to s

2

, and u

j+1

is adja
ent to s

1

, and no node in int(P

j

) is adja
ent to s

1

or s

2

. Sin
e G has

no odd hole, s

1

is not adja
ent to u

j

and s

2

is not adja
ent to u

j+1

. But then

s

2

; u

j

; P

j

; u

j+1

; s

1

is an odd path and we are done by Claim 2.

Claim 9: S is a stable set.

Consider the odd path P

j

of Claim 7. Sin
e S

0

6= ;, then by Claim 4, there is

an odd number of edges in P

j

that see S

0

. Hen
e, sin
e jP

j

j � 3, there exists

a node z in the interior of P

j

that is universal for S

0

. If S is not a stable set,

P

0

is an odd anti-path of length at least 3, therefore (z; s

1

; P

0

; s

2

; z) is an odd

anti-hole, a 
ontradi
tion.

Let s

1

; s

2

; s

3

2 S and let S

i

= S n s

i

, i = 1; 2; 3.

By Claim 4, E

S

i

(P ) is odd, for i = 1; 2; 3, and, by Claim 5, given e 2

E

S

i

(P ), e

0

2 E

S

j

(P ), for 1 � i < j � 3, e and e

0

have no endnode in 
ommon,

5



hen
e there must be some k 2 f1; 2; 3g and an edge in yy

0

2 E

S

k

(P )su
h that

fy; y

0

g \ fu

0

; v

0

g = ;.

Assume y is 
loser to u in P than y

0

. Let z be the neighbor of s

k

in P

uy


losest to y and z

0

be the neighbor of s

k

in P

y

0

v


losest to y

0

. By Claim 5,

y 6= z and y

0

6= z

0

. P

zz

0

is even, otherwise (s

k

; z; P

zz

0

; z

0

; s

k

) would be an

odd hole, therefore either P

zy

and P

yz

0

are both odd paths, or P

zy

0

and P

y

0

z

0

are both odd paths. Let w 2 fy; y

0

g be su
h that P

zw

and P

wz

0

are both

odd paths. Sin
e P is an odd path, then either P

uw

or P

wv

has even length.

Assume, w.l.o.g., that P

uw

is an even path. Let G

0

be the graph indu
ed by

S, together with v and the nodes of P

uw

, plus a new edge wv.

Claim 10: G

0

is a Berge graph.

Assume not. Then G

0


ontains either an odd hole or an odd anti-hole. If G

0


ontains an odd hole H, then H must 
ontain wv (otherwise H would be an

odd hole in G). Sin
e v is universal for S, H must 
ontain exa
tly one node

in S, and su
h node must be s

k

, sin
e any other node in S is adja
ent to both

w and v. The only hole in G

0


ontaining s

k

, w and v is (z; P

zw

; w; v; s

k

; z),

whi
h, by 
onstru
tion, is even. If G

0


ontains an odd anti-hole H, then H


ontains, at most, two nodes in S, sin
e S is a stable set, and at most four

nodes in P , sin
e every set of nodes of P with at least �ve elements 
ontains

a stable set of size 3. But then H is a 5-anti-hole, therefore H is also a 5-hole.

By 
onstru
tion, sin
e P

uw

and P

wv

have both length at least 2, G

0

has

a number of nodes stri
tly smaller than G, while P

0

= u; P

uw

; w; v is an odd


hordless path of length at least 3. Then, by indu
tion, Lemma 4 holds for

G

0

. Sin
e, by Claim 5, there is no node in int(P

0

) universal for S, then either

there exist two nodes x and x

0

in S su
h that x; u

0

; P

u

0

w

; w; x

0

is a path, and

we are done by Claim 2, or there exist two adja
ent nodes t and t

0

in int(P

0

)

su
h that S [ ft; t

0

g 
ontains an odd anti-path, 
ontradi
ting Claim 3. 2

The following is an easy 
onsequen
e of Lemma 4.

Lemma 5 Assume G is a Berge graph 
ontaining a 
o-
onne
ted set S and

an odd 
hordless path P = u; u

0

; : : : ; v

0

; v disjoint from S of length at least

3 su
h that u, v are both universal for the set S. Furthermore, assume that

G n (S [ V (P )) 
ontains a node w universal for S su
h that no intermediate

node of P is adja
ent to w. Then an odd number of edges of P see S.

Proof: Assume not. Then, by Lemma 4, either jP j = 3 and S [ fu

0

; v

0

g


ontains an odd anti-path Q between u

0

and v

0

, or jP j � 5 and there exist

6



two nonadja
ent nodes x, x

0

in S su
h that x; u

0

; P

u

0

v

0

; v

0

; x

0

; w is a 
hordless

path. In the �rst 
ase, w; u

0

; Q; v

0

; w is an odd anti-hole, and in the other


ase w; x; u

0

; P

u

0

v

0

; v

0

; x

0

; w is an odd hole, a 
ontradi
tion. 2

3 De�nitions

A wheel, denoted by (H; v), is a graph indu
ed by a hole H and a node

v =2 V (H) having at least three neighbors in H. A wheel is odd if it 
ontains

an odd number of triangles. A wheel (H; v) is a twin wheel if v has exa
tly

three neighbors in H and (H; v) 
ontains exa
tly two triangles; the neighbor

of v in H that is adja
ent to all the other neighbors of v in H is said the

twin of v in H. A wheel (H; v) is a line wheel if v has exa
tly four neighbors

in H and (H; v) 
ontains exa
tly two triangles and these two triangles have

only the 
enter v in 
ommon. A universal wheel is a wheel (H; v) where the


enter v is adja
ent to all the nodes of H. A triangle-free wheel is a wheel


ontaining no triangle. These four types of wheels are depi
ted in Figure 1,

where solid lines represent edges and dotted lines represent paths. A proper

wheel is a wheel that is not any of the above four types.

A 3PC(x

1

x

2

x

3

; y) is a graph indu
ed by three 
hordless paths P

1

=

x

1

; : : : ; y, P

2

= x

2

; : : : ; y and P

3

= x

3

; : : : ; y, having no 
ommon nodes

other than y and su
h that the only adja
en
ies between nodes of P

i

n y and

P

j

n y, for i; j 2 f1; 2; 3g distin
t, are the edges of the 
lique of size three

indu
ed by fx

1

; x

2

; x

3

g. Also, at most one of the paths P

1

; P

2

; P

3

is an edge.

We say that a graph G 
ontains a 3PC(�; :) if it 
ontains a 3PC(x

1

x

2

x

3

; y)

for some x

1

; x

2

; x

3

; y 2 V (G).

Remark 6 Sin
e both odd wheels and 3PC(�; �)'s 
ontain an odd hole, they

are never 
ontained in a Berge graph as an indu
ed subgraph.

The following graphs will play an important role in this paper.

De�nition 7 A 3PC(x

1

x

2

x

3

; y

1

y

2

y

3

) is a graph indu
ed by three 
hordless

paths P

1

= x

1

; : : : ; y

1

, P

2

= x

2

; : : : ; y

2

and P

3

= x

3

; : : : ; y

3

, having no 
om-

mon nodes and su
h that, for i; j 2 f1; 2; 3g distin
t, x

i

is not adja
ent to y

j

and the only adja
en
ies between nodes of V (P

i

) n fy

i

g and V (P

j

) n fy

j

g are

the edges of the 
lique of size three indu
ed by fx

1

; x

2

; x

3

g and the only ad-

ja
en
ies between nodes of V (P

i

) n fx

i

g and V (P

j

) n fx

j

g, for i; j 2 f1; 2; 3g

distin
t, are the edges of the 
lique of size three indu
ed by fy

1

; y

2

; y

3

g. We

7



triangle-free wheel

line wheel twin wheel

universal wheel

Figure 1: Wheels

Figure 2: Conne
ted diamonds
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say that a graph G 
ontains a 3PC(�;�) if it 
ontains a 3PC(x

1

x

2

x

3

; y

1

y

2

y

3

)

for some x

1

; x

2

; x

3

; y

1

; y

2

; y

3

2 V (G). We say that a 3PC(x

1

x

2

x

3

; y

1

y

2

y

3

) is

long if P

1

, P

2

and P

3

are not all of length 1.

De�nition 8 Conne
ted diamonds 
onsist of two node disjoint sets fa

1

; : : : ; a

4

g

and fb

1

; : : : ; b

4

g ea
h of whi
h indu
es a diamond (the graph on four nodes

with �ve edges) su
h that a

1

a

4

and b

1

b

4

are not edges, together with four


hordless paths P

1

; : : : ; P

4

su
h that for i = 1; : : : ; 4, P

i

is a path between a

i

and b

i

. Paths P

1

; : : : ; P

4

are node disjoint and the only adja
en
ies between

them are the edges of the two diamonds.

Let H be a hole and let x

1

; x

2

; x

3

; y

1

; y

2

; y

3

be distin
t nodes of H su
h

that x

2

is adja
ent to x

1

and x

3

, and y

2

is adja
ent to y

1

and y

3

. We say

that (H; x; y) is a double beetle if x and y are not adja
ent, x is adja
ent to

x

1

; x

2

; x

3

and y

2

, and y is adja
ent to y

1

; y

2

; y

3

and x

2

. Note that a double

beetle is a spe
ial 
ase of 
onne
ted diamonds.

De�nition 9 Given a graph G and e = uv 2 E(G), the graph G

0

obtained

by subdividing e is the graph obtained from G by deleting the edge e and

adding one node w adja
ent only to u and v. Given two graphs G and G

0

, G

0

is a subdivision of G if G

0


an be obtained from G by iteratively subdividing

edges of G. We say that G

0

is a bipartite subdivision of G if G

0

is a bipartite

graph that is a subdivision of G.

A 
lass of graphs that will play an important role in this paper is the


lass of line graphs of bipartite subdivisions of K

4

(the 
lique on four nodes).

An example is depi
ted in Figure 3.

4 Hubs

Let H be a hole and N � V (H). We say that two nodes of N are 
onse
utive

if at least one of the two subpaths of H joining them 
ontains no node of N

in its interior.

Theorem 10 Let G be a Berge graph, H a hole of length at least 6, and S

a 
o-
onne
ted set of nodes in G n V (H). One of the following holds:

(1) an even number of edges of H see S, or

9



H L(H)

Figure 3: Bipartite subdivision of a K

4

and its line graph.

(2) S 
ontains nonadja
ent nodes x; y su
h that (H; x) and (H; y) are twin

wheels and exa
tly one edge of H sees both x and y or

(3) S 
ontains a node x with exa
tly 2 neighbors u and v in H, where u

and v are adja
ent.

Proof: The proof is by indu
tion on jSj+ jHj. When jSj = 1, the theorem is

immediate, sin
e we already observed that G 
annot 
ontain an odd wheel.

We 
an therefore assume that S has at least 2 nodes. Also, by indu
tive

hypothesis, for every 
o-
onne
ted set S

0

� S, E

S

0

(H) is even, else (2) or (3)

holds.

If jE

S

(H)j is even, then we are done. Hen
e, assume that jE

S

(H)j is odd

and let uv 2 E

S

(H).

Claim 1 E

S

(H) = fuvg and no other node in H is universal for S.

Assume not, then there exists an odd 
hordless subpath P = x

1

; : : : ; x

n

of H

su
h that jP j � 3, x

1

and x

n

are both universal for S and no intermediate

node of P is universal for S. Sin
e P does not 
ontain both u and v, let

w 2 fu; vg n V (P ). Then the 
hoi
e of S, P and w 
ontradi
ts Lemma 5.

Let s

1

and s

2

be two nodes at maximum distan
e in

�

G[S℄, and let P

0

be

a shortest anti-path between s

1

and s

2

in S. Let S

1

= S n s

1

, S

2

= S n s

2

and

S

0

= S

1

\S

2

. By our 
hoi
e of s

1

and s

2

, S

1

, S

2

and S

0

are all 
o-
onne
ted.

Claim 2 P

0

has odd length.

Sin
e E

S

i

(H) n fuvg 6= ;, for i = 1; 2, and no node universal for S

1

in

V (H) n fu; vg is also universal for S

2

, then, sin
e jHj � 6, there exist two

10



nonadja
ent nodes z

1

and z

2

in V (H) n fu; vg su
h that z

1

(resp. z

2

) is

universal for S

1

(resp. S

2

) but not for S

2

(resp. S

1

). Therefore, if P

0

has

even length, then (z

1

; s

1

; P

0

; s

2

; z

2

; z

1

) is an odd anti-hole, a 
ontradi
tion.

Let u

1

; : : : ; u

k+1

be all the nodes of H that are universal for S

1

or S

2

in

the order they appear going from u to v in H n uv. By de�nition, u

1

= u,

u

k+1

= v. For every i, 1 � i � k, let P

i

be the path from u

i

to u

i+1

in H nuv.

Obviously, for every i, 1 � i � k, no node in the interior of P

i

is universal

for S

1

or S

2

. Sin
e E

S

i

(H) n fuvg 6= ;, i = 1; 2, then k � 2.

Claim 3 There exists j, 1 � j � k, su
h that P

j

is an odd path of length at

least 3, u

j

is universal for S

1

but not for S

2

and u

j+1

is universal for S

2

but

not for S

1

.

For any i, 1 � i � k, if P

i

has length 1 then u

i

u

i+1

2 (E

S

1

(H) [ E

S

2

(H)) n

fuvg, otherwise we may assume, w.l.o.g., that s

1

is adja
ent to u

i

but not

u

i+1

and s

2

is adja
ent to u

i+1

but not u

i

. Sin
e jHj � 6, then either u

or v is not adja
ent to u

i

and u

i+1

, say, w.l.o.g., u. But then, by Claim 2,

(u; u

i+1

; s

1

; P

0

; s

2

; u

i

; u) is an odd anti-hole, a 
ontradi
tion.

Sin
e H n uv is an odd 
hordless path, then there is an odd number of paths

P

i

, 1 � i � k of odd length. By Claim 1, E

S

1

(H) \ E

S

2

(H) = fuvg,

so E

S

1

(H) [ E

S

2

(H) n fuvg has even 
ardinality, therefore there exists j,

1 � j � k, su
h that P

j

is an odd path of length at least 3. If both u

j

and

u

j+1

are universal for S

1

(resp. S

2

), then by Lemma 5 applied to S

1

(resp.

S

2

), P

j

and either node u or node v (sin
e one of the two has no neighbor

in the interior of P

j

), P

j

has an odd number of edges that see S

1

(resp. S

2

),

so there is a node in the interior of P

j

that is universal for S

1

(resp. S

2

), a


ontradi
tion. Hen
e P

j

satis�es Claim 3.

Let u

0

, v

0

be, respe
tively, the neighbors of u and v in H n uv.

Claim 4 Theorem 10 holds if jSj = 2.

Assume jSj = 2. Let P

j

be the path de�ned in Claim 3. If u

j

= u

0

and

u

j+1

= v

0

, then Theorem 10 (2) holds. Hen
e we may assume, w.l.o.g.,

u

0

6= u

j

, but then (u; s

2

; u

j

; P

j

; u

j+1

; s

1

; u) is an odd hole, a 
ontradi
tion.

By Claim 4, we may assume jSj � 3

Claim 5 S is a stable set.

Sin
e S

0

6= ;, then by Lemma 5 applied to S

0

, P

j

and u, there is an odd

number of edges in P

j

that see S

0

. Hen
e there exists a node z in the interior

of P

j

that is universal for S

0

. If S is not a stable set, P

0

is an odd anti-path of

length at least 3, therefore (z; s

1

; P

0

; s

2

; z) is an odd anti-hole, a 
ontradi
tion.

11



Let s

1

; s

2

; s

3

2 S and let S

i

= S n s

i

, i = 1; 2; 3.

Sin
e E

S

i

(H) n fuvg has odd 
ardinality, i = 1; 2; 3, then, given e 2

E

S

i

(H) n fuvg, e

0

2 E

S

j

(H) n fuvg, for 1 � i < j � 3, by Claim 1 e and

e

0

have no endnode in 
ommon, hen
e there exists k 2 f1; 2; 3g and an edge

yy

0

2 E

S

k

(P ) su
h that fy; y

0

g \ fu

0

; v

0

g = ;. For every pair s; t of nodes

of H, let us denote by H

st

the path between s and t in H n uv. Assume y

is 
loser to u in H n uv than y

0

. Let z be the neighbor of s

k


losest to y in

H

uy

and z

0

be the neighbor of s

k


losest to y

0

in H

y

0

v

. By Claim 1, y 6= z

and y

0

6= z

0

. H

zz

0

is even, otherwise (s

k

; z; H

zz

0

; z

0

; s

k

) would be an odd hole,

therefore either H

zy

and H

yz

0

are both odd paths, or H

zy

0

and H

y

0

z

0

are both

odd paths. Let w 2 fy; y

0

g be su
h that H

zw

and H

wz

0

are both odd paths.

Sin
e H is an even hole, then either H

uw

or H

wv

has even length. Assume,

w.l.o.g., that H

uw

is an even path. Let G

0

be the graph indu
ed by S together

with v and H

uw

, plus a new edge wv. Let H

0

= (u;H

uw

; w; v; u); H

0

is an

even hole in G

0

. In parti
ular, H

0

must have length at least 6, otherwise z

is adja
ent to u, w is adja
ent to z and, given any node s in S

k

that is not

adja
ent to z, (s; w; z; s

k

; v; s) is a 5-hole in G.

Claim 6 G

0

is a Berge graph.

Assume not. Then G

0


ontains either an odd hole or an odd anti-hole. If G

0


ontains an odd hole Q, then Q must 
ontain wv, otherwise Q would be an

odd hole in G. Also, Q must 
ontain a node in S, otherwise Q = H

0

that is

an even hole. Sin
e every node in S

k

is adja
ent to both w and v, Q must


ontain exa
tly one node in S, namely s

k

. The only hole in G

0


ontaining s

k

,

w and v is (z; P

zy

; w; v; s

k

; z), whi
h, by 
onstru
tion, is even. If G

0


ontains

an odd anti-hole Q, then Q 
ontains, at most, two nodes in S, sin
e S is a

stable set, and at most four nodes in H

0

, sin
e every subset of nodes of H

0

with at least �ve elements 
ontains a stable set of size 3. But then Q is a

5-anti-hole, therefore Q is also a 5-hole, a 
ontradi
tion.

Sin
e, by 
onstru
tion, H

uw

and H

wv

have both length at least 2, H

0

has

length stri
tly smaller than H. Therefore, by indu
tion, Theorem 10 holds

in G

0

for H

0

and S. Sin
e E

S

(H

0

) = fuvg and every node of S has at least

three neighbors in H

0

, then the only possibility is that z is adja
ent to u and

there exists a node s in S

k

whose only neighbors in H

0

are u, v and w. But

then, in G, (z;H

zw

; w; s; v; s

k

; z) is an odd hole, a 
ontradi
tion 2

Note that an edge set C of H of even 
ardinality indu
es a bi
oloring of

the nodes of H: two nodes of H are 
olored with distin
t 
olors if and only

if the subpaths of H 
onne
ting them 
ontain an odd number of edges in C.
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De�nition 11 Given a Berge graph G, a hub of G is a pair (H;S) where

H is a hole of G of length at least 6 and S is a 
o-
onne
ted set in G nV (H)

that sees a positive even number of edges of H. A se
tor of a hub (H;S) is

a maximal subpath of H 
ontaining no edge of E

S

(H).

Remark 12 Let G be a Berge graph and (H;S) a hub of G. Then the

endnodes of a se
tor are endnodes of edges of E

S

(H) and every se
tor of

(H;S) has even length.

Proof: By maximality in the de�nition of se
tor, every endnode of a se
tor

must be an endnode of an edge in E

S

(H). Assume there exists a se
tor

P = x

1

; : : : ; x

n

of (H;S) of odd length. Let w be the endnode of some edge

in E

S

(H) distin
t from x

1

and x

n

. Sin
e both x

1

and x

n

are universal for S

and P has length at least 3, then by Lemma 5 applied to S, P and w, there

is an odd number of edges of P that sees S, a 
ontradi
tion. 2

Corollary 13 Let G be a Berge graph and (H;S) be a hub of G. Let y 2

V (G) n (V (H)[ S) be a node that sees an odd number of edges in a se
tor of

(H;S). Assume S [ y is 
o-
onne
ted. Then

(i) y has exa
tly two neighbors in H and they are adja
ent or

(ii) There exists x 2 S not adja
ent to y su
h that (H; x) and (H; y) are

twin wheels and exa
tly one edge of H sees both x and y or

(iii) S 
ontains a node x not adja
ent to y su
h that (H; y) and (H; x) are

both line wheels and no edge of H sees both x and y or

(iv) jHj = 6, (H; y) is a line wheel and S [ y 
ontains an odd 
hordless

anti-path Q of length at least 3 between y and a node x su
h that (H; x)

is a line wheel, no edge of H sees both x and y and every intermediate

node of Q is adja
ent to every node in H.

Proof: If y has exa
tly two neighbors in H then 
on
lusion (i) holds. Assume

then that y has at least 3 neighbors in H. If E

S[y

(H) has odd 
ardinality,

then, by Theorem 10, 
on
lusion (ii) holds. So E

S[y

(H) has even 
ardinality.

Sin
e there is an even number of edges of H that sees y and y sees an odd

number of edges in some se
tor of (H;S), then there are at least 2 se
tors P =

x

1

; : : : ; x

h

and P

0

= x

0

1

; : : : ; x

0

k

of (H;S) su
h that an odd number of edges

13



of P and P

0

, respe
tively, sees y. Let y

1

; y

2

, (resp. y

0

1

; y

0

2

) be the neighbors

of y in P (resp. P

0

) 
losest to x

1

and x

h

(resp. x

0

1

and x

0

k

) respe
tively.

Sin
e an odd number of edges of P sees y, then P

x

1

y

1

and P

y

2

x

h

have

length of distin
t parity. We 
an therefore assume that P

x

1

y

1

has odd length

and P

y

2

x

h

has even length. Analogously, assume that P

0

x

0

1

y

0

1

has odd length

and P

y

0

2

x

0

k

has even length.

If y

1

and y

2

are nonadja
ent, then F = x

1

; P

x

1

y

1

; y

1

; y; y

2

; P

y

2

x

h

; x

h

is an odd

path so, by Lemma 5 applied to S, F and x

0

1

, F has an odd number of edges

that see S, 
ontradi
ting either the de�nition of se
tor or the assumption

that S[y is 
o-
onne
ted. Hen
e y

1

y

2

is an edge and, analogously, y

0

1

y

0

2

is an

edge. Let now F = x

1

; P

x

1

y

1

; y

1

; y; y

0

2

; P

y

0

2

x

0

k

. If F is a 
hordless path then F is

odd and by Lemma 5 applied to S, F and x

0

1

, F has an odd number of edges

that see S, a 
ontradi
tion. Therefore F is not a 
hordless path, but then

x

1

must be adja
ent to x

0

k

. Analogously, by repeating the previous argument

for F

0

= x

0

1

; P

x

0

1

y

0

1

; y

0

1

; y; y

2

; P

y

2

x

h

, x

h

must be adja
ent to x

0

1

. Therefore (H; y)

is an L-wheel.

Case 1: jHj > 6

Then, w.l.o.g., H

0

= (x

0

1

; P

x

0

1

y

0

1

; y

0

1

; y; y

2

; P

y

2

x

h

; x

h

; x

0

1

) is a hole of length at

least 6. Sin
e E

S

(H

0

) = fx

0

1

x

h

g, Theorem 10 applies.

Case 1.1: Con
lusion (3) of Theorem 10 holds.

Then there exists a node x in S su
h that the only neighbors of x in H

0

are x

h

and x

0

1

. Sin
e x sees an odd number of edges in a se
tor of (H; y),

then, by the previous argument, (H; x) is an L-wheel and (iii) holds.

Case 1.2: Con
lusion (2) of Theorem 10 holds.

Then there exists two nodes x and x

0

in S su
h that (H

0

; x) and (H

0

; x

0

)

are both twin wheels. Let w, w

0

be, respe
tively, the neighbors of x and

x

0

in V (H

0

) n fx

h

x

0

1

g and let F be the path between w and w

0

indu
ed by

V (H

0

) n fx

h

; x

0

1

g. Sin
e F has odd length, (x

1

; x; w; F; w

0

; x

0

; x

1

) is an odd

hole, a 
ontradi
tion.

Case 2: jHj = 6

Then y

2

= x

h

and y

0

2

= x

0

k

. Sin
e y

1

and y

0

1

are not universal for S and

S [ y is 
o-
onne
ted, let Q be a shortest anti-path in S [ y from y to a

node x that is not adja
ent to both y

1

and y

0

1

. Assume, w.l.o.g., that x is not

adja
ent to y

1

, then (y;Q; x; y

1

; x

0

1

; y) is an anti-hole, therefore Q must be

an odd anti-path. If x is adja
ent to y

0

1

, then (y;Q; x; y

1

; y

0

1

; x

1

; y) is an odd

anti-hole, a 
ontradi
tion. Therefore (H; x) is a line wheel. If Q has length

1 then (iii) holds, else (iv) holds. 2
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5 Conne
tions from blue to red se
tors of a

hub

Let P be a 
onne
ted subgraph of G n (H [ S). The atta
hments of P to H

are the nodes of H adja
ent to at least one node of P .

Theorem 14 Let (H;S) be a hub of a Berge graph G. Let P = x

1

; : : : ; x

n

be a minimal 
hordless path in G n (V (H) [ S) 
ontaining no node that is

universal for S, su
h that x

1

has a blue neighbor in H and x

n

has a red

neighbor w.r.t. the bi
oloring indu
ed by E

S

(H) (n = 1 is allowed). If there

exist 
onse
utive atta
hments of P with distin
t 
olors that are not adja
ent,

then one of the following holds.

(a) There exists y 2 S su
h that V (H)[V (P )[fyg indu
es the line graph

of a bipartite subdivision of K

4

.

(b) n = 1, jHj = 6, (H; x

1

) is a line wheel and S [ x

1


ontains a 
hordless

odd anti-path Q of length at least 3 between x

1

and a node y 2 S su
h

that (H; y) is a line wheel, no edge of H sees both x

1

and y and every

intermediate node of Q is adja
ent to every node in H.

(
) There exists y 2 S su
h that V (H) [ V (P ) [ fyg indu
es 
onne
ted

diamonds.

(d) n = 1 and there exists y 2 S nonadja
ent to x

1

su
h that (H; x

1

) and

(H; y) are twin wheels and exa
tly one edge of H sees both x

1

and y.

(e) There exists y 2 S su
h that (H; y) is a twin wheel, no node of P is a

neighbor of y, x

1

is adja
ent to the twin of y in H and no other node

in H while x

n

is not adja
ent to both the other neighbors of y in H.

(f) n = 1, H 
ontains a subpath u; z; w; z

0

; u

0

su
h that E

S

(H) = fwz; wz

0

g,

x

1

is adja
ent to u, w and u

0

but not z and z

0

, S[x

1


ontains a 
hordless

odd anti-path Q of length at least 3 between x

1

and a node y 2 S su
h

that y is nonadja
ent to u and u

0

and every intermediate node of Q is

adja
ent to both u and u

0

.

(g) n = 1, H 
ontains a subpath w; z; u; z

0

; w

0

su
h that wz and w

0

z

0

are

edges of E

S

(H), x

1

is adja
ent to u, w and w

0

but not z and z

0

, S [ x

1


ontains an even anti-path Q between x

1

and a node y 2 S su
h that
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y is nonadja
ent to u and every intermediate node of Q is adja
ent to

u. Furthermore, every node in V (H) n fz; z

0

g that is universal for S is

adja
ent to x

1

.

(h) n > 1, H 
ontains a subpath w; z; u; z

0

; w

0

su
h that wz and w

0

z

0

are

edges of E

S

(H), x

1

is adja
ent w and w

0

but not u, z and z

0

, while

x

n

is adja
ent to u but not w, z, w

0

and z

0

. Furthermore S 
ontains

two nonadja
ent nodes y and y

0

su
h that the only neighbors of y in

V (P ) [ fw; z; u; z

0

; w

0

g are u, z, z

0

, w, w

0

while the only neighbors of

y

0

in V (P ) [ fw; z; u; z

0

; w

0

g are x

1

, z, z

0

, w, w

0

.

(k) n > 1, H = (v; w; z; u; z

0

; w

0

; v), E

S

(H) = fwz; w

0

z

0

g, x

1

is adja
ent

only to v in H and x

n

is adja
ent only to u in H. Furthermore, S


ontains two nonadja
ent nodes y and y

0

su
h that y and y

0

are adja
ent

to every node in H ex
ept v and u, respe
tively, and no node in P is

adja
ent to y or y

0

.

Proof: Note that, by the minimality assumption on P , no intermediate node

of P has a neighbor in H.

Case 1: x

1

or x

n

sees an odd number of edges in some se
tor of (H;S).

Assume, w.l.o.g., that x

1

sees an odd number of edges in some se
tor

of (H;S): then 
on
lusion (i), (ii), (iii) or (iv) of Corollary 13 holds. If


on
lusion (ii) of Corollary 13 holds, then (d) holds. If 
on
lusion (iii) of

Corollary 13 holds, n = 1 and there exists y in S non adja
ent to x

1

su
h

that (H; x

1

) and (H; y) are line wheels and no edge in H sees both x

1

and y,

but then one 
an verify that V (H) [ fx

1

; yg is the line graph of a bipartite

subdivision of K

4

, so (a) holds. If 
on
lusion (iv) of Corollary 13 holds,

then (b) holds. Therefore we 
an assume that 
on
lusion (i) of Corollary 13

holds and x

1

has exa
tly two neighbors u; u

0

in H, u and u

0

are adja
ent

and they are both blue. If x

n

has exa
tly one neighbor t in H, then there is

a 3PC(x

1

uu

0

; t). If x

n

has two neighbors in H that are not adja
ent, then

there is a 3PC(x

1

uu

0

; x

n

). Hen
e x

n

has exa
tly two neighbors v and v

0

in

H and they are adja
ent and both red. Assume that u and v are 
onse
utive

atta
hments of P and u

0

, v

0

are 
onse
utive atta
hments of P . W.l.o.g.,

u and v are non adja
ent. Let H

uv

and H

u

0

v

0

be, respe
tively, the paths

between u and v and between u

0

and v

0

in H su
h that no intermediate node

of H

uv

or H

u

0

v

0

is an atta
hment of P . Sin
e u and v are nonadja
ent, then

H

0

= (u;H

uv

; v; x

n

; P; x

1

) is a hole of length at least 6 and, sin
e u and v
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have distin
t 
olors and no node in P is universal for S, an odd number of

edges of H

0

see S. Also H

00

= (u

0

; H

u

0

v

0

; v

0

; x

n

; P; x

1

) is a hole (possibly of

length 4) and an odd number of edges of H

00

sees S. By Theorem 10, exa
tly

one edge wz of H

0

and one edge of w

0

z

0

of H

00

sees S and one of the following


ases holds.

Case 1.1: There exists a node y 2 S su
h that y has only two neighbors

in H

0

.

But then y sees an odd number of edges inH

u

0

v

0

, so y must see exa
tly one

edge in H

u

0

v

0

, otherwise V (H

u

0

v

0

) [ V (P ) [ fyg would indu
e an odd wheel.

But then (H; y) is a line wheel and one 
an verify that V (H) [ V (P ) [ fyg

indu
es the line graph of a bipartite subdivision of K

4

, hen
e (a) holds.

Case 1.2: There exist non adja
ent nodes y; y

0

2 S su
h that (H

0

; y) and

(H

0

; y

0

) are twin wheels.

Let t and t

0

be the neighbors of y and y

0

, respe
tively, in V (H

0

) n fw; zg.

If u

0

and v

0

are nonadja
ent, then at least one node among w

0

and z

0

has

no neighbor in P , say w

0

, but then (V (H

0

) [ fw

0

; y; y

0

g) n fw; zg indu
es an

odd hole, a 
ontradi
tion. In parti
ular, w.l.o.g. t = u and t

0

= v, else

(H; y) or (H; y

0

) is an odd wheel. Sin
e H

0

is even, P must be odd, therefore

(y; u; x

1

; P; x

n

; v

0

; y) is an odd hole, a 
ontradi
tion.

Case 2: Both x

1

and x

n

see an even number of edges in every se
tor of

(H;S).

Let u and v be two 
onse
utive, nonadja
ent atta
hments of P with dis-

tin
t 
olors in the bi
oloring of H indu
ed by E

S

(H). Assume, w.l.o.g., v

is adja
ent to x

1

and u to x

n

. Let H

uv

be a subpath of H between u and

v 
ontaining no atta
hments of P ex
ept u and v. Sin
e u and v have dis-

tin
t 
olors, H

uv


ontains an odd number of edges of E

S

(H), therefore the

hole H

0

= (x

1

; P; x

n

; u;H

uv

; v; x

1

) has an odd number of edges that see S,

otherwise P would 
ontain some node universal for S. By Theorem 10, H

0

must 
ontain a unique edge of E

S

(H), say edge zw, and no node universal

for S ex
ept z and w. Assume, w.l.o.g., that z is one endnode of the se
tor

Z 
ontaining u, and let z

0

be the other endnode of Z. Let w

0

be the neighbor

of z

0

in V (H) n V (Z); hen
e z

0

w

0

2 E

S

(H). Sin
e H

0

is an even hole, H

uv

has length of the same parity as P . Sin
e u and v are nonadja
ent, we may

assume, w.l.o.g, that u and z are distin
t. Let H

uz

be the path between u

and z in H

uv

and H

wv

be the path between w and v in H

uv

.

Case 2.1: w = w

0

.
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Then w = w

0

= v and E

S

(H) = fwz; wz

0

g.

Case 2.1.1: There exists a node y 2 S whose only neighbors in H

0

are

w and z.

If (H; y) is a twin wheel, then 
ase (e) applies. If (H; y) is not a twin

wheel, y has at least a neighbor in V (H)nfw; z; z

0

g. If u is the only neighbor

of x

n

in Z, then G 
ontains a 3PC(zwy; u), hen
e x

n

has a neighbor in Z

distin
t from u. Furthermore, sin
e x

n

sees an even number of edges in Z,

x

n

has a neighbor in Z that is not adja
ent to u. If y has a neighbor in Z

that is not adja
ent to u, then there is a 3PC(zwy; x

n

), hen
e y has a unique

neighbor t in Z and t is adja
ent to u. Furthermore, t is adja
ent to x

n

,

else there is a 3PC(zwy; u). Let u

0

be the neighbor of x

n

in Z 
losest to z

0

,

then u

0

6= t. If u

0

is not adja
ent to t, then there is a 3PC(x

n

tu; y). So u

0

is

adja
ent to t and hen
e V (H)[ V (P )[ fyg indu
es 
onne
ted diamonds, so


on
lusion (
) holds.

Case 2.1.2: Every node in S has at least 3 neighbors in H

0

.

If jH

0

j � 6 then, by Theorem 10, S 
ontains two nonadja
ent nodes y

and y

0

su
h that (H

0

; y) and (H

0

; y

0

) are twin wheels and wz is the only edge

of H

0

that sees both y and y

0

. But then (V (H

0

)[fy; y

0

g) n fw; zg indu
es an

odd path R between y and y

0

and (z

0

; y; R; y

0

; z

0

) is an odd hole unless z

0

is

adja
ent to x

n

. But then, sin
e x

n

sees an even number of edges in Z, H

zu

must have even length. W.l.o.g. assume that y is not adja
ent to x

1

, then

(V (H

uz

) [ fy; z

0

; x

n

g) n fzg indu
es an odd hole, a 
ontradi
tion.

Hen
e jH

0

j = 4, so u is adja
ent to z and n = 1. Let u

0

be the neighbor

of x

1

in Z 
losest to z

0

. Then, sin
e x

1

sees an even number of edges in Z

and u is adja
ent to z, u

0

and z

0

have odd distan
e in H. By repeating the

previous argument on the hole H

00


ontaining w, u

0

and x

1

in V (Z)[fx

1

; wg

instead of H

0

, we argue that u

0

and z

0

must be adja
ent. Sin
e u and u

0

are

not universal for S, let Q be a shortest possible anti-path in S [ x

1

between

x

1

and a node y not adja
ent to both u and u

0

. Assume, w.l.o.g, that y is not

adja
ent to u. Q must have odd length, or else (x

1

; Q; y; u; z

0

; x

1

) is an odd

anti-hole. Moreover, sin
e every node in S has at least 3 neighbors in H

0

, Q

has length at least 3. Finally, if u

0

is adja
ent to y, then (x

1

; Q; y; u; u

0

; z; x

1

)

is an odd anti-hole, a 
ontradi
tion. Hen
e 
on
lusion (f) holds.

Case 2.2: w 6= w

0

.

Note that, sin
e w

0

is universal for S and distin
t from w and z, then w

0

is

not in H

uv

. Let s be the neighbor of x

n

in Z 
losest to z

0

and let H

sz

0

be the

path between s and z

0

in Z. Sin
e x

n

sees an even number of edges in Z and
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H

zu

has length of the same parity as H

sz

0

. Let F = w;H

wv

; v; x

1

; P; s;H

sz

0

; z

0

.

Sin
e H

0

is an even hole and H

zu

has the same length as H

sz

0

, F is an odd

path between w and z

0

. If z is not adja
ent to s then, by Lemma 5 applied

to S, F and z, an odd number of edges of F see S, a 
ontradi
tion. Hen
e

u is the unique neighbor of x

n

in Z and it is adja
ent to z. Also, given any

node t in V (H) n fz; z

0

; wg universal for S, if t is not an atta
hment of P

then, by Lemma 5 applied to S, F and t, an odd number of edges of F see

S, a 
ontradi
tion. In parti
ular, w

0

must be adja
ent to x

1

or to v.

If w

0

is adja
ent to v then F

0

= w

0

; v; x

1

; P; x

n

; u; z is an odd path, there-

fore, by a similar argument, z

0

is adja
ent to u and w is also adja
ent to v

(sin
e x

1

sees an even number of edges in every se
tor, hen
e w 
annot be

adja
ent to x

1

). Therefore jHj = 6 and, sin
e F

0

must have length at least

5, by Lemma 4 there exists two nonadja
ent nodes nodes y and and y

0

in S

su
h that y is adja
ent to every node in H ex
ept v, y

0

is adja
ent to every

node in H ex
ept u and neither y nor y

0

has a neighbor in P , hen
e (k) holds.

If w

0

is adja
ent to x

1

then F

0

= w

0

; x

1

; P; x

n

; u; z is an odd path, therefore,

by the usual argument, z

0

is adja
ent to u and w is adja
ent to x

1

. If jF

0

j = 3,

then n = 1 and, by Lemma 4, there exists an odd anti-path x

1

; Q; y; u between

x

1

and u in S [ fu; x

1

g, hen
e 
ase (g) holds. If jF

0

j � 5, then by Lemma 4

S 
ontains two nonadja
ent nodes y and y

0

su
h that y is adja
ent to x

1

, z,

z

0

, w, w

0

an no other node in V (P )[fw; z; u; z

0

; w

0

g while y

0

is adja
ent to u,

z, z

0

, w, w

0

an no other node in V (P )[fw; z; u; z

0

; w

0

g, hen
e 
ase (h) holds.

2

Given a hub (H;S) and an edge ab 2 E

S

(H), an ear on ab (with respe
t

to (H;S)) is a 
hordless path P = x

1

; : : : ; x

n

in G n (V (H)[ S) su
h that x

1

is adja
ent to a, x

n

is adja
ent to b, no node in V (H) n fa; bg has a neighbor

in P , no node of P is universal for S, and P is minimal with these properties.

Theorem 15 Let (H;S) be a hub of a Berge graph G where S is maximal

with the property that (H;S) is a hub. Let P = x

1

; : : : ; x

n

be a minimal


hordless path in G n (H [ S) 
ontaining no node universal for S su
h that

x

1

has a blue neighbor in H and x

n

has a red neighbor (n = 1 is allowed). If

every pair of 
onse
utive atta
hments of P with distin
t 
olors are adja
ent,

then one of the following holds.

(a) P is an ear on some edge of E

S

(H).

(b) n > 1, there exist two adja
ent edges ab, b
 of E

S

(H) su
h that b is

the only neighbor of x

1

in H and x

n

is adja
ent to a; 
 and not to b.
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Moreover, if E

S

(H) % fab; b
g, then no node of P has a neighbor in

V (H) n fa; b; 
g.

(
) n > 1, E

S

(H) 
ontains at least two nonadja
ent edges, x

1

is adja
ent

to all the blue endnodes of the edges of H that see S (and possibly to

other blue nodes of H), x

n

is adja
ent to all the red endnodes of the

edges of H that see S (and possibly to other red nodes of H). If n > 2,

then there exist nonadja
ent y; z 2 S su
h that y is adja
ent to x

1

and

to no other node of P , and z is adja
ent to x

n

and to no other node

of P . If n = 2, then S [ fx

1

; x

2

g 
ontains an odd anti-path between x

1

and x

2

.

Proof: Note that, by the minimality assumption on P , no intermediate node

of P has a neighbor in H. Let a and b be two 
onse
utive atta
hments

of P with distin
t 
olors. Then, by assumption, a and b are adja
ent and

ab 2 E

S

(H). Assume, w.l.o.g., that a is adja
ent to x

n

and b is adja
ent to x

1

.

Let 
 be the neighbor of b in V (H)nfag. If P has no neighbor in V (H)nfa; bg,

then P is an ear of ab and (a) o

urs. Therefore we may assume, w.l.o.g., that

x

n

has a neighbor in V (H) n fa; bg. Note that n > 1, otherwise either S [ x

1

sees a positive even number of edges of H, 
ontradi
ting the maximality of S,

or ab is the only edge of H that sees S [ x

1

, and by Theorem 10 there exists

y 2 S nonadja
ent to x

1

su
h that (H; x

1

) and (H; y) are twin wheels and

exa
tly one edge of H sees both x

1

and y, thus 
ontradi
ting the assumption

that every two 
onse
utive atta
hments of P with distin
t 
olors are adja
ent.

Therefore x

1

has only blue neighbors and x

n

has only red neighbors. If x

n

sees an odd number of edges in some se
tor of (H;S) then, by Corollary 13,

the only neighbors of x

n

in H are a and the neighbor d of a in V (H) n fbg.

If x

1

has no neighbor in V (H) n fbg, then G 
ontains a 3PC(x

n

ad; b). If

x

1

has two nonadja
ent neighbors in H, then G 
ontains a 3PC(x

n

ad; x

1

).

Therefore x

1

is adja
ent to b, 
 and no other node in H. But then 
 and d

are 
onse
utive, non adja
ent atta
hments of P with distin
t 
olors in the

bi
oloring of H indu
ed by E

S

(H), a 
ontradi
tion. Therefore x

n

sees an

even number of edges in every se
tor of (H;S) and, by the same argument,

also x

1

sees an even number of edges in every se
tor of (H;S).

We may assume that x

n

has at least as many neighbors in H as x

1

does.

If E

S

(H) = fab; b
g then (b) holds. Next we show that if x

n

has no neighbor

in H n fa; 
g, then (b) holds. Suppose that x

n

has no neighbor in H n fa; 
g.

Then x

n

is adja
ent to 
. If x

1

has no neighbors in H n b then (b) holds.

20



Otherwise , x

1

has exa
tly two neighbors in H, b and say d. Sin
e all pairs

of 
onse
utive atta
hments of P having distin
t 
olors are adja
ent, then

a; d and 
; d are adja
ent, hen
e jHj = 4, 
ontradi
ting the assumption that

(H;S) is a hub. Now we may assume that (b) does not hold, hen
e there

exists a red se
tor Z = z

1

; : : : ; z

k

of (H;S) su
h that fa; 
g 6= fz

1

; z

k

g and

su
h that x

n

has a neighbor in V (Z)nfa; 
g. Assume, w.l.o.g, that z

1

=2 fa; 
g

and x

n

has a neighbor in V (Z) n fz

k

g. Let z

i

be the neighbor of x

n

of lowest

index in Z, and let H

z

1

z

i

be the subpath between z

1

and z

i

in Z. Note that

i < k. Sin
e x

n

sees an even number of edges in every se
tor of (H;S) and x

n

has only red neighbors in H, then H

z

1

z

i

has even length (sin
e x

n

is adja
ent

to a) and also z

k

and z

i

have even distan
e in Z, hen
e they are not adja
ent.

Moreover, H

0

= (a; b; x

1

; P; x

n

; a) is an even hole, therefore P is an odd path.

But then F = b; x

1

; P; x

n

; z

i

; H

z

1

z

i

; z

1

is an odd 
hordless path. If there exists

a node w universal for S in V (H) n fa; b; z

1

g that has no neighbor in the

interior of F , then Lemma 5 applied to S, F and w implies that there exists

an odd number of edges in F that see S, a 
ontradi
tion. Therefore every

node universal for S in V (H) n fa; b; z

1

g is adja
ent either to x

1

or to x

n

.

Let t be the unique blue neighbor of z

1

in H. Note that t is adja
ent to x

1

.

Sin
e t and z

i

are 
onse
utive atta
hments of P , they must be adja
ent. So

x

n

is adja
ent to z

1

. Hen
e every node of H that is universal for S must be

adja
ent to x

1

or x

n

. In parti
ular, x

1

is adja
ent to all the blue endnodes of

the edges of H that see S, x

n

is adja
ent to all the red endnodes of the edges

of H that see S. If n > 2, then F has length at least 5 and by Lemma 4

there exist nonadja
ent y; z 2 S su
h that y is adja
ent to x

1

and to no other

node of P , and z is adja
ent to x

n

and to no other node of P . If n = 1, then

jF j = 3 and, by Lemma 4, S [ fx

1

; x

2

g 
ontains an odd anti-path between

x

1

and x

2

. So 
on
lusion (
) holds. 2

In the bi
oloring of H indu
ed by E

S

(H), we say that a node u of H is

an inner blue (resp. red) node if both neighbors of u in H are blue (resp.

red).

Theorem 16 Let (H;S) be the hub of a Berge graph G. Assume that S is a

maximal set su
h that (H;S) is a hub with the further property that S does

not 
ontain any 
enter of a twin wheel w.r.t. H. Let P = x

1

; : : : ; x

n

be a

minimal 
hordless path in G n (V (H) [ S) 
ontaining no node universal for

S su
h that x

1

has a red neighbor, no other node of P has a red neighbor and
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x

n

has a blue neighbor b in H so that neither of the neighbors of b in H is a

red neighbor of x

1

. Then one of the following holds:

(a) P has two 
onse
utive atta
hments of di�erent 
olors that are nonad-

ja
ent, and P is of one of the types in Theorem 14 (a)-(
) or (f)-(k).

(b) There exist two adja
ent edges ab

1

, ab

2

of E

S

(H) su
h that a is the

only red neighbor of x

1

in H and at least one node of P is adja
ent to

both b

1

and b

2

. If E

S

(H) % fab

1

; ab

2

g or if S 
ontains a node s with no

neighbors in P , then the path Q = a; x

1

; : : : ; x

n


ontains an odd number

of edges that see both b

1

and b

2

.

(
) n > 1, E

S

(H) 
ontains at least two nonadja
ent edges, x

1

is adja
ent

to all the red endnodes of the edges of H that see S and the node x

j

of lowest index adja
ent to some blue node is adja
ent to all the blue

endnodes of the edges of H that see S. If j > 2, then S 
ontains two

nonadja
ent nodes y and z su
h that y is adja
ent to x

1

and to no other

node of P

x

1

x

j

, and z is adja
ent to x

j

and to no other node of P

x

1

x

j

.

If j = 2, then S [ fx

1

; x

2

g 
ontains an odd 
hordless anti-path between

x

1

and x

2

.

Note that every path P = x

1

; : : : ; x

n

su
h that x

1

has a red neighbor and

x

n

has an inner blue neighbor 
ontains a subpath as in the hypothesis of

Theorem 16.

Proof: Let x

j

be the node of P of lowest index having a blue neighbor. If

the path P

x

1

x

j

has 
onse
utive atta
hments of distin
t 
olors that are not

adja
ent, then P

x

1

x

j

satis�es the hypothesis of Theorem 14, hen
e one the


ases (a)-(
) or (f)-(k) of Theorem 14 apply (
ases (d) and (e) 
annot o

ur

sin
e S does not 
ontain any 
enter of a twin wheel w.r.t. H). Sin
e in any

of these 
ases x

j

has a blue neighbor that is not adja
ent to any red neighbor

of x

1

in H, then j = n and 
ase (a) holds .

Hen
e we may assume that every pair of 
onse
utive atta
hments with

distin
t 
olors of P

x

1

x

j

are adja
ent, so 
ase (a)-(
) of Theorem 15 o

ur. If


ase (
) o

urs, then 
ase (
) of Theorem 16 holds and we are done. Hen
e

we may assume that 
ase (a) or (b) of Theorem 15 holds. In parti
ular, x

1

has a unique red neighbor, say a and, given b

1

and b

2

the two neighbors of a

in H, ab

1

sees S and x

j

is adja
ent to b

1

. Sin
e x

n

has a blue neighbor in H

neither of whose neighbors in H is a red neighbor of x

1

, n > 1.
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Claim 1 ab

2

sees S and b

2

has a neighbor in P .

Let t be the atta
hment of P in V (H) n fa; b

1

g that is 
losest to a in the

path indu
ed by V (H) n fb

1

g. Sin
e a is the unique red atta
hment of P ,

then t is blue. If t = b

2

then ab

2

sees S and we are done. Assume then that

t 6= b

2

, hen
e no neighbor of t in H is a red neighbor of x

1

so t is adja
ent

to x

n

and no other node in P . Let H

b

2

t

be the path between b

2

and t in the

graph indu
ed by V (H) n fb

1

g, and let H

0

= (a; x

1

; P; x

n

; t; H

b

2

t

; b

2

; a). Then

H

0

is an hole of length at least 6 and, sin
e a and t have distin
t 
olors in

the bi
oloring of H indu
ed by E

S

(H) and no node in P is universal for S,

an odd number of edges of H

0

sees S, therefore, by Theorem 10, exa
tly one

edge of H

0

sees S and no node of H

0

is universal for S ex
ept the endnodes

of su
h edge. Sin
e a is universal for S, then the unique edge in H

0

that sees

S must be ab

2

. Also, by Theorem 10, we have two possibilities.

Case 1: There exists a node y 2 S su
h that the only neighbors of y in

H

0

are a and b

2

.

Then t is not adja
ent to b

1

, otherwise (H; y) would be a twin wheel. Let

Z = z

1

; : : : ; z

k

be the path indu
ed by V (H) n (V (H

b

2

t

) [ fa; b

1

g), where z

1

is adja
ent to t and z

k

is adja
ent to b

1

. Sin
e (H; y) is not a twin wheel,

then y has a neighbor in Z. If x

n

does not have a neighbor in Z, then there

is a 3PC(yab

2

; t). If both y and x

n

have a neighbor in Z distin
t from z

1

,

then there is a 3PC(yab

2

; x

n

). Note that b

1

has a neighbor in V (P ) n fx

1

g,

otherwise (y; b

1

; x

1

; P; x

n

; t; H

b

2

t

; b

2

; y) is an odd hole.

If x

n

has no neighbor in Z ex
ept z

1

, then t and z

1

are the only neighbors

of x

n

in H, otherwise (H; x

n

) is an odd wheel. Sin
e b

1

has a neighbor in

V (P ) n fx

1

g, then there is a 3PC(x

n

tz

1

; b

1

).

Hen
e x

n

has a neighbor in V (Z)nfz

1

g, therefore the only neighbor of y in

Z is z

1

. Also x

n

is adja
ent to z

1

otherwise there is a 3PC(yab

2

; t). Consider

now the hole H

00

= (z

1

; y; a; x

1

; P; x

n

; z

1

). Sin
e b

1

sees at least one edge in

H

00

and b

1

has at least one neighbor in V (P ) n fx

1

g, then either (H

0

; b

1

) or

(H

00

; b

1

) is an odd wheel sin
e b

1

sees in H

00

exa
tly one edge more than in

H

0

.

Case 2: S 
ontains two nonadja
ent nodes y and z su
h that the only

neighbors of y in H

0

are a, b

2

and x

1

and the only neighbors of z in H

0

are

a, b

2

and the node 
 6= a adja
ent to b

2

in H

0

.

Then t is not adja
ent to b

1

, otherwise (H; y) would be a twin wheel. Let

Z = z

1

; : : : ; z

k

be the path indu
ed by V (H)n (V (H

b

2

t

)[fa; b

1

g), where z

1

is

adja
ent to t and z

k

is adja
ent to b

1

. Sin
e (H; y) is not a twin wheel, then
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y has a neighbor in Z. Also, sin
e (H; z) is not an odd wheel, also z has a

neighbor in Z. Let p and q be two neighbors in Z of y and z respe
tively

with minimum distan
e in Z. Let Z

pq

be the path between p and q in Z. Z

pq

is an even path, otherwise (a; y; p; Z

pq

; q; z; a) would be an odd hole. If b

1

has

a neighbor in P nx

1

, then (P nx

1

)[H

b

2

t

[fy; z; b

1

g 
ontains a 3PC(b

2

z
; b

1

).

So x

1

is the unique neighbor of b

1

in P . If x

n

has no neighbors in Z, then

H [ P indu
es a 3PC(x

1

ab

1

; t). If z

1

is not the unique neighbor of x

n

in Z,

then H [P 
ontains a 3PC(x

1

ab

1

; x

n

). So z

1

is the unique neighbor of x

n

in

Z. If Z

pq


ontains z

1

, then V (Z

pq

)[V (P )[fy; z; ag indu
es a 3PC(x

1

ay; z

1

).

Otherwise, V (P )[ (V (H

b

2

t

) n b

2

)[V (Z

pq

)[fy; zg indu
es an odd hole. This


on
ludes the proof of Claim 1.

Claim 2 There exists a node in P that is adja
ent to both b

1

and b

2

.

Assume not. Let x

k

be the node of P of lowest index that is adja
ent to

b

2

. Sin
e we assumed that the node x

j

of lowest index in P adja
ent to some

blue node is adja
ent to b

1

, then k > j.

Case 1: x

1

is the unique neighbor of b

1

in P

x

1

x

k

.

Then x

k

must be adja
ent to the neighbor 
 of b

2

in V (H) n fag and to

no other node in V (H) n fb

2

; 
g, or else there is either a 3PC(ab

1

x

1

; b

2

) or a

3PC(ab

1

x

1

; x

k

). Let F = b

1

; x

1

; P

x

1

x

k

; x

k

; b

2

. F is an odd path and b

1

and b

2

are universal for S. Sin
e P does not 
ontain any node universal for S, then


on
lusion (ii) or (iii) of Lemma 4 holds.

If 
on
lusion (ii) holds, then F has length 3 and S [ fx

1

; x

2

g 
ontains an

odd anti-path Q between x

1

and x

2

. Sin
e no node of V (H) n fa; b

1

; b

2

; 
g is

adja
ent to x

1

or x

2

and a is universal for all intermediate nodes of Q, then

we 
an apply Lemma 5 in G to the set V (H) n fa; b

1

; b

2

; 
g, the path Q and

the node a. Therefore there must exists an intermediate node y of Q with

no neighbors in V (H) n fa; b

1

; b

2

; 
g. But then the only neighbors of y in H

are a, b

1

and b

2

and (H; y) is a twin wheel, a 
ontradi
tion.

If 
on
lusion (iii) holds, then S 
ontains two nonadja
ent nodes y and z

su
h that y is adja
ent to x

1

and no other node of P

x

1

x

k

while z is adja
ent

to x

k

and no other node of P

x

1

x

k

. Sin
e S does not 
ontain any 
enter of twin

wheels w.r.t. H, then y and z must have neighbors in V (H) n fa; b

1

; b

2

; 
g.

Let p and q be two neighbors of y and z, respe
tively, that are 
losest pos-

sible in V (H) n fa; b

1

; b

2

; 
g and let Z be the path between p and q in the

graph indu
ed by V (H) n fa; b

1

; b

2

; 
g. Z must have even length otherwise

(a; y; p; Z; q; z; a) is an odd hole, but then (y; x

1

; P

x

1

x

k

; x

k

; z; q; Z; p; y) is an

odd hole, a 
ontradi
tion.
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Case 2: b

1

has a neighbor in P

x

2

x

k

.

Then k > 2 and H

0

= (a; x

1

; P

x

1

x

k

; x

k

; b

2

; a) is a hole of length at least

6. The only edge of H

0

that sees S is ab

2

hen
e 
on
lusion (2) or (3) of

Theorem 10 holds.

If 
on
lusion (2) holds, then S 
ontains two nonadja
ent nodes y and z

su
h that y is adja
ent to x

1

and no other node of P

x

1

x

k

while z is adja
ent

to x

k

and no other node of P

x

1

x

k

, but then there exists a 3PC(zb

2

x

k

; b

1

).

If 
on
lusion (3) holds, then S 
ontains a node y whose only neighbors in

H

0

are a and b

2

. Let P

0

be the shortest path between x

1

and y in the graph

indu
ed by (V (P )[V (H)[ fyg) n fa; b

1

; b

2

g. Then H

00

= (a; x

1

; P

0

; y; a) is a

hole. Both b

1

and b

2

see the edge ay of H

00

, both b

1

and b

2

have a neighbor

in P

x

1

x

j

and y is not adja
ent to x

k

, therefore by Theorem 10 b

1

and b

2

see

an even number of edges in H

00

, but then there exists a node of P that is

adja
ent to both b

1

and b

2

.

This 
on
ludes the proof of Claim 2.

Claim 3 If E

S

(H) % fab

1

; ab

2

g then the path Q = a; x

1

; : : : ; x

n


ontains an

odd number of edges that see both b

1

and b

2

.

Assume that E

S

(H) % fab

1

; ab

2

g. Suppose it is not the 
ase that an odd

number of edges of Q see both b

1

and b

2

. Let x

l

be the node of highest

index that is adja
ent to both b

1

and b

2

. Then l > 1. Suppose l is odd. Then

F = a; x

1

; P

x

1

x

l

; x

l

is an odd path and hen
e by Lemma 4 applied to F and set

fb

1

; b

2

g, b

1

is adja
ent to x

1

, x

l

and no other node in P

x

1

x

l

while b

2

is adja
ent

to x

l�1

, x

l

and no other node in P

x

1

x

l

. But then (V (H) [ V (P

x

1

x

l�1

)) n fag

indu
es an odd hole, a 
ontradi
tion. Therefore l is even. Let x

h

and x

k

be the nodes of highest index adja
ent to, respe
tively, b

1

and b

2

. W.l.o.g.,

h � k. We want to show that P

x

l

x

h

has even length. Assume not, then l < h,

therefore, by de�nition of l, h and k, h < k. Sin
e P

x

l

x

h

has odd length, then

b

1

must see an odd number of edges of P

x

l

x

h

. Let l = k

1

� : : : � k

m

= k be

all the indexes between l and k su
h that b

2

is adja
ent to x

k

i

. Then there

exists i, 1 � i � m� 1 su
h that b

1

sees an odd number of edges in P

x

k

i

x

k

i+1

.

But then P

x

k

i

x

k

i+1

has length at least 2 and C = (b

2

; x

k

i

; P

x

k

i

x

k

i+1

; x

k

i+1

; b

2

) is

an hole, therefore b

1

sees exa
tly one edge uv in C, and V (C)[fa; b

1

g indu
es

a 3PC(b

1

uv; b

2

), a 
ontradi
tion. Hen
e we have proven that a; x

1

; P

x

1

x

h

; x

h

has even length.

Case 1: x

n

sees an odd number of edges in some se
tor of (H;S).

Sin
e x

n

has only blue neighbors inH, by Corollary 13, x

n

has exa
tly two

neighbors u and v in H and they are adja
ent. Suppose x

n

is not adja
ent
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to b

2

. If h < k then there is a 3PC(x

n

uv; b

2

). If h = k then there is a

3PC(x

n

uv; x

k

). So x

n

is adja
ent to b

2

. P

x

h

x

n

has odd length, else (V (H) [

V (P

x

h

x

n

)) n fa; b

2

g indu
es an odd hole. Let 
 be the neighbor of b

2

in H n a.

Then 
 is adja
ent to x

n

. Let z be the endnode distin
t from b

2

of the

se
tor Z of (H;S) 
ontaining 
, and let F be the path between 
 and z in

Z. Sin
e E

S

(H) % fab

1

; ab

2

g, then z 6= b

1

. Moreover F has odd length,

therefore R = a; x

1

; P; x

n

; 
; F; z has odd length. Let w be the neighbor of z

in V (H) nV (Z), then zw 2 E

S

(H) and, by Lemma 5 applied to S, R and w,

there is an odd number of edges of R that sees S, a 
ontradi
tion.

Case 2: x

n

sees an even number of edges in every se
tor of (H;S).

Let u be the neighbor of x

n


losest to b

1

in the graph indu
ed by V (H) n

fa; b

2

g and H

ub

1

be the path between u and b

1

in the graph indu
ed by

V (H) n fa; b

2

g. We want to show that P

x

h

x

n

has length of the same par-

ity as the length of H

ub

1

. If not then u 6= b

1

and x

h

6= x

n

, but then

(b

1

; x

h

; P

x

h

x

n

; x

n

; u;H

ub

1

; b

1

) is an odd hole. Let z be the endnode distin
t

from b

1

and b

2

of the se
tor Z of (H;S) 
ontaining u (the existen
e of su
h

a node is guaranteed by the hypothesis E

S

(H) % fab

1

; ab

2

g). Let u

0

be the

neighbor of x

n


losest to z in Z and let F be the path between u

0

and z in Z.

Sin
e x

n

sees an even number of edges in Z, then H

ub

1

and F have lengths

of the same parity, therefore R = a; x

1

; P; x

n

; u

0

; F; z has odd length. Let w

be the neighbor of z in V (H) n V (Z), then zw 2 E

S

(H) and, by Lemma 5

applied to S, R and w, there is an odd number of edges of R that sees S, a


ontradi
tion.

This 
on
ludes the proof of Claim 3.

Claim 4 If S 
ontains a node s with no neighbors in P , then the path

Q = a; x

1

; : : : ; x

n


ontains an odd number of edges that see both b

1

and b

2

.

Let F be the shortest path between x

1

and s in the graph indu
ed by

(V (H) [ V (P ) [ fsg) n fa; b

1

; b

2

g. Then H

0

= (s; a; x

1

; F; s) is a hole. Sin
e

as sees both b

1

and b

2

and there exists a further node in P that is adja
ent

to both b

1

and b

2

then, by Theorem 10, H

0


ontains an even number of edges

that see both b

1

and b

2

, but then Q = a; x

1

; P; x

n

has an odd number of edges

that see both b

1

and b

2

. This 
on
ludes the proof of Claim 4. 2

6 Ears on isolated edges of a hub

Given an hub (H;S) in a Berge graph G, an edge uv in E

S

(H) is isolated if

no other edge in E

S

(H) is adja
ent to uv.
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Lemma 17 Let (H;S) be a hub of a Berge graph G su
h that H 
ontains

an edge uv in E

S

(H) that is isolated. Assume that S is maximal with su
h a

property. Let P = x

1

; :::; x

n

be an ear on uv. Let Q = y

1

; :::; y

m

be a minimal

path in G n (V (H)[ V (P )[ S) su
h that y

1

has a neighbor in P and y

m

has

a neighbor in the interior of some se
tor of (H;S). Then Q 
ontains a node

that is universal for S.

Proof: By 
ontradi
tion, let Q = y

1

; :::; y

m

be a minimal path in Gn (V (H)[

V (P )[S) su
h that y

1

has a neighbor in P , y

m

has a neighbor in the interior

of some se
tor of (H;S) and no node in Q is universal for S. Note that we

only need to prove the statement in the 
ase in whi
h Q does not 
ontain

any node whose only neighbors in H are u and v. In fa
t, if Q 
ontains su
h

a node and y

i

is the node of highest index whose only neighbors are u and v,

then P

0

= y

i

is an ear on uv and Q

0

= y

i+1

; Q

y

i+1

y

m

; y

m

is a path su
h that

y

i+1

has a neighbor in P

0

and y

m

has a neighbor in the interior of some se
tor

of (H;S) but no node of Q

0

is adja
ent to u, v and no other node of H. Let

us assume, then, that Q does not 
ontain any node whose only neighbors in

H are u and v.

Claim 1: No node in Q is adja
ent to both u and v.

Assume there exists i, 1 � i � m, su
h that y

i

is adja
ent to u and v.

Sin
e y

i

is not universal for S, then S[y

i

is 
o-
onne
ted. By the maximality

of S, (H;S [ y

i

) is not a hub, hen
e uv is the only edge of H that sees S [ y

i

.

Sin
e uv is isolated, S does not 
ontain any 
enter of a twin wheel w.r.t. H,

hen
e, by Theorem 10, y

i

is adja
ent only to u and v in H, a 
ontradi
tion.

Claim 2: Let y

i

be a node with a neighbor in H distin
t from v (resp.

u). Let s be the neighbor of y

i


losest to u (resp. v) in V (H) n fvg (resp.

V (H) n fug) and assume that no node in Q

y

1

y

i�1

has a neighbor 
loser to u

(resp. v) in V (H) n fvg (resp. V (H) n fug) than s. Then s and u (resp. v)

have the same 
olor.

Assume, w.l.o.g., that y

i

has a neighbor in H distin
t from v. By 
ontra-

di
tion, assume s and u have distin
t 
olors, then s 6= u. Let w and w

0

be the

endnodes of the se
tor Z of (H;S) 
ontaining s and assume w is 
loser to u

in V (H) n fvg than w

0

. Sin
e uv is isolated, then w is not adja
ent to u. Let

F be the shortest path between w and u in V (Z)[V (Q

y

1

y

i

)[V (P )[fug and

F

0

be the path between u and w in V (H) n fvg. Sin
e H

0

= (u; F

0

; w; F; u)

is a hole, then F and F

0

have length of the same parity. Sin
e w and u
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have distin
t 
olors in the bi
oloring of H indu
ed by E

S

(H), then F

0

has

odd length, therefore F is an odd 
hordless path. Sin
e F

0

is odd and uv is

isolated, F

0


ontains a node t, distin
t from u and v, that is universal for S.

Lemma 5 applied to S, F and t implies that F 
ontain an odd number of

edges that see S, a 
ontradi
tion.

Let y

j

be the node of Q of lowest index su
h that y

j

has a neighbor in H

distin
t from u and v. Let s be the neighbor of y

j


losest to v in V (H) n fug

and t be the neighbor of y

j


losest to u in V (H) n fvg.

Claim 3: st is an edge of H that sees S and st 6= uv. Furthermore, P = x

1

and no node in Q

y

1

y

j�1

has a neighbor in H.

By Claim 2 applied to y

j

, s has the same 
olor of v and t has the same


olor of u in the bi
oloring indu
ed on H by E

S

(H). By Claim 1, either s 6= v

or t 6= u. Assume, w.l.o.g., that u 6= t. Assume s and t are nonadja
ent.

Then s and t are 
onse
utive neighbors of y

j

with distin
t 
olors in H that

are nonadja
ent, therefore we 
an apply Theorem 14 to the path 
onsisting

of y

j

. Sin
e E

S

(H) 
ontains an isolated edge, then 
on
lusion (a), (b) or (g)

of Theorem 14 holds.

Case 1: Case (a) or (b) of Theorem 14 holds.

Then E

S

(H) 
onsists of two nonadja
ent edges uv and u

0

v

0

while (H; y

j

)

is a line wheel. Assume v and v

0

have the same 
olor. By symmetry, we may

assume that u 6= t and v

0

is not adja
ent to y

j

. Let F be the shortest path

between u and y

j

in V (P )[V (Q

y

1

y

j

)[fug and let F

0

be the path between u

and t in V (H) n fvg. Sin
e u 6= t, H

0

= (u; F

0

; t; y

j

; F; u) is a hole, hen
e F

0

has distin
t parity from F . But then, sin
e y

j

sees an odd number of edges in

the se
tor of (H;S) with endnodes u and u

0

, the shortest path F

00

from u to

u

0

in (V (H)[V (P )[V (F )) n fv; v

0

; tg has odd length. By Lemma 5 applied

to S, F

00

and v

0

, an odd number of edges of F

00

see S, a 
ontradi
tion.

Case 2: Case (g) of Theorem 14 holds.

Then s = v, u and t are adja
ent and H 
ontains a path v; u; t; u

0

; v

0

where u

0

v

0

sees S and y

j

is adja
ent to v; t; v

0

but not to u or u

0

. Let F

be the shortest path between u and y

j

in V (P ) [ V (Q

y

1

y

j

) [ fug. Sin
e

H

0

= (u; t; y

j

; F; u) is a hole, F has even parity, but then u; F; y

j

; v

0

is an odd


hordless path and Lemma 5 applied to S, u; F; y

j

; v

0

and u

0

, implies that an

odd number of edges of F see S, a 
ontradi
tion.

Therefore s and t must be adja
ent and, sin
e they have distin
t 
olors, st

sees S. To 
on
lude the proof of Claim 3, let F = v

1

; :::; v

k

be a shortest path
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in V (Q

y

1

y

j

) [ V (P ) su
h that v

k

= y

j

and v

1

is adja
ent to u or v . If v

1

is

not adja
ent to both u and v, say v

1

is not adja
ent to v, then V (H)[ V (F )

indu
es a a 3PC(sty

j

; u), a 
ontradi
tion. Therefore P = x

1

, v

1

= x

1

and no

node in Q

y

1

y

j�1

has a neighbor in H. This 
on
ludes the proof of Claim 3.

Let H

ut

be the path in V (H) n fvg between u and t and H

vs

be the path

in V (H) n fug between v and s. Note that H

ut

and H

vs

have both even

length. Let y

k

be the node of lowest index in Q su
h that k > j and y

k

has

a neighbor in V (H) n fs; tg.

Claim 4: y

k

has a neighbor both in V (H

ut

) n ftg and in V (H

vs

) n fsg.

Assume, w.l.o.g, that y

k

has a neighbor in H

ut

distin
t from t and let p

be the neighbor of y

k


losest to u in H

ut

(possibly u = p). By Claim 2, p and

u must have the same 
olor. Let F be the shortest path between p and s in

V (Q

y

j

y

k

)[fp; sg and let F

0

be the path between u and p in H

ut

. If y

k

has no

neighbors in V (H

vs

) n fsg, then H

0

= (u; F

0

; p; F; s;H

vs

; v; u) is a hole, then

R = u; F

0

; p; F; s is an odd path so, by Lemma 5 applied to S, R and v, R


ontains an odd number of edges that see S. Sin
e u and p have the same


olor, then S sees an even number of edges of F

0

, therefore S must see an

odd number of edges of F , a 
ontradi
tion.

Let p be the neighbor of y

k


losest to u in H

ut

and let q be the neighbor

of y

k


losest to v in H

vs

. By Claim 1 and Claim 4, p and q are nonadja
ent

and, by Claim 2, p has the same 
olor of u and q has the same 
olor of v.

We 
an also assume, w.l.o.g., that u 6= p.

Then p and q are 
onse
utive neighbors of y

k

with distin
t 
olors inH that

are nonadja
ent, therefore we 
an apply Theorem 14 to the path 
onsisting

of y

k

. Sin
e E

S

(H) 
ontains an isolated edge, then 
on
lusion (a), (b) or (g)

of Theorem 14 holds.

Case 1: Case (a) or (b) of Theorem 14 holds.

Then E

S

(H) 
onsists only of uv and st. Note that st is an isolated edge

of E

S

(H), P

0

= y

j

is an ear of st and S is maximal with this property.

Moreover Q

0

= Q

y

j+1

y

k

is a path in Gn (V (H)[V (P

0

)[S) su
h that y

i+1

has

a neighbor in P

0

and y

k

has a neighbor in the interior of a se
tor of (H;S).

But now P

0

and Q

0


ontradi
t Claim 3.

Case 2: Case (g) of Theorem 14 holds.

Then q = v, u and p are adja
ent and H 
ontains a path v; u; p; u

0

; v

0

where u

0

v

0

sees S and y

j

is adja
ent to v; p; v

0

but not to u or u

0

.

We have two 
ases:
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Case 2.1: u

0

v

0

6= st.

Then u

0

v

0

is not adja
ent to st, sin
e v

0

is in H

ut

and v

0

and t have distin
t


olors. Let F be the shortest path between u and y

k

in V (P )[V (Q

y

1

y

k

)[fug.

Sin
e H

0

= (u; p; y

k

; F; u) is a hole, then F is even, but then u; F; y

k

; v

0

is an

odd 
hordless path and Lemma 5 applied to S, u; F; y

k

; v

0

and u

0

, implies

that an odd number of edges of F see S, a 
ontradi
tion.

Case 2.2: u

0

v

0

= st.

Then u

0

= t and v

0

= s. Let F be the shortest path between t and y

k

in

V (Q

y

j

y

k

) [ ftg. Sin
e H

0

= (t; p; y

k

; F; t) is a hole, then F is even, but then

t; F; y

k

; v is an odd 
hordless path and Lemma 5 applied to S, t; F; y

k

; v and

u, implies that an odd number of edges of F see S, a 
ontradi
tion.

2

Theorem 18 Let (H;S) be a hub of a Berge graph. If G 
ontains an ear P

on an isolated edge uv of E

S

(H), then G has a skew partition.

Proof: Let A be a maximal set 
ontaining S su
h that (H;A) is a hub and

uv sees A. Assume that u is 
olored red in the bi
oloring of (H;A) indu
ed

by E

A

(H). Let B be the set 
ontaining all the endnodes of the edges of

E

A

(H) and all the nodes in G n (V (H) [ A) that are universal for A. If

Gn (A[B) is not 
onne
ted, then G 
ontains a skew-partition. Assume that

G n (A [B) is 
onne
ted, then there exists a minimal path Q = y

1

; :::; y

m

in

G n (V (H) [ V (P ) [ A [ B) su
h that y

1

has a neighbor in P and y

m

has

a neighbor in the interior of some se
tor of (H;A), but su
h a path would


ontradi
t Lemma 17. 2

7 Hubs in graphs 
ontaining no \large" line

graphs

ASSUMPTION: Throughout this se
tion, we will assume that G is a Berge

graph su
h that G and G 
ontain no long 3PC(�;�) and no line graph of a

bipartite subdivision of K

4

.

Lemma 19 Let (H;S) be a hub of a Berge graph G su
h that G and G


ontain no long 3PC(�;�) and no line graph of a bipartite subdivision of

K

4

. Let P = x

1

; : : : ; x

n

be a minimal 
hordless path in G n (V (H) [ S)


ontaining no node that is universal for S, su
h that x

1

has a blue neighbor
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in H and x

n

has a red neighbor (n = 1 is allowed). If there exist 
onse
utive

atta
hments of P with distin
t 
olors that are not adja
ent, then one of the

following holds.

(a) jHj = 6, n = 1 and there exists y 2 S su
h that V (H)[fx

1

; yg indu
es

a double beetle.

(b) n = 1 and there exists y 2 S nonadja
ent to x

1

su
h that (H; x

1

) and

(H; y) are twin wheels and exa
tly one edge of H sees both x

1

and y.

(
) There exists y 2 S su
h that (H; y) is a twin wheel, no node of P is a

neighbor of y, x

1

is adja
ent to the twin of y in H and no other node

in H while x

n

is not adja
ent to both the other neighbors of y in H.

Proof: Assume not, then P is of one of the types (a)-(
) or (f)-(k) of Theo-

rem 14. If P is of type (
), then V (H)[V (P )[fyg 
ontains a long 3PC(�;�)

unless n = 1 and jHj = 6, so 
ase (a) of Lemma 19 holds. P 
annot be of

type (a) by assumption. If P is of type (b), then n = 1, jHj = 6, (H; x

1

)

is a line wheel and S [ x

1


ontains an odd 
hordless anti-path Q of length

at least 3 between x

1

and a node y 2 S su
h that (H; y) is a line wheel, no

edge of H sees both x

1

and y and every intermediate node of Q is adja
ent

to every node in H. One 
an verify that G[V (H) [ V (Q)℄ is the line graph

of a bipartite subdivision of K

4

. If P is of type (f), then n = 1, H 
ontains

a subpath u; z; w; z

0

; u

0

su
h that E

S

(H) = fwz; wz

0

g, x

1

is adja
ent to u,

w and u

0

but not z and z

0

, S [ x

1


ontains an odd 
hordless anti-path Q of

length at least 3 between x

1

and a node y 2 S su
h that y is nonadja
ent

to u and u

0

and every intermediate node of Q is adja
ent to both u and u

0

.

One 
an verify that G[V (Q) [ fu; z; z

0

; u

0

g℄ is a 3PC(uu

0

y; z

0

zx

1

), and su
h

3PC(�;�) is long sin
e Q has length at least 3. If P is of type (g), then

n = 1, H 
ontains a subpath w; z; u; z

0

; w

0

su
h that wz and w

0

z

0

are edges

of E

S

(H), x

1

is adja
ent to u, w and w

0

but not z and z

0

, S [ x

1


ontains

an even 
hordless anti-path Q between x

1

and a node y 2 S su
h that y is

nonadja
ent to u and every intermediate node of Q is adja
ent to u. One


an verify that G[V (Q) [ fw; z; u; z

0

; w

0

g℄ is a 3PC(ww

0

u; z

0

zx

1

), whi
h is

long sin
e Q has positive even length. If P is of type (h), then n > 1, H


ontains a subpath w; z; u; z

0

; w

0

su
h that wz and w

0

z

0

are edges of E

S

(H),

x

1

is adja
ent w and w

0

but not u, z and z

0

, while x

n

is adja
ent to u but

not w, z, w

0

and z

0

. Furthermore S 
ontains two nodes y and y

0

su
h that

the only neighbors of y in V (P )[fw; z; u; z

0

; w

0

g are u, z, z

0

, w, w

0

while the
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only neighbors of y

0

in V (P ) [ fw; z; u; z

0

; w

0

g are x

1

, z, z

0

, w, w

0

. One 
an

verify that G[V (P ) [ fy; y

0

; u; z; w

0

g℄ is a long 3PC(uyz; x

1

w

0

y

0

). If P is of

type (k), then H = (v; w; z; u; z

0

; w

0

; v), E

S

(H) = fwz; w

0

z

0

g, x

1

is adja
ent

only to v in H and x

n

is adja
ent only to u in H. Furthermore, S 
ontains

two nonadja
ent nodes y and y

0

su
h that y and y

0

are adja
ent to every node

in H ex
ept v and u, respe
tively, and no node in P is adja
ent to y or y

0

.

One 
an verify that G[V (P ) [ fy; y

0

; u; v; z; w

0

g℄ is a long 3PC(uyz; vw

0

y

0

).

2

Lemma 20 Let (H;S) be the hub of a Berge graph G su
h that G and G


ontain no long 3PC(�;�) and no line graph of a bipartite subdivision of

K

4

. Assume that S is a maximal set su
h that (H;S) is a hub with the further

property that S does not 
ontain any 
enter of a twin wheel w.r.t. H. Let

P = x

1

; : : : ; x

n

be a minimal 
hordless path in G n (V (H)[S) 
ontaining no

node universal for S su
h that x

1

has a red neighbor, no other node of P has

a red neighbor and x

n

has a blue neighbor whose neighbors in H are not red

neighbors of x

1

. Then one of the following holds:

(1) There exist two adja
ent edges ab

1

, ab

2

of E

S

(H) su
h that a is the

only red neighbor of x

1

in H and at least one node of P is adja
ent to

both b

1

and b

2

. If E

S

(H) % fab

1

; ab

2

g or if S 
ontains a node s with no

neighbors in P , then the path Q = a; x

1

; : : : ; x

n


ontains an odd number

of edges that see both b

1

and b

2

.

(2) jHj = 6, n = 1 and there exists y 2 S su
h that V (H)[fx

1

; yg indu
es

a double beetle.

Proof: Obviously, one of the 
on
lusions of Theorem 16 must o

ur. If


on
lusion (a) of Theorem 16 holds, then by Lemma 19 
on
lusion (2) holds

(sin
e S does not 
ontain any 
enter of a twin wheel) and we are done. If


on
lusion (b) holds, then 
on
lusion (1) holds and we are done.

So we may assume that 
on
lusion (
) of Theorem 16 holds. Then n > 1,

E

S

(H) 
ontains at least two nonadja
ent edges, x

1

is adja
ent to all the

red endnodes of the edges of H that see S and the node x

j

of lowest index

adja
ent to some blue node is adja
ent to all the blue endnodes of the edges

of H that see S. If j > 2, then S 
ontains two nonadja
ent nodes y and z

su
h that y is adja
ent to x

1

and to no other node of P

x

1

x

j

, and z is adja
ent

to x

j

and to no other node of P

x

1

x

j

. If j = 2, then S [ fx

1

; x

2

g 
ontains an

odd 
hordless anti-path between x

1

and x

2

.
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Let uv and u

0

v

0

be two nonadja
ent edges of E

S

(H) and assume, w.l.o.g.,

that x

1

is adja
ent to u and u

0

and x

j

is adja
ent to v and v

0

. If j > 2

then G[V (P

x

1

x

j

) [ fy; z; u; v

0

g℄ is a long 3PC(x

1

yu; x

j

v

0

z). If j = 2 then

G[V (Q) [ fu; u

0

; v; v

0

g℄ is a long 3PC(x

1

vv

0

; x

2

u

0

u). 2

7.1 Good hubs

We say that a hub (H;S) is good if H has an inner blue node and an inner red

node w.r.t. the bi
oloring indu
ed on H by E

S

(H). Equivalently, given the

maximal paths P

1

; : : : ; P

k

indu
ed by the endnodes of the edges of E

S

(H),

(H;S) is a good hub if and only if there exists i, 1 � i � k, su
h that P

i

has

odd length.

Lemma 21 Let (H;S) be a good hub of a Berge graph G su
h that G and

G 
ontain no long 3PC(�;�) and no line graph of a bipartite subdivision of

K

4

. Let y 2 G n (V (H) [ S) be a node su
h that (H;S [ y) is a hub. Then

either (H;S [ y) is a good hub or V (H) [ y 
ontains a hole H

0

su
h that

(H

0

; S) is a good hub with E

S

(H

0

) $ E

S

(H).

Proof: Sin
e (H;S) is a good hub, by Lemma 19 every pair of 
onse
utive

neighbors of y in H with distin
t 
olors are adja
ent. Assume (H;S [ y)

is not a good hub. Let P

1

; : : : ; P

k

be the maximal paths indu
ed by the

endnodes of the edges of E

S

(H) and assume, w.l.o.g, that P

1

= y

1

; :::; y

m

has odd length. If y has no neighbor in P

1

, then P

1

is 
ontained in a se
tor

Q = s; :::; t of (H; y), therefore, given H

0

= (y; s; Q; t; y), (H

0

; S) is a good

hub and E

S

(H

0

) $ E

S

(H). Therefore we may assume that y has a neighbor

in P

1

. Let r be the neighbor of y 
losest to y

1

in P

1

and s be the neighbor

of y 
losest to y

m

in P

1

(possibly r = s). Sin
e (H;S [ y) is not a good

hub, then y sees an even number of edges of P

1

, therefore P

1

rs

has even

length. Sin
e P

1

has odd length, we 
an assume, w.l.o.g., that P

1

sy

m

has

odd length. Let Q = s; :::; t be the se
tor of (H; y) 
ontaining P

1

sy

m

, then,

given H

0

= (y; s; Q; t; y), (H

0

; S) is a good hub and E

S

(H

0

) $ E

S

(H) (sin
e

(H;S [ y) is a hub). 2

Theorem 22 Let G be a Berge graph su
h that G and G 
ontain no long

3PC(�;�) and no line graph of a bipartite subdivision of K

4

. If G 
ontains

a good hub (H;S), then G has a good skew partition.
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Proof: Assume that, among all the good hubs 
ontained in G, (H;S) is


hosen so that E

S

(H) is minimal (i.e. there is no good hub (H

0

; S

0

) su
h

that E

S

0

(H

0

) $ E

S

(H)). Let A be a maximal set 
ontaining S su
h that

(H;A) is a hub. Then, by Lemma 21 and by the minimality assumption

on E

S

(H), (H;A) is a good hub and E

A

(H) = E

S

(H). Let B be the set


ontaining all the nodes that are universal for A in G n (V (H) [ A) and

all the blue endnodes of the edges in E

S

(H). If in G n (A [ B) the red

nodes of H are in distin
t 
onne
ted 
omponents than the blue nodes of

H, then G has a skew partition. Otherwise there exists a 
hordless path

P = x

1

; :::; x

n

in G n (V (H) [ A) 
ontaining no node universal for S su
h

that x

1

is adja
ent to a red node of H, no other node of P has a red node

of H and x

n

is adja
ent to an inner blue node of H. Let j be the node of

P with lowest index that is adja
ent to a blue node b in H so that neither

of the neighbors of b in H is a red neighbor of x

1

. Then either 
on
lusion

(1) or (2) of Lemma 20 holds for P

x

1

x

j

. Con
lusion (2) 
annot hold sin
e

(H;A) is a good hub. Hen
e 
on
lusion (1) holds, so there exist two adja
ent

edges ab

1

, ab

2

of E

A

(H) su
h that a is the only red neighbor of x

1

in H and

at least one node of P

x

1

x

j

is adja
ent to both b

1

and b

2

. Sin
e (H;A) is a

good hub, E

A

(H) % fab

1

; ab

2

g so by Lemma 20 the path Q = a; x

1

; : : : ; x

j


ontains an odd number of edges that see both b

1

and b

2

. If j = 1, then

(H;A[x

1

) is a hub, 
ontradi
ting the maximality of A. Therefore j > 1 and

there exists a node x

i

, i < j, adja
ent to b

1

and b

2

and to no other node in

V (H)nfa; b

1

; b

2

g. Thus (V (H)[fx

i

g)nfag indu
es a hole H

0

and (H

0

; A) is

a good hub with E

A

(H

0

) $ E

S

(H), 
ontradi
ting the minimality of E

S

(H).

Hen
e G 
ontains a skew partition (A;B;C;D) where C 
ontains all the

red nodes of H and D 
ontains all the inner blue nodes of H (w.r.t. the

bi
oloring indu
ed on H by E

A

(H)). Let u be any red endpoint of some edge

in E

A

(H), then u 2 C and u is universal for A, hen
e (A;B;C;D) is a good

skew partition. 2

Re
ently, Chudnovsky, Robertson, Seymour and Thomas [3℄ showed that

a minimally imperfe
t graph 
annot 
ontain a long 3PC(�;�) or the line

graph of a bipartite subdivision of K

4

. This result, together with Theorems 2

and 22, implies the following.

Theorem 23 No minimally imperfe
t graph 
ontains a good hub.
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